memcontrol.c 193.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 71
EXPORT_SYMBOL(mem_cgroup_subsys);

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
152 153
	unsigned long last_dead_count;

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384
/* internal only representation about the status of kmem accounting. */
enum {
385
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 388 389 390 391 392 393
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399 400 401

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
402 403 404 405 406
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
407 408 409 410 411 412 413 414 415
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
416 417
#endif

418 419
/* Stuffs for move charges at task migration. */
/*
420 421
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 423
 */
enum move_type {
424
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
425
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
426 427 428
	NR_MOVE_TYPE,
};

429 430
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
431
	spinlock_t	  lock; /* for from, to */
432 433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
434
	unsigned long immigrate_flags;
435
	unsigned long precharge;
436
	unsigned long moved_charge;
437
	unsigned long moved_swap;
438 439 440
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
441
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 443
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
444

D
Daisuke Nishimura 已提交
445 446
static bool move_anon(void)
{
447
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
448 449
}

450 451
static bool move_file(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 454
}

455 456 457 458
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
460
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461

462 463
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 468 469
	NR_CHARGE_TYPE,
};

470
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
471 472 473 474
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
475
	_KMEM,
G
Glauber Costa 已提交
476 477
};

478 479
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
481 482
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
483

484 485 486 487 488 489 490 491
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

492 493 494 495 496 497 498
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

499 500
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
501
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

517 518 519 520 521
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

522 523 524 525 526 527
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

	css = css_from_id(id - 1, &mem_cgroup_subsys);
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
545
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
546
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
547 548 549

void sock_update_memcg(struct sock *sk)
{
550
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
551
		struct mem_cgroup *memcg;
552
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
553 554 555

		BUG_ON(!sk->sk_prot->proto_cgroup);

556 557 558 559 560 561 562 563 564 565
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566
			css_get(&sk->sk_cgrp->memcg->css);
567 568 569
			return;
		}

G
Glauber Costa 已提交
570 571
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
572
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 574
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
576 577 578 579 580 581 582 583
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
584
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
585 586 587
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
588
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
589 590
	}
}
G
Glauber Costa 已提交
591 592 593 594 595 596

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

597
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
598 599
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
600

601 602
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
603
	if (!memcg_proto_activated(&memcg->tcp_mem))
604 605 606 607 608 609 610 611 612
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

613
#ifdef CONFIG_MEMCG_KMEM
614 615
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
616 617 618 619 620
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
621 622 623 624 625 626
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
627 628
int memcg_limited_groups_array_size;

629 630 631 632 633 634
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
635
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 637
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
638
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 640 641
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
642
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643

644 645 646 647 648 649
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
650
struct static_key memcg_kmem_enabled_key;
651
EXPORT_SYMBOL(memcg_kmem_enabled_key);
652 653 654

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
655
	if (memcg_kmem_is_active(memcg)) {
656
		static_key_slow_dec(&memcg_kmem_enabled_key);
657 658
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
659 660 661 662 663
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 665 666 667 668 669 670 671 672 673 674 675 676
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

677
static void drain_all_stock_async(struct mem_cgroup *memcg);
678

679
static struct mem_cgroup_per_zone *
680
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681
{
682
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
683
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 685
}

686
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687
{
688
	return &memcg->css;
689 690
}

691
static struct mem_cgroup_per_zone *
692
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693
{
694 695
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
696

697
	return mem_cgroup_zoneinfo(memcg, nid, zid);
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
877
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878
				 enum mem_cgroup_stat_index idx)
879
{
880
	long val = 0;
881 882
	int cpu;

883 884
	get_online_cpus();
	for_each_online_cpu(cpu)
885
		val += per_cpu(memcg->stat->count[idx], cpu);
886
#ifdef CONFIG_HOTPLUG_CPU
887 888 889
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
890 891
#endif
	put_online_cpus();
892 893 894
	return val;
}

895
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 897 898
					 bool charge)
{
	int val = (charge) ? 1 : -1;
899
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 901
}

902
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 904 905 906 907
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

908
	get_online_cpus();
909
	for_each_online_cpu(cpu)
910
		val += per_cpu(memcg->stat->events[idx], cpu);
911
#ifdef CONFIG_HOTPLUG_CPU
912 913 914
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
915
#endif
916
	put_online_cpus();
917 918 919
	return val;
}

920
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921
					 struct page *page,
922
					 bool anon, int nr_pages)
923
{
924 925
	preempt_disable();

926 927 928 929 930 931
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
932
				nr_pages);
933
	else
934
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
935
				nr_pages);
936

937 938 939 940
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

941 942
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
943
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
944
	else {
945
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
946 947
		nr_pages = -nr_pages; /* for event */
	}
948

949
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
950

951
	preempt_enable();
952 953
}

954
unsigned long
955
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
956 957 958 959 960 961 962 963
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
964
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
965
			unsigned int lru_mask)
966 967
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
968
	enum lru_list lru;
969 970
	unsigned long ret = 0;

971
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
972

H
Hugh Dickins 已提交
973 974 975
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
976 977 978 979 980
	}
	return ret;
}

static unsigned long
981
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
982 983
			int nid, unsigned int lru_mask)
{
984 985 986
	u64 total = 0;
	int zid;

987
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
988 989
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
990

991 992
	return total;
}
993

994
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
995
			unsigned int lru_mask)
996
{
997
	int nid;
998 999
	u64 total = 0;

1000
	for_each_node_state(nid, N_MEMORY)
1001
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1002
	return total;
1003 1004
}

1005 1006
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1007 1008 1009
{
	unsigned long val, next;

1010
	val = __this_cpu_read(memcg->stat->nr_page_events);
1011
	next = __this_cpu_read(memcg->stat->targets[target]);
1012
	/* from time_after() in jiffies.h */
1013 1014 1015 1016 1017
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1018 1019 1020
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1021 1022 1023 1024 1025 1026 1027 1028
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1029
	}
1030
	return false;
1031 1032 1033 1034 1035 1036
}

/*
 * Check events in order.
 *
 */
1037
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1038
{
1039
	preempt_disable();
1040
	/* threshold event is triggered in finer grain than soft limit */
1041 1042
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1043
		bool do_softlimit;
1044
		bool do_numainfo __maybe_unused;
1045

1046 1047
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1048 1049 1050 1051 1052 1053
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1054
		mem_cgroup_threshold(memcg);
1055 1056
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1057
#if MAX_NUMNODES > 1
1058
		if (unlikely(do_numainfo))
1059
			atomic_inc(&memcg->numainfo_events);
1060
#endif
1061 1062
	} else
		preempt_enable();
1063 1064
}

1065
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066
{
1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1075
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1076 1077
}

1078
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079
{
1080
	struct mem_cgroup *memcg = NULL;
1081 1082 1083

	if (!mm)
		return NULL;
1084 1085 1086 1087 1088 1089 1090
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1091 1092
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1093
			break;
1094
	} while (!css_tryget(&memcg->css));
1095
	rcu_read_unlock();
1096
	return memcg;
1097 1098
}

1099 1100 1101 1102 1103 1104 1105
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106
		struct mem_cgroup *last_visited)
1107
{
1108
	struct cgroup_subsys_state *prev_css, *next_css;
1109

1110
	prev_css = last_visited ? &last_visited->css : NULL;
1111
skip_node:
1112
	next_css = css_next_descendant_pre(prev_css, &root->css);
1113 1114 1115 1116 1117 1118 1119 1120

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1121 1122 1123
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1124 1125 1126
		if (css_tryget(&mem->css))
			return mem;
		else {
1127
			prev_css = next_css;
1128 1129 1130 1131 1132 1133 1134
			goto skip_node;
		}
	}

	return NULL;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1204
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1205
				   struct mem_cgroup *prev,
1206
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1207
{
1208
	struct mem_cgroup *memcg = NULL;
1209
	struct mem_cgroup *last_visited = NULL;
1210

1211 1212
	if (mem_cgroup_disabled())
		return NULL;
1213

1214 1215
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1216

1217
	if (prev && !reclaim)
1218
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1219

1220 1221
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1222
			goto out_css_put;
1223
		return root;
1224
	}
K
KAMEZAWA Hiroyuki 已提交
1225

1226
	rcu_read_lock();
1227
	while (!memcg) {
1228
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1229
		int uninitialized_var(seq);
1230

1231 1232 1233 1234 1235 1236 1237
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1238
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1239
				iter->last_visited = NULL;
1240 1241
				goto out_unlock;
			}
M
Michal Hocko 已提交
1242

1243
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1244
		}
K
KAMEZAWA Hiroyuki 已提交
1245

1246
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1247

1248
		if (reclaim) {
1249
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1250

M
Michal Hocko 已提交
1251
			if (!memcg)
1252 1253 1254 1255
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1256

1257
		if (prev && !memcg)
1258
			goto out_unlock;
1259
	}
1260 1261
out_unlock:
	rcu_read_unlock();
1262 1263 1264 1265
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1266
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1267
}
K
KAMEZAWA Hiroyuki 已提交
1268

1269 1270 1271 1272 1273 1274 1275
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1276 1277 1278 1279 1280 1281
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1282

1283 1284 1285 1286 1287 1288
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1289
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1290
	     iter != NULL;				\
1291
	     iter = mem_cgroup_iter(root, iter, NULL))
1292

1293
#define for_each_mem_cgroup(iter)			\
1294
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1295
	     iter != NULL;				\
1296
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1297

1298
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1299
{
1300
	struct mem_cgroup *memcg;
1301 1302

	rcu_read_lock();
1303 1304
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1305 1306 1307 1308
		goto out;

	switch (idx) {
	case PGFAULT:
1309 1310 1311 1312
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1313 1314 1315 1316 1317 1318 1319
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1320
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1321

1322 1323 1324
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1325
 * @memcg: memcg of the wanted lruvec
1326 1327 1328 1329 1330 1331 1332 1333 1334
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1335
	struct lruvec *lruvec;
1336

1337 1338 1339 1340
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1341 1342

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1353 1354
}

K
KAMEZAWA Hiroyuki 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1368

1369
/**
1370
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1371
 * @page: the page
1372
 * @zone: zone of the page
1373
 */
1374
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1375 1376
{
	struct mem_cgroup_per_zone *mz;
1377 1378
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1379
	struct lruvec *lruvec;
1380

1381 1382 1383 1384
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1385

K
KAMEZAWA Hiroyuki 已提交
1386
	pc = lookup_page_cgroup(page);
1387
	memcg = pc->mem_cgroup;
1388 1389

	/*
1390
	 * Surreptitiously switch any uncharged offlist page to root:
1391 1392 1393 1394 1395 1396 1397
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1398
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1399 1400
		pc->mem_cgroup = memcg = root_mem_cgroup;

1401
	mz = page_cgroup_zoneinfo(memcg, page);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1412
}
1413

1414
/**
1415 1416 1417 1418
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1419
 *
1420 1421
 * This function must be called when a page is added to or removed from an
 * lru list.
1422
 */
1423 1424
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1425 1426
{
	struct mem_cgroup_per_zone *mz;
1427
	unsigned long *lru_size;
1428 1429 1430 1431

	if (mem_cgroup_disabled())
		return;

1432 1433 1434 1435
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1436
}
1437

1438
/*
1439
 * Checks whether given mem is same or in the root_mem_cgroup's
1440 1441
 * hierarchy subtree
 */
1442 1443
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1444
{
1445 1446
	if (root_memcg == memcg)
		return true;
1447
	if (!root_memcg->use_hierarchy || !memcg)
1448
		return false;
1449
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1450 1451 1452 1453 1454 1455 1456
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1457
	rcu_read_lock();
1458
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1459 1460
	rcu_read_unlock();
	return ret;
1461 1462
}

1463 1464
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1465
{
1466
	struct mem_cgroup *curr = NULL;
1467
	struct task_struct *p;
1468
	bool ret;
1469

1470
	p = find_lock_task_mm(task);
1471 1472 1473 1474 1475 1476 1477 1478 1479
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1480
		rcu_read_lock();
1481 1482 1483
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1484
		rcu_read_unlock();
1485
	}
1486
	if (!curr)
1487
		return false;
1488
	/*
1489
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1490
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1491 1492
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1493
	 */
1494
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1495
	css_put(&curr->css);
1496 1497 1498
	return ret;
}

1499
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1500
{
1501
	unsigned long inactive_ratio;
1502
	unsigned long inactive;
1503
	unsigned long active;
1504
	unsigned long gb;
1505

1506 1507
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1508

1509 1510 1511 1512 1513 1514
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1515
	return inactive * inactive_ratio < active;
1516 1517
}

1518 1519 1520
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1521
/**
1522
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1523
 * @memcg: the memory cgroup
1524
 *
1525
 * Returns the maximum amount of memory @mem can be charged with, in
1526
 * pages.
1527
 */
1528
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1529
{
1530 1531
	unsigned long long margin;

1532
	margin = res_counter_margin(&memcg->res);
1533
	if (do_swap_account)
1534
		margin = min(margin, res_counter_margin(&memcg->memsw));
1535
	return margin >> PAGE_SHIFT;
1536 1537
}

1538
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1539 1540
{
	/* root ? */
T
Tejun Heo 已提交
1541
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1542 1543
		return vm_swappiness;

1544
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1561 1562 1563 1564

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1565
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1566
{
1567
	atomic_inc(&memcg_moving);
1568
	atomic_inc(&memcg->moving_account);
1569 1570 1571
	synchronize_rcu();
}

1572
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1573
{
1574 1575 1576 1577
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1578 1579
	if (memcg) {
		atomic_dec(&memcg_moving);
1580
		atomic_dec(&memcg->moving_account);
1581
	}
1582
}
1583

1584 1585 1586
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1587 1588
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1589 1590 1591 1592 1593 1594 1595
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1596
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1597 1598
{
	VM_BUG_ON(!rcu_read_lock_held());
1599
	return atomic_read(&memcg->moving_account) > 0;
1600
}
1601

1602
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1603
{
1604 1605
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1606
	bool ret = false;
1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1616

1617 1618
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1619 1620
unlock:
	spin_unlock(&mc.lock);
1621 1622 1623
	return ret;
}

1624
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1625 1626
{
	if (mc.moving_task && current != mc.moving_task) {
1627
		if (mem_cgroup_under_move(memcg)) {
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1640 1641 1642 1643
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1644
 * see mem_cgroup_stolen(), too.
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1658
#define K(x) ((x) << (PAGE_SHIFT-10))
1659
/**
1660
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1661 1662 1663 1664 1665 1666 1667 1668 1669
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	/*
1670 1671
	 * protects memcg_name and makes sure that parallel ooms do not
	 * interleave
1672
	 */
1673 1674 1675
	static DEFINE_SPINLOCK(oom_info_lock);
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
1676 1677
	static char memcg_name[PATH_MAX];
	int ret;
1678 1679
	struct mem_cgroup *iter;
	unsigned int i;
1680

1681
	if (!p)
1682 1683
		return;

1684
	spin_lock(&oom_info_lock);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1701
	pr_info("Task in %s killed", memcg_name);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1714
	pr_cont(" as a result of limit of %s\n", memcg_name);
1715 1716
done:

1717
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1718 1719 1720
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1721
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1722 1723 1724
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1725
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1726 1727 1728
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1753
	spin_unlock(&oom_info_lock);
1754 1755
}

1756 1757 1758 1759
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1760
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1761 1762
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1763 1764
	struct mem_cgroup *iter;

1765
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1766
		num++;
1767 1768 1769
	return num;
}

D
David Rientjes 已提交
1770 1771 1772
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1773
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1774 1775 1776
{
	u64 limit;

1777 1778
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1779
	/*
1780
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1781
	 */
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1796 1797
}

1798 1799
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1800 1801 1802 1803 1804 1805 1806
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1807
	/*
1808 1809 1810
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1811
	 */
1812
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1813 1814 1815 1816 1817
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1818 1819
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1820
		struct css_task_iter it;
1821 1822
		struct task_struct *task;

1823 1824
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1837
				css_task_iter_end(&it);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1854
		css_task_iter_end(&it);
1855 1856 1857 1858 1859 1860 1861 1862 1863
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1900 1901
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1902
 * @memcg: the target memcg
1903 1904 1905 1906 1907 1908 1909
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1910
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1911 1912
		int nid, bool noswap)
{
1913
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1914 1915 1916
		return true;
	if (noswap || !total_swap_pages)
		return false;
1917
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1918 1919 1920 1921
		return true;
	return false;

}
1922
#if MAX_NUMNODES > 1
1923 1924 1925 1926 1927 1928 1929

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1930
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1931 1932
{
	int nid;
1933 1934 1935 1936
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1937
	if (!atomic_read(&memcg->numainfo_events))
1938
		return;
1939
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1940 1941 1942
		return;

	/* make a nodemask where this memcg uses memory from */
1943
	memcg->scan_nodes = node_states[N_MEMORY];
1944

1945
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1946

1947 1948
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1949
	}
1950

1951 1952
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1967
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1968 1969 1970
{
	int node;

1971 1972
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1973

1974
	node = next_node(node, memcg->scan_nodes);
1975
	if (node == MAX_NUMNODES)
1976
		node = first_node(memcg->scan_nodes);
1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1986
	memcg->last_scanned_node = node;
1987 1988 1989
	return node;
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2025
#else
2026
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2027 2028 2029
{
	return 0;
}
2030

2031 2032 2033 2034
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2035 2036
#endif

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2085
	}
2086 2087
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2088 2089
}

2090 2091 2092 2093 2094 2095
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2096 2097
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2098 2099 2100 2101
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2102
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2103
{
2104
	struct mem_cgroup *iter, *failed = NULL;
2105

2106 2107
	spin_lock(&memcg_oom_lock);

2108
	for_each_mem_cgroup_tree(iter, memcg) {
2109
		if (iter->oom_lock) {
2110 2111 2112 2113 2114
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2115 2116
			mem_cgroup_iter_break(memcg, iter);
			break;
2117 2118
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2119
	}
K
KAMEZAWA Hiroyuki 已提交
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2132
		}
2133 2134
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2135 2136 2137 2138

	spin_unlock(&memcg_oom_lock);

	return !failed;
2139
}
2140

2141
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2142
{
K
KAMEZAWA Hiroyuki 已提交
2143 2144
	struct mem_cgroup *iter;

2145
	spin_lock(&memcg_oom_lock);
2146
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2147
	for_each_mem_cgroup_tree(iter, memcg)
2148
		iter->oom_lock = false;
2149
	spin_unlock(&memcg_oom_lock);
2150 2151
}

2152
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2153 2154 2155
{
	struct mem_cgroup *iter;

2156
	for_each_mem_cgroup_tree(iter, memcg)
2157 2158 2159
		atomic_inc(&iter->under_oom);
}

2160
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2161 2162 2163
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2164 2165 2166 2167 2168
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2169
	for_each_mem_cgroup_tree(iter, memcg)
2170
		atomic_add_unless(&iter->under_oom, -1, 0);
2171 2172
}

K
KAMEZAWA Hiroyuki 已提交
2173 2174
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2175
struct oom_wait_info {
2176
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2177 2178 2179 2180 2181 2182
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2183 2184
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2185 2186 2187
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2188
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2189 2190

	/*
2191
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2192 2193
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2194 2195
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2196 2197 2198 2199
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2200
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2201
{
2202
	atomic_inc(&memcg->oom_wakeups);
2203 2204
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2205 2206
}

2207
static void memcg_oom_recover(struct mem_cgroup *memcg)
2208
{
2209 2210
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2211 2212
}

2213
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2214
{
2215 2216
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2217
	/*
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2230
	 */
2231 2232 2233 2234
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2235 2236 2237 2238
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2239
 * @handle: actually kill/wait or just clean up the OOM state
2240
 *
2241 2242
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2243
 *
2244
 * Memcg supports userspace OOM handling where failed allocations must
2245 2246 2247 2248
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2249
 * the end of the page fault to complete the OOM handling.
2250 2251
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2252
 * completed, %false otherwise.
2253
 */
2254
bool mem_cgroup_oom_synchronize(bool handle)
2255
{
2256
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2257
	struct oom_wait_info owait;
2258
	bool locked;
2259 2260 2261

	/* OOM is global, do not handle */
	if (!memcg)
2262
		return false;
2263

2264 2265
	if (!handle)
		goto cleanup;
2266 2267 2268 2269 2270 2271

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2272

2273
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2287
		schedule();
2288 2289 2290 2291 2292
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2293 2294 2295 2296 2297 2298 2299 2300
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2301 2302
cleanup:
	current->memcg_oom.memcg = NULL;
2303
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2304
	return true;
2305 2306
}

2307 2308 2309
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2327 2328
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2329
 */
2330

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2344
	 * need to take move_lock_mem_cgroup(). Because we already hold
2345
	 * rcu_read_lock(), any calls to move_account will be delayed until
2346
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2347
	 */
2348
	if (!mem_cgroup_stolen(memcg))
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2366
	 * should take move_lock_mem_cgroup().
2367 2368 2369 2370
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2371
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2372
				 enum mem_cgroup_stat_index idx, int val)
2373
{
2374
	struct mem_cgroup *memcg;
2375
	struct page_cgroup *pc = lookup_page_cgroup(page);
2376
	unsigned long uninitialized_var(flags);
2377

2378
	if (mem_cgroup_disabled())
2379
		return;
2380

2381
	VM_BUG_ON(!rcu_read_lock_held());
2382 2383
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2384
		return;
2385

2386
	this_cpu_add(memcg->stat->count[idx], val);
2387
}
2388

2389 2390 2391 2392
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2393
#define CHARGE_BATCH	32U
2394 2395
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2396
	unsigned int nr_pages;
2397
	struct work_struct work;
2398
	unsigned long flags;
2399
#define FLUSHING_CACHED_CHARGE	0
2400 2401
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2402
static DEFINE_MUTEX(percpu_charge_mutex);
2403

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2414
 */
2415
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2416 2417 2418 2419
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2420 2421 2422
	if (nr_pages > CHARGE_BATCH)
		return false;

2423
	stock = &get_cpu_var(memcg_stock);
2424 2425
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2439 2440 2441 2442
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2443
		if (do_swap_account)
2444 2445
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2458
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2472 2473
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2474
 * This will be consumed by consume_stock() function, later.
2475
 */
2476
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2477 2478 2479
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2480
	if (stock->cached != memcg) { /* reset if necessary */
2481
		drain_stock(stock);
2482
		stock->cached = memcg;
2483
	}
2484
	stock->nr_pages += nr_pages;
2485 2486 2487 2488
	put_cpu_var(memcg_stock);
}

/*
2489
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2490 2491
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2492
 */
2493
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2494
{
2495
	int cpu, curcpu;
2496

2497 2498
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2499
	curcpu = get_cpu();
2500 2501
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2502
		struct mem_cgroup *memcg;
2503

2504 2505
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2506
			continue;
2507
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2508
			continue;
2509 2510 2511 2512 2513 2514
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2515
	}
2516
	put_cpu();
2517 2518 2519 2520 2521 2522

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2523
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2524 2525 2526
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2527
	put_online_cpus();
2528 2529 2530 2531 2532 2533 2534 2535
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2536
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2537
{
2538 2539 2540 2541 2542
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2543
	drain_all_stock(root_memcg, false);
2544
	mutex_unlock(&percpu_charge_mutex);
2545 2546 2547
}

/* This is a synchronous drain interface. */
2548
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2549 2550
{
	/* called when force_empty is called */
2551
	mutex_lock(&percpu_charge_mutex);
2552
	drain_all_stock(root_memcg, true);
2553
	mutex_unlock(&percpu_charge_mutex);
2554 2555
}

2556 2557 2558 2559
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2560
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2561 2562 2563
{
	int i;

2564
	spin_lock(&memcg->pcp_counter_lock);
2565
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2566
		long x = per_cpu(memcg->stat->count[i], cpu);
2567

2568 2569
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2570
	}
2571
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2572
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2573

2574 2575
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2576
	}
2577
	spin_unlock(&memcg->pcp_counter_lock);
2578 2579
}

2580
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2581 2582 2583 2584 2585
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2586
	struct mem_cgroup *iter;
2587

2588
	if (action == CPU_ONLINE)
2589 2590
		return NOTIFY_OK;

2591
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2592
		return NOTIFY_OK;
2593

2594
	for_each_mem_cgroup(iter)
2595 2596
		mem_cgroup_drain_pcp_counter(iter, cpu);

2597 2598 2599 2600 2601
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2602 2603 2604 2605 2606 2607 2608 2609 2610

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2611
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2612
				unsigned int nr_pages, unsigned int min_pages,
2613
				bool invoke_oom)
2614
{
2615
	unsigned long csize = nr_pages * PAGE_SIZE;
2616 2617 2618 2619 2620
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2621
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2622 2623 2624 2625

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2626
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2627 2628 2629
		if (likely(!ret))
			return CHARGE_OK;

2630
		res_counter_uncharge(&memcg->res, csize);
2631 2632 2633 2634
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2635 2636 2637 2638
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2639
	if (nr_pages > min_pages)
2640 2641 2642 2643 2644
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2645 2646 2647
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2648
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2649
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2650
		return CHARGE_RETRY;
2651
	/*
2652 2653 2654 2655 2656 2657 2658
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2659
	 */
2660
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2661 2662 2663 2664 2665 2666 2667 2668 2669
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2670 2671
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2672

2673
	return CHARGE_NOMEM;
2674 2675
}

2676
/*
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2696
 */
2697
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2698
				   gfp_t gfp_mask,
2699
				   unsigned int nr_pages,
2700
				   struct mem_cgroup **ptr,
2701
				   bool oom)
2702
{
2703
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2704
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2705
	struct mem_cgroup *memcg = NULL;
2706
	int ret;
2707

K
KAMEZAWA Hiroyuki 已提交
2708 2709 2710 2711 2712 2713 2714 2715
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2716

2717
	if (unlikely(task_in_memcg_oom(current)))
2718
		goto nomem;
2719

2720 2721 2722
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;

2723
	/*
2724 2725
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2726
	 * thread group leader migrates. It's possible that mm is not
2727
	 * set, if so charge the root memcg (happens for pagecache usage).
2728
	 */
2729
	if (!*ptr && !mm)
2730
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2731
again:
2732 2733 2734
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2735
			goto done;
2736
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2737
			goto done;
2738
		css_get(&memcg->css);
2739
	} else {
K
KAMEZAWA Hiroyuki 已提交
2740
		struct task_struct *p;
2741

K
KAMEZAWA Hiroyuki 已提交
2742 2743 2744
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2745
		 * Because we don't have task_lock(), "p" can exit.
2746
		 * In that case, "memcg" can point to root or p can be NULL with
2747 2748 2749 2750 2751 2752
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2753
		 */
2754
		memcg = mem_cgroup_from_task(p);
2755 2756 2757
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2758 2759 2760
			rcu_read_unlock();
			goto done;
		}
2761
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2774
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2775 2776 2777 2778 2779
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2780

2781
	do {
2782
		bool invoke_oom = oom && !nr_oom_retries;
2783

2784
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2785
		if (fatal_signal_pending(current)) {
2786
			css_put(&memcg->css);
2787
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2788
		}
2789

2790 2791
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2792 2793 2794 2795
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2796
			batch = nr_pages;
2797 2798
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2799
			goto again;
2800
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2801
			css_put(&memcg->css);
2802 2803
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2804
			if (!oom || invoke_oom) {
2805
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2806
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2807
			}
2808 2809
			nr_oom_retries--;
			break;
2810
		}
2811 2812
	} while (ret != CHARGE_OK);

2813
	if (batch > nr_pages)
2814 2815
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2816
done:
2817
	*ptr = memcg;
2818 2819
	return 0;
nomem:
2820 2821 2822 2823
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2824
bypass:
2825 2826
	*ptr = root_mem_cgroup;
	return -EINTR;
2827
}
2828

2829 2830 2831 2832 2833
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2834
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2835
				       unsigned int nr_pages)
2836
{
2837
	if (!mem_cgroup_is_root(memcg)) {
2838 2839
		unsigned long bytes = nr_pages * PAGE_SIZE;

2840
		res_counter_uncharge(&memcg->res, bytes);
2841
		if (do_swap_account)
2842
			res_counter_uncharge(&memcg->memsw, bytes);
2843
	}
2844 2845
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2864 2865
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2866 2867 2868
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2869 2870 2871 2872 2873 2874
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2875
	return mem_cgroup_from_id(id);
2876 2877
}

2878
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2879
{
2880
	struct mem_cgroup *memcg = NULL;
2881
	struct page_cgroup *pc;
2882
	unsigned short id;
2883 2884
	swp_entry_t ent;

2885
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2886 2887

	pc = lookup_page_cgroup(page);
2888
	lock_page_cgroup(pc);
2889
	if (PageCgroupUsed(pc)) {
2890 2891 2892
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2893
	} else if (PageSwapCache(page)) {
2894
		ent.val = page_private(page);
2895
		id = lookup_swap_cgroup_id(ent);
2896
		rcu_read_lock();
2897 2898 2899
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2900
		rcu_read_unlock();
2901
	}
2902
	unlock_page_cgroup(pc);
2903
	return memcg;
2904 2905
}

2906
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2907
				       struct page *page,
2908
				       unsigned int nr_pages,
2909 2910
				       enum charge_type ctype,
				       bool lrucare)
2911
{
2912
	struct page_cgroup *pc = lookup_page_cgroup(page);
2913
	struct zone *uninitialized_var(zone);
2914
	struct lruvec *lruvec;
2915
	bool was_on_lru = false;
2916
	bool anon;
2917

2918
	lock_page_cgroup(pc);
2919
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2920 2921 2922 2923
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2924 2925 2926 2927 2928 2929 2930 2931 2932

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2933
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2934
			ClearPageLRU(page);
2935
			del_page_from_lru_list(page, lruvec, page_lru(page));
2936 2937 2938 2939
			was_on_lru = true;
		}
	}

2940
	pc->mem_cgroup = memcg;
2941 2942 2943 2944 2945 2946
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2947
	 */
K
KAMEZAWA Hiroyuki 已提交
2948
	smp_wmb();
2949
	SetPageCgroupUsed(pc);
2950

2951 2952
	if (lrucare) {
		if (was_on_lru) {
2953
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2954
			VM_BUG_ON_PAGE(PageLRU(page), page);
2955
			SetPageLRU(page);
2956
			add_page_to_lru_list(page, lruvec, page_lru(page));
2957 2958 2959 2960
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2961
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2962 2963 2964 2965
		anon = true;
	else
		anon = false;

2966
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2967
	unlock_page_cgroup(pc);
2968

2969
	/*
2970 2971 2972
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2973
	 */
2974
	memcg_check_events(memcg, page);
2975
}
2976

2977 2978
static DEFINE_MUTEX(set_limit_mutex);

2979
#ifdef CONFIG_MEMCG_KMEM
2980 2981
static DEFINE_MUTEX(activate_kmem_mutex);

2982 2983 2984
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2985
		memcg_kmem_is_active(memcg);
2986 2987
}

G
Glauber Costa 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2998
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2999 3000
}

3001
#ifdef CONFIG_SLABINFO
3002
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3003
{
3004
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3033
				      &_memcg, oom_gfp_allowed(gfp));
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3067 3068 3069 3070 3071

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3072 3073 3074 3075 3076 3077 3078 3079
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3080
	if (memcg_kmem_test_and_clear_dead(memcg))
3081
		css_put(&memcg->css);
3082 3083
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3120 3121
static void kmem_cache_destroy_work_func(struct work_struct *w);

3122 3123 3124 3125
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3126
	VM_BUG_ON(!is_root_cache(s));
3127 3128 3129

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3130
		struct memcg_cache_params *new_params;
3131 3132 3133
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3134
		size += offsetof(struct memcg_cache_params, memcg_caches);
3135

3136 3137
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3138 3139
			return -ENOMEM;

3140
		new_params->is_root_cache = true;
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3154
			new_params->memcg_caches[i] =
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3167 3168 3169
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3170 3171 3172 3173
	}
	return 0;
}

3174 3175
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3176
{
3177
	size_t size;
3178 3179 3180 3181

	if (!memcg_kmem_enabled())
		return 0;

3182 3183
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3184
		size += memcg_limited_groups_array_size * sizeof(void *);
3185 3186
	} else
		size = sizeof(struct memcg_cache_params);
3187

3188 3189 3190 3191
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3192
	if (memcg) {
3193
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3194
		s->memcg_params->root_cache = root_cache;
3195 3196
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3197 3198 3199
	} else
		s->memcg_params->is_root_cache = true;

3200 3201 3202
	return 0;
}

3203 3204 3205 3206 3207
void memcg_free_cache_params(struct kmem_cache *s)
{
	kfree(s->memcg_params);
}

3208
void memcg_register_cache(struct kmem_cache *s)
3209
{
3210 3211 3212 3213
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

3214 3215 3216
	if (is_root_cache(s))
		return;

3217 3218 3219 3220 3221 3222
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3223 3224 3225 3226 3227 3228 3229
	root = s->memcg_params->root_cache;
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);

	css_get(&memcg->css);


3230
	/*
3231 3232 3233
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3234
	 */
3235 3236
	smp_wmb();

3237 3238 3239 3240 3241
	/*
	 * Initialize the pointer to this cache in its parent's memcg_params
	 * before adding it to the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3242
	VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3243
	root->memcg_params->memcg_caches[id] = s;
3244 3245 3246 3247

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
3248
}
3249

3250 3251 3252 3253 3254 3255 3256 3257
void memcg_unregister_cache(struct kmem_cache *s)
{
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	if (is_root_cache(s))
		return;
3258

3259 3260 3261 3262 3263 3264
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3265
	root = s->memcg_params->root_cache;
3266 3267
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);
3268 3269 3270 3271 3272

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3273 3274 3275 3276 3277
	/*
	 * Clear the pointer to this cache in its parent's memcg_params only
	 * after removing it from the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3278
	VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3279 3280
	root->memcg_params->memcg_caches[id] = NULL;

3281
	css_put(&memcg->css);
3282 3283
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3345 3346 3347 3348 3349 3350 3351 3352
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3373 3374 3375 3376 3377 3378 3379
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3380 3381
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *s)
3382 3383
{
	struct kmem_cache *new;
3384
	static char *tmp_name = NULL;
3385
	static DEFINE_MUTEX(mutex);	/* protects tmp_name */
3386

3387
	BUG_ON(!memcg_can_account_kmem(memcg));
3388

3389
	mutex_lock(&mutex);
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3406

3407
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3408
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3409

3410 3411
	if (new)
		new->allocflags |= __GFP_KMEMCG;
3412 3413
	else
		new = s;
3414

3415
	mutex_unlock(&mutex);
3416 3417 3418
	return new;
}

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
3436 3437
	 * we'll take the activate_kmem_mutex to protect ourselves against
	 * this.
3438
	 */
3439
	mutex_lock(&activate_kmem_mutex);
3440 3441
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3459
		cancel_work_sync(&c->memcg_params->destroy);
3460 3461
		kmem_cache_destroy(c);
	}
3462
	mutex_unlock(&activate_kmem_mutex);
3463 3464
}

3465 3466 3467 3468 3469 3470
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3488 3489 3490 3491 3492 3493
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3494
	css_put(&cw->memcg->css);
3495 3496 3497 3498 3499 3500
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3501 3502
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3503 3504 3505 3506
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3507 3508
	if (cw == NULL) {
		css_put(&memcg->css);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3554
	struct kmem_cache *memcg_cachep;
3555 3556 3557 3558

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3559 3560 3561
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3562 3563 3564 3565
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3566
		goto out;
3567

3568 3569 3570
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3571
		goto out;
3572 3573
	}

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3601 3602 3603
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3640 3641 3642
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3724
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3725 3726
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3727 3728 3729 3730
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3731 3732
#endif /* CONFIG_MEMCG_KMEM */

3733 3734
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3735
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3736 3737
/*
 * Because tail pages are not marked as "used", set it. We're under
3738 3739 3740
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3741
 */
3742
void mem_cgroup_split_huge_fixup(struct page *head)
3743 3744
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3745
	struct page_cgroup *pc;
3746
	struct mem_cgroup *memcg;
3747
	int i;
3748

3749 3750
	if (mem_cgroup_disabled())
		return;
3751 3752

	memcg = head_pc->mem_cgroup;
3753 3754
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3755
		pc->mem_cgroup = memcg;
3756 3757 3758
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3759 3760
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3761
}
3762
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3763

3764 3765 3766 3767 3768 3769 3770 3771
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3772
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3773 3774 3775 3776
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3777
/**
3778
 * mem_cgroup_move_account - move account of the page
3779
 * @page: the page
3780
 * @nr_pages: number of regular pages (>1 for huge pages)
3781 3782 3783 3784 3785
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3786
 * - page is not on LRU (isolate_page() is useful.)
3787
 * - compound_lock is held when nr_pages > 1
3788
 *
3789 3790
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3791
 */
3792 3793 3794 3795
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3796
				   struct mem_cgroup *to)
3797
{
3798 3799
	unsigned long flags;
	int ret;
3800
	bool anon = PageAnon(page);
3801

3802
	VM_BUG_ON(from == to);
3803
	VM_BUG_ON_PAGE(PageLRU(page), page);
3804 3805 3806 3807 3808 3809 3810
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3811
	if (nr_pages > 1 && !PageTransHuge(page))
3812 3813 3814 3815 3816 3817 3818 3819
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3820
	move_lock_mem_cgroup(from, &flags);
3821

3822 3823 3824 3825 3826 3827 3828 3829
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3830
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3831

3832
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3833
	pc->mem_cgroup = to;
3834
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3835
	move_unlock_mem_cgroup(from, &flags);
3836 3837
	ret = 0;
unlock:
3838
	unlock_page_cgroup(pc);
3839 3840 3841
	/*
	 * check events
	 */
3842 3843
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3844
out:
3845 3846 3847
	return ret;
}

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3868
 */
3869 3870
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3871
				  struct mem_cgroup *child)
3872 3873
{
	struct mem_cgroup *parent;
3874
	unsigned int nr_pages;
3875
	unsigned long uninitialized_var(flags);
3876 3877
	int ret;

3878
	VM_BUG_ON(mem_cgroup_is_root(child));
3879

3880 3881 3882 3883 3884
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3885

3886
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3887

3888 3889 3890 3891 3892 3893
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3894

3895
	if (nr_pages > 1) {
3896
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3897
		flags = compound_lock_irqsave(page);
3898
	}
3899

3900
	ret = mem_cgroup_move_account(page, nr_pages,
3901
				pc, child, parent);
3902 3903
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3904

3905
	if (nr_pages > 1)
3906
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3907
	putback_lru_page(page);
3908
put:
3909
	put_page(page);
3910
out:
3911 3912 3913
	return ret;
}

3914 3915 3916 3917 3918 3919 3920
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3921
				gfp_t gfp_mask, enum charge_type ctype)
3922
{
3923
	struct mem_cgroup *memcg = NULL;
3924
	unsigned int nr_pages = 1;
3925
	bool oom = true;
3926
	int ret;
A
Andrea Arcangeli 已提交
3927

A
Andrea Arcangeli 已提交
3928
	if (PageTransHuge(page)) {
3929
		nr_pages <<= compound_order(page);
3930
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3931 3932 3933 3934 3935
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3936
	}
3937

3938
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3939
	if (ret == -ENOMEM)
3940
		return ret;
3941
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3942 3943 3944
	return 0;
}

3945 3946
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3947
{
3948
	if (mem_cgroup_disabled())
3949
		return 0;
3950 3951
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3952
	VM_BUG_ON(!mm);
3953
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3954
					MEM_CGROUP_CHARGE_TYPE_ANON);
3955 3956
}

3957 3958 3959
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3960
 * struct page_cgroup is acquired. This refcnt will be consumed by
3961 3962
 * "commit()" or removed by "cancel()"
 */
3963 3964 3965 3966
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3967
{
3968
	struct mem_cgroup *memcg;
3969
	struct page_cgroup *pc;
3970
	int ret;
3971

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3982 3983
	if (!do_swap_account)
		goto charge_cur_mm;
3984 3985
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3986
		goto charge_cur_mm;
3987 3988
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3989
	css_put(&memcg->css);
3990 3991
	if (ret == -EINTR)
		ret = 0;
3992
	return ret;
3993
charge_cur_mm:
3994 3995 3996 3997
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3998 3999
}

4000 4001 4002 4003 4004 4005
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4020 4021 4022
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4023 4024 4025 4026 4027 4028 4029 4030 4031
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4032
static void
4033
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4034
					enum charge_type ctype)
4035
{
4036
	if (mem_cgroup_disabled())
4037
		return;
4038
	if (!memcg)
4039
		return;
4040

4041
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4042 4043 4044
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4045 4046 4047
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4048
	 */
4049
	if (do_swap_account && PageSwapCache(page)) {
4050
		swp_entry_t ent = {.val = page_private(page)};
4051
		mem_cgroup_uncharge_swap(ent);
4052
	}
4053 4054
}

4055 4056
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4057
{
4058
	__mem_cgroup_commit_charge_swapin(page, memcg,
4059
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4060 4061
}

4062 4063
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4064
{
4065 4066 4067 4068
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4069
	if (mem_cgroup_disabled())
4070 4071 4072 4073 4074 4075 4076
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4077 4078
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4079 4080 4081 4082
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4083 4084
}

4085
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4086 4087
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4088 4089 4090
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4091

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4103
		batch->memcg = memcg;
4104 4105
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4106
	 * In those cases, all pages freed continuously can be expected to be in
4107 4108 4109 4110 4111 4112 4113 4114
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4115
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4116 4117
		goto direct_uncharge;

4118 4119 4120 4121 4122
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4123
	if (batch->memcg != memcg)
4124 4125
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4126
	batch->nr_pages++;
4127
	if (uncharge_memsw)
4128
		batch->memsw_nr_pages++;
4129 4130
	return;
direct_uncharge:
4131
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4132
	if (uncharge_memsw)
4133 4134 4135
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4136
}
4137

4138
/*
4139
 * uncharge if !page_mapped(page)
4140
 */
4141
static struct mem_cgroup *
4142 4143
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4144
{
4145
	struct mem_cgroup *memcg = NULL;
4146 4147
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4148
	bool anon;
4149

4150
	if (mem_cgroup_disabled())
4151
		return NULL;
4152

A
Andrea Arcangeli 已提交
4153
	if (PageTransHuge(page)) {
4154
		nr_pages <<= compound_order(page);
4155
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
4156
	}
4157
	/*
4158
	 * Check if our page_cgroup is valid
4159
	 */
4160
	pc = lookup_page_cgroup(page);
4161
	if (unlikely(!PageCgroupUsed(pc)))
4162
		return NULL;
4163

4164
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4165

4166
	memcg = pc->mem_cgroup;
4167

K
KAMEZAWA Hiroyuki 已提交
4168 4169 4170
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4171 4172
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4173
	switch (ctype) {
4174
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4175 4176 4177 4178 4179
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4180 4181
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4182
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4183
		/* See mem_cgroup_prepare_migration() */
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4205
	}
K
KAMEZAWA Hiroyuki 已提交
4206

4207
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4208

4209
	ClearPageCgroupUsed(pc);
4210 4211 4212 4213 4214 4215
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4216

4217
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4218
	/*
4219
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4220
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4221
	 */
4222
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4223
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4224
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4225
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4226
	}
4227 4228 4229 4230 4231 4232
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4233
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4234

4235
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4236 4237 4238

unlock_out:
	unlock_page_cgroup(pc);
4239
	return NULL;
4240 4241
}

4242 4243
void mem_cgroup_uncharge_page(struct page *page)
{
4244 4245 4246
	/* early check. */
	if (page_mapped(page))
		return;
4247
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4260 4261
	if (PageSwapCache(page))
		return;
4262
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4263 4264 4265 4266
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4267 4268
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4269
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4270 4271
}

4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4286 4287
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4308 4309 4310 4311 4312 4313
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4314
	memcg_oom_recover(batch->memcg);
4315 4316 4317 4318
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4319
#ifdef CONFIG_SWAP
4320
/*
4321
 * called after __delete_from_swap_cache() and drop "page" account.
4322 4323
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4324 4325
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4326 4327
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4328 4329 4330 4331 4332
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4333
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4334

K
KAMEZAWA Hiroyuki 已提交
4335 4336
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4337
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4338 4339
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4340
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4341
}
4342
#endif
4343

A
Andrew Morton 已提交
4344
#ifdef CONFIG_MEMCG_SWAP
4345 4346 4347 4348 4349
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4350
{
4351
	struct mem_cgroup *memcg;
4352
	unsigned short id;
4353 4354 4355 4356

	if (!do_swap_account)
		return;

4357 4358 4359
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4360
	if (memcg) {
4361 4362 4363 4364
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4365
		if (!mem_cgroup_is_root(memcg))
4366
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4367
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4368
		css_put(&memcg->css);
4369
	}
4370
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4371
}
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4388
				struct mem_cgroup *from, struct mem_cgroup *to)
4389 4390 4391
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4392 4393
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4394 4395 4396

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4397
		mem_cgroup_swap_statistics(to, true);
4398
		/*
4399 4400 4401
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4402 4403 4404 4405 4406 4407
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4408
		 */
L
Li Zefan 已提交
4409
		css_get(&to->css);
4410 4411 4412 4413 4414 4415
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4416
				struct mem_cgroup *from, struct mem_cgroup *to)
4417 4418 4419
{
	return -EINVAL;
}
4420
#endif
K
KAMEZAWA Hiroyuki 已提交
4421

4422
/*
4423 4424
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4425
 */
4426 4427
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4428
{
4429
	struct mem_cgroup *memcg = NULL;
4430
	unsigned int nr_pages = 1;
4431
	struct page_cgroup *pc;
4432
	enum charge_type ctype;
4433

4434
	*memcgp = NULL;
4435

4436
	if (mem_cgroup_disabled())
4437
		return;
4438

4439 4440 4441
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4442 4443 4444
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4445 4446
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4478
	}
4479
	unlock_page_cgroup(pc);
4480 4481 4482 4483
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4484
	if (!memcg)
4485
		return;
4486

4487
	*memcgp = memcg;
4488 4489 4490 4491 4492 4493 4494
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4495
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4496
	else
4497
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4498 4499 4500 4501 4502
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4503
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4504
}
4505

4506
/* remove redundant charge if migration failed*/
4507
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4508
	struct page *oldpage, struct page *newpage, bool migration_ok)
4509
{
4510
	struct page *used, *unused;
4511
	struct page_cgroup *pc;
4512
	bool anon;
4513

4514
	if (!memcg)
4515
		return;
4516

4517
	if (!migration_ok) {
4518 4519
		used = oldpage;
		unused = newpage;
4520
	} else {
4521
		used = newpage;
4522 4523
		unused = oldpage;
	}
4524
	anon = PageAnon(used);
4525 4526 4527 4528
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4529
	css_put(&memcg->css);
4530
	/*
4531 4532 4533
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4534
	 */
4535 4536 4537 4538 4539
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4540
	/*
4541 4542 4543 4544 4545 4546
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4547
	 */
4548
	if (anon)
4549
		mem_cgroup_uncharge_page(used);
4550
}
4551

4552 4553 4554 4555 4556 4557 4558 4559
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4560
	struct mem_cgroup *memcg = NULL;
4561 4562 4563 4564 4565 4566 4567 4568 4569
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4570 4571
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4572
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4573 4574
		ClearPageCgroupUsed(pc);
	}
4575 4576
	unlock_page_cgroup(pc);

4577 4578 4579 4580 4581 4582
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4583 4584 4585 4586 4587
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4588
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4589 4590
}

4591 4592 4593 4594 4595 4596
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4597 4598 4599 4600 4601
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4621 4622
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4623 4624 4625 4626
	}
}
#endif

4627
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4628
				unsigned long long val)
4629
{
4630
	int retry_count;
4631
	u64 memswlimit, memlimit;
4632
	int ret = 0;
4633 4634
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4635
	int enlarge;
4636 4637 4638 4639 4640 4641 4642 4643 4644

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4645

4646
	enlarge = 0;
4647
	while (retry_count) {
4648 4649 4650 4651
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4652 4653 4654
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4655
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4656 4657 4658 4659 4660 4661
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4662 4663
			break;
		}
4664 4665 4666 4667 4668

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4669
		ret = res_counter_set_limit(&memcg->res, val);
4670 4671 4672 4673 4674 4675
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4676 4677 4678 4679 4680
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4681 4682
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4683 4684
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4685
		if (curusage >= oldusage)
4686 4687 4688
			retry_count--;
		else
			oldusage = curusage;
4689
	}
4690 4691
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4692

4693 4694 4695
	return ret;
}

L
Li Zefan 已提交
4696 4697
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4698
{
4699
	int retry_count;
4700
	u64 memlimit, memswlimit, oldusage, curusage;
4701 4702
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4703
	int enlarge = 0;
4704

4705
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4706
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4707
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4708 4709 4710 4711 4712 4713 4714 4715
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4716
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4717 4718 4719 4720 4721 4722 4723 4724
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4725 4726 4727
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4728
		ret = res_counter_set_limit(&memcg->memsw, val);
4729 4730 4731 4732 4733 4734
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4735 4736 4737 4738 4739
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4740 4741 4742
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4743
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4744
		/* Usage is reduced ? */
4745
		if (curusage >= oldusage)
4746
			retry_count--;
4747 4748
		else
			oldusage = curusage;
4749
	}
4750 4751
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4752 4753 4754
	return ret;
}

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4847 4848 4849 4850 4851 4852 4853
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4854
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4855 4856
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4857
 */
4858
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4859
				int node, int zid, enum lru_list lru)
4860
{
4861
	struct lruvec *lruvec;
4862
	unsigned long flags;
4863
	struct list_head *list;
4864 4865
	struct page *busy;
	struct zone *zone;
4866

K
KAMEZAWA Hiroyuki 已提交
4867
	zone = &NODE_DATA(node)->node_zones[zid];
4868 4869
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4870

4871
	busy = NULL;
4872
	do {
4873
		struct page_cgroup *pc;
4874 4875
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4876
		spin_lock_irqsave(&zone->lru_lock, flags);
4877
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4878
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4879
			break;
4880
		}
4881 4882 4883
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4884
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4885
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4886 4887
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4888
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4889

4890
		pc = lookup_page_cgroup(page);
4891

4892
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4893
			/* found lock contention or "pc" is obsolete. */
4894
			busy = page;
4895 4896 4897
			cond_resched();
		} else
			busy = NULL;
4898
	} while (!list_empty(list));
4899 4900 4901
}

/*
4902 4903
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4904
 * This enables deleting this mem_cgroup.
4905 4906
 *
 * Caller is responsible for holding css reference on the memcg.
4907
 */
4908
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4909
{
4910
	int node, zid;
4911
	u64 usage;
4912

4913
	do {
4914 4915
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4916 4917
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4918
		for_each_node_state(node, N_MEMORY) {
4919
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4920 4921
				enum lru_list lru;
				for_each_lru(lru) {
4922
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4923
							node, zid, lru);
4924
				}
4925
			}
4926
		}
4927 4928
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4929
		cond_resched();
4930

4931
		/*
4932 4933 4934 4935 4936
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4937 4938 4939 4940 4941 4942
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4943 4944 4945
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4946 4947
}

4948 4949
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4960 4961
}

4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4972

4973
	/* returns EBUSY if there is a task or if we come here twice. */
4974 4975 4976
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4977 4978
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4979
	/* try to free all pages in this cgroup */
4980
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4981
		int progress;
4982

4983 4984 4985
		if (signal_pending(current))
			return -EINTR;

4986
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4987
						false);
4988
		if (!progress) {
4989
			nr_retries--;
4990
			/* maybe some writeback is necessary */
4991
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4992
		}
4993 4994

	}
K
KAMEZAWA Hiroyuki 已提交
4995
	lru_add_drain();
4996 4997 4998
	mem_cgroup_reparent_charges(memcg);

	return 0;
4999 5000
}

5001 5002
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5003
{
5004
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5005

5006 5007
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5008
	return mem_cgroup_force_empty(memcg);
5009 5010
}

5011 5012
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5013
{
5014
	return mem_cgroup_from_css(css)->use_hierarchy;
5015 5016
}

5017 5018
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5019 5020
{
	int retval = 0;
5021
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5022
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5023

5024
	mutex_lock(&memcg_create_mutex);
5025 5026 5027 5028

	if (memcg->use_hierarchy == val)
		goto out;

5029
	/*
5030
	 * If parent's use_hierarchy is set, we can't make any modifications
5031 5032 5033 5034 5035 5036
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5037
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5038
				(val == 1 || val == 0)) {
5039
		if (list_empty(&memcg->css.cgroup->children))
5040
			memcg->use_hierarchy = val;
5041 5042 5043 5044
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5045 5046

out:
5047
	mutex_unlock(&memcg_create_mutex);
5048 5049 5050 5051

	return retval;
}

5052

5053
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5054
					       enum mem_cgroup_stat_index idx)
5055
{
K
KAMEZAWA Hiroyuki 已提交
5056
	struct mem_cgroup *iter;
5057
	long val = 0;
5058

5059
	/* Per-cpu values can be negative, use a signed accumulator */
5060
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5061 5062 5063 5064 5065
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5066 5067
}

5068
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5069
{
K
KAMEZAWA Hiroyuki 已提交
5070
	u64 val;
5071

5072
	if (!mem_cgroup_is_root(memcg)) {
5073
		if (!swap)
5074
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5075
		else
5076
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5077 5078
	}

5079 5080 5081 5082
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5083 5084
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5085

K
KAMEZAWA Hiroyuki 已提交
5086
	if (swap)
5087
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5088 5089 5090 5091

	return val << PAGE_SHIFT;
}

5092 5093
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
5094
{
5095
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5096
	u64 val;
5097
	int name;
G
Glauber Costa 已提交
5098
	enum res_type type;
5099 5100 5101

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5102

5103 5104
	switch (type) {
	case _MEM:
5105
		if (name == RES_USAGE)
5106
			val = mem_cgroup_usage(memcg, false);
5107
		else
5108
			val = res_counter_read_u64(&memcg->res, name);
5109 5110
		break;
	case _MEMSWAP:
5111
		if (name == RES_USAGE)
5112
			val = mem_cgroup_usage(memcg, true);
5113
		else
5114
			val = res_counter_read_u64(&memcg->memsw, name);
5115
		break;
5116 5117 5118
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5119 5120 5121
	default:
		BUG();
	}
5122

5123
	return val;
B
Balbir Singh 已提交
5124
}
5125 5126

#ifdef CONFIG_MEMCG_KMEM
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5155
	mutex_lock(&memcg_create_mutex);
5156 5157 5158 5159 5160
	if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg))
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
5161

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
	err = memcg_update_all_caches(memcg_id + 1);
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
5195
out:
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
5224 5225 5226
	return ret;
}

5227
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5228
{
5229
	int ret = 0;
5230
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5231

5232 5233
	if (!parent)
		return 0;
5234

5235
	mutex_lock(&activate_kmem_mutex);
5236
	/*
5237 5238
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5239
	 */
5240 5241 5242
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5243
	return ret;
5244
}
5245 5246 5247 5248 5249 5250
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5251
#endif /* CONFIG_MEMCG_KMEM */
5252

5253 5254 5255 5256
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5257
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5258
			    const char *buffer)
B
Balbir Singh 已提交
5259
{
5260
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5261 5262
	enum res_type type;
	int name;
5263 5264 5265
	unsigned long long val;
	int ret;

5266 5267
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5268

5269
	switch (name) {
5270
	case RES_LIMIT:
5271 5272 5273 5274
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5275 5276
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5277 5278 5279
		if (ret)
			break;
		if (type == _MEM)
5280
			ret = mem_cgroup_resize_limit(memcg, val);
5281
		else if (type == _MEMSWAP)
5282
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5283
		else if (type == _KMEM)
5284
			ret = memcg_update_kmem_limit(memcg, val);
5285 5286
		else
			return -EINVAL;
5287
		break;
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5302 5303 5304 5305 5306
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5307 5308
}

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5319 5320
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5333
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5334
{
5335
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5336 5337
	int name;
	enum res_type type;
5338

5339 5340
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5341

5342
	switch (name) {
5343
	case RES_MAX_USAGE:
5344
		if (type == _MEM)
5345
			res_counter_reset_max(&memcg->res);
5346
		else if (type == _MEMSWAP)
5347
			res_counter_reset_max(&memcg->memsw);
5348 5349 5350 5351
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5352 5353
		break;
	case RES_FAILCNT:
5354
		if (type == _MEM)
5355
			res_counter_reset_failcnt(&memcg->res);
5356
		else if (type == _MEMSWAP)
5357
			res_counter_reset_failcnt(&memcg->memsw);
5358 5359 5360 5361
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5362 5363
		break;
	}
5364

5365
	return 0;
5366 5367
}

5368
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5369 5370
					struct cftype *cft)
{
5371
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5372 5373
}

5374
#ifdef CONFIG_MMU
5375
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5376 5377
					struct cftype *cft, u64 val)
{
5378
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5379 5380 5381

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5382

5383
	/*
5384 5385 5386 5387
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5388
	 */
5389
	memcg->move_charge_at_immigrate = val;
5390 5391
	return 0;
}
5392
#else
5393
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5394 5395 5396 5397 5398
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5399

5400
#ifdef CONFIG_NUMA
5401
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5402
{
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5415
	int nid;
5416
	unsigned long nr;
5417
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5418

5419 5420 5421 5422 5423 5424 5425 5426 5427
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5428 5429
	}

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5445 5446 5447 5448 5449 5450
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5451 5452 5453 5454 5455
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5456
static int memcg_stat_show(struct seq_file *m, void *v)
5457
{
5458
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5459 5460
	struct mem_cgroup *mi;
	unsigned int i;
5461

5462
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5463
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5464
			continue;
5465 5466
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5467
	}
L
Lee Schermerhorn 已提交
5468

5469 5470 5471 5472 5473 5474 5475 5476
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5477
	/* Hierarchical information */
5478 5479
	{
		unsigned long long limit, memsw_limit;
5480
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5481
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5482
		if (do_swap_account)
5483 5484
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5485
	}
K
KOSAKI Motohiro 已提交
5486

5487 5488 5489
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5490
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5491
			continue;
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5512
	}
K
KAMEZAWA Hiroyuki 已提交
5513

K
KOSAKI Motohiro 已提交
5514 5515 5516 5517
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5518
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5519 5520 5521 5522 5523
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5524
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5525
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5526

5527 5528 5529 5530
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5531
			}
5532 5533 5534 5535
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5536 5537 5538
	}
#endif

5539 5540 5541
	return 0;
}

5542 5543
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5544
{
5545
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5546

5547
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5548 5549
}

5550 5551
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5552
{
5553
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5554
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5555

T
Tejun Heo 已提交
5556
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5557 5558
		return -EINVAL;

5559
	mutex_lock(&memcg_create_mutex);
5560

K
KOSAKI Motohiro 已提交
5561
	/* If under hierarchy, only empty-root can set this value */
5562
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5563
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5564
		return -EINVAL;
5565
	}
K
KOSAKI Motohiro 已提交
5566 5567 5568

	memcg->swappiness = val;

5569
	mutex_unlock(&memcg_create_mutex);
5570

K
KOSAKI Motohiro 已提交
5571 5572 5573
	return 0;
}

5574 5575 5576 5577 5578 5579 5580 5581
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5582
		t = rcu_dereference(memcg->thresholds.primary);
5583
	else
5584
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5585 5586 5587 5588 5589 5590 5591

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5592
	 * current_threshold points to threshold just below or equal to usage.
5593 5594 5595
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5596
	i = t->current_threshold;
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5620
	t->current_threshold = i - 1;
5621 5622 5623 5624 5625 5626
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5627 5628 5629 5630 5631 5632 5633
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5634 5635 5636 5637 5638 5639 5640
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5641 5642 5643 5644 5645 5646 5647
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5648 5649
}

5650
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5651 5652 5653
{
	struct mem_cgroup_eventfd_list *ev;

5654
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5655 5656 5657 5658
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5659
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5660
{
K
KAMEZAWA Hiroyuki 已提交
5661 5662
	struct mem_cgroup *iter;

5663
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5664
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5665 5666
}

5667
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5668
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5669
{
5670 5671
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5672
	u64 threshold, usage;
5673
	int i, size, ret;
5674 5675 5676 5677 5678 5679

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5680

5681
	if (type == _MEM)
5682
		thresholds = &memcg->thresholds;
5683
	else if (type == _MEMSWAP)
5684
		thresholds = &memcg->memsw_thresholds;
5685 5686 5687 5688 5689 5690
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5691
	if (thresholds->primary)
5692 5693
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5694
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5695 5696

	/* Allocate memory for new array of thresholds */
5697
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5698
			GFP_KERNEL);
5699
	if (!new) {
5700 5701 5702
		ret = -ENOMEM;
		goto unlock;
	}
5703
	new->size = size;
5704 5705

	/* Copy thresholds (if any) to new array */
5706 5707
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5708
				sizeof(struct mem_cgroup_threshold));
5709 5710
	}

5711
	/* Add new threshold */
5712 5713
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5714 5715

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5716
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5717 5718 5719
			compare_thresholds, NULL);

	/* Find current threshold */
5720
	new->current_threshold = -1;
5721
	for (i = 0; i < size; i++) {
5722
		if (new->entries[i].threshold <= usage) {
5723
			/*
5724 5725
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5726 5727
			 * it here.
			 */
5728
			++new->current_threshold;
5729 5730
		} else
			break;
5731 5732
	}

5733 5734 5735 5736 5737
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5738

5739
	/* To be sure that nobody uses thresholds */
5740 5741 5742 5743 5744 5745 5746 5747
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5748
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5749 5750
	struct eventfd_ctx *eventfd, const char *args)
{
5751
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5752 5753
}

5754
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5755 5756
	struct eventfd_ctx *eventfd, const char *args)
{
5757
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5758 5759
}

5760
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5761
	struct eventfd_ctx *eventfd, enum res_type type)
5762
{
5763 5764
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5765
	u64 usage;
5766
	int i, j, size;
5767 5768 5769

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5770
		thresholds = &memcg->thresholds;
5771
	else if (type == _MEMSWAP)
5772
		thresholds = &memcg->memsw_thresholds;
5773 5774 5775
	else
		BUG();

5776 5777 5778
	if (!thresholds->primary)
		goto unlock;

5779 5780 5781 5782 5783 5784
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5785 5786 5787
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5788 5789 5790
			size++;
	}

5791
	new = thresholds->spare;
5792

5793 5794
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5795 5796
		kfree(new);
		new = NULL;
5797
		goto swap_buffers;
5798 5799
	}

5800
	new->size = size;
5801 5802

	/* Copy thresholds and find current threshold */
5803 5804 5805
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5806 5807
			continue;

5808
		new->entries[j] = thresholds->primary->entries[i];
5809
		if (new->entries[j].threshold <= usage) {
5810
			/*
5811
			 * new->current_threshold will not be used
5812 5813 5814
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5815
			++new->current_threshold;
5816 5817 5818 5819
		}
		j++;
	}

5820
swap_buffers:
5821 5822
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5823 5824 5825 5826 5827 5828
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5829
	rcu_assign_pointer(thresholds->primary, new);
5830

5831
	/* To be sure that nobody uses thresholds */
5832
	synchronize_rcu();
5833
unlock:
5834 5835
	mutex_unlock(&memcg->thresholds_lock);
}
5836

5837
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5838 5839
	struct eventfd_ctx *eventfd)
{
5840
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5841 5842
}

5843
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5844 5845
	struct eventfd_ctx *eventfd)
{
5846
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5847 5848
}

5849
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5850
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5851 5852 5853 5854 5855 5856 5857
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5858
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5859 5860 5861 5862 5863

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5864
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5865
		eventfd_signal(eventfd, 1);
5866
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5867 5868 5869 5870

	return 0;
}

5871
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5872
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5873 5874 5875
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5876
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5877

5878
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5879 5880 5881 5882 5883 5884
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5885
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5886 5887
}

5888
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5889
{
5890
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5891

5892 5893
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5894 5895 5896
	return 0;
}

5897
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5898 5899
	struct cftype *cft, u64 val)
{
5900
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5901
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5902 5903

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5904
	if (!parent || !((val == 0) || (val == 1)))
5905 5906
		return -EINVAL;

5907
	mutex_lock(&memcg_create_mutex);
5908
	/* oom-kill-disable is a flag for subhierarchy. */
5909
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5910
		mutex_unlock(&memcg_create_mutex);
5911 5912
		return -EINVAL;
	}
5913
	memcg->oom_kill_disable = val;
5914
	if (!val)
5915
		memcg_oom_recover(memcg);
5916
	mutex_unlock(&memcg_create_mutex);
5917 5918 5919
	return 0;
}

A
Andrew Morton 已提交
5920
#ifdef CONFIG_MEMCG_KMEM
5921
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5922
{
5923 5924
	int ret;

5925
	memcg->kmemcg_id = -1;
5926 5927 5928
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5929

5930
	return mem_cgroup_sockets_init(memcg, ss);
5931
}
5932

5933
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5934
{
5935
	mem_cgroup_sockets_destroy(memcg);
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5962 5963 5964 5965 5966 5967 5968

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5969
		css_put(&memcg->css);
G
Glauber Costa 已提交
5970
}
5971
#else
5972
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5973 5974 5975
{
	return 0;
}
G
Glauber Costa 已提交
5976

5977 5978 5979 5980 5981
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5982 5983
{
}
5984 5985
#endif

5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5999 6000 6001 6002 6003
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
6004
static void memcg_event_remove(struct work_struct *work)
6005
{
6006 6007
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
6008
	struct mem_cgroup *memcg = event->memcg;
6009 6010 6011

	remove_wait_queue(event->wqh, &event->wait);

6012
	event->unregister_event(memcg, event->eventfd);
6013 6014 6015 6016 6017 6018

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
6019
	css_put(&memcg->css);
6020 6021 6022 6023 6024 6025 6026
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
6027 6028
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
6029
{
6030 6031
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
6032
	struct mem_cgroup *memcg = event->memcg;
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
6045
		spin_lock(&memcg->event_list_lock);
6046 6047 6048 6049 6050 6051 6052 6053
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
6054
		spin_unlock(&memcg->event_list_lock);
6055 6056 6057 6058 6059
	}

	return 0;
}

6060
static void memcg_event_ptable_queue_proc(struct file *file,
6061 6062
		wait_queue_head_t *wqh, poll_table *pt)
{
6063 6064
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
6065 6066 6067 6068 6069 6070

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
6071 6072
 * DO NOT USE IN NEW FILES.
 *
6073 6074 6075 6076 6077
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6078 6079
static int memcg_write_event_control(struct cgroup_subsys_state *css,
				     struct cftype *cft, const char *buffer)
6080
{
6081
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6082
	struct mem_cgroup_event *event;
6083 6084 6085 6086
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
6087
	const char *name;
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6105
	event->memcg = memcg;
6106
	INIT_LIST_HEAD(&event->list);
6107 6108 6109
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6135 6136 6137 6138 6139
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6140 6141
	 *
	 * DO NOT ADD NEW FILES.
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6155 6156
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6157 6158 6159 6160 6161
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6162
	/*
6163 6164 6165
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6166 6167 6168 6169
	 */
	rcu_read_lock();

	ret = -EINVAL;
6170 6171 6172
	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
				 &mem_cgroup_subsys);
	if (cfile_css == css && css_tryget(css))
6173 6174 6175 6176 6177 6178
		ret = 0;

	rcu_read_unlock();
	if (ret)
		goto out_put_cfile;

6179
	ret = event->register_event(memcg, event->eventfd, buffer);
6180 6181 6182 6183 6184
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6185 6186 6187
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6188 6189 6190 6191 6192 6193 6194

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6195
	css_put(css);
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6208 6209
static struct cftype mem_cgroup_files[] = {
	{
6210
		.name = "usage_in_bytes",
6211
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6212
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6213
	},
6214 6215
	{
		.name = "max_usage_in_bytes",
6216
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6217
		.trigger = mem_cgroup_reset,
6218
		.read_u64 = mem_cgroup_read_u64,
6219
	},
B
Balbir Singh 已提交
6220
	{
6221
		.name = "limit_in_bytes",
6222
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6223
		.write_string = mem_cgroup_write,
6224
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6225
	},
6226 6227 6228 6229
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6230
		.read_u64 = mem_cgroup_read_u64,
6231
	},
B
Balbir Singh 已提交
6232 6233
	{
		.name = "failcnt",
6234
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6235
		.trigger = mem_cgroup_reset,
6236
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6237
	},
6238 6239
	{
		.name = "stat",
6240
		.seq_show = memcg_stat_show,
6241
	},
6242 6243 6244 6245
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6246 6247
	{
		.name = "use_hierarchy",
6248
		.flags = CFTYPE_INSANE,
6249 6250 6251
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6252
	{
6253 6254
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6255 6256 6257
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6258 6259 6260 6261 6262
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6263 6264 6265 6266 6267
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6268 6269
	{
		.name = "oom_control",
6270
		.seq_show = mem_cgroup_oom_control_read,
6271
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6272 6273
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6274 6275 6276
	{
		.name = "pressure_level",
	},
6277 6278 6279
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6280
		.seq_show = memcg_numa_stat_show,
6281 6282
	},
#endif
6283 6284 6285 6286 6287
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6288
		.read_u64 = mem_cgroup_read_u64,
6289 6290 6291 6292
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6293
		.read_u64 = mem_cgroup_read_u64,
6294 6295 6296 6297 6298
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6299
		.read_u64 = mem_cgroup_read_u64,
6300 6301 6302 6303 6304
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6305
		.read_u64 = mem_cgroup_read_u64,
6306
	},
6307 6308 6309
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6310
		.seq_show = mem_cgroup_slabinfo_read,
6311 6312
	},
#endif
6313
#endif
6314
	{ },	/* terminate */
6315
};
6316

6317 6318 6319 6320 6321
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6322
		.read_u64 = mem_cgroup_read_u64,
6323 6324 6325 6326 6327
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6328
		.read_u64 = mem_cgroup_read_u64,
6329 6330 6331 6332 6333
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6334
		.read_u64 = mem_cgroup_read_u64,
6335 6336 6337 6338 6339
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6340
		.read_u64 = mem_cgroup_read_u64,
6341 6342 6343 6344
	},
	{ },	/* terminate */
};
#endif
6345
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6346 6347
{
	struct mem_cgroup_per_node *pn;
6348
	struct mem_cgroup_per_zone *mz;
6349
	int zone, tmp = node;
6350 6351 6352 6353 6354 6355 6356 6357
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6358 6359
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6360
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6361 6362
	if (!pn)
		return 1;
6363 6364 6365

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6366
		lruvec_init(&mz->lruvec);
6367 6368
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6369
		mz->memcg = memcg;
6370
	}
6371
	memcg->nodeinfo[node] = pn;
6372 6373 6374
	return 0;
}

6375
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6376
{
6377
	kfree(memcg->nodeinfo[node]);
6378 6379
}

6380 6381
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6382
	struct mem_cgroup *memcg;
6383
	size_t size;
6384

6385 6386
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6387

6388
	memcg = kzalloc(size, GFP_KERNEL);
6389
	if (!memcg)
6390 6391
		return NULL;

6392 6393
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6394
		goto out_free;
6395 6396
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6397 6398

out_free:
6399
	kfree(memcg);
6400
	return NULL;
6401 6402
}

6403
/*
6404 6405 6406 6407 6408 6409 6410 6411
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6412
 */
6413 6414

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6415
{
6416
	int node;
6417

6418
	mem_cgroup_remove_from_trees(memcg);
6419 6420 6421 6422 6423 6424

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6436
	disarm_static_keys(memcg);
6437
	kfree(memcg);
6438
}
6439

6440 6441 6442
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6443
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6444
{
6445
	if (!memcg->res.parent)
6446
		return NULL;
6447
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6448
}
G
Glauber Costa 已提交
6449
EXPORT_SYMBOL(parent_mem_cgroup);
6450

6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6474
static struct cgroup_subsys_state * __ref
6475
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6476
{
6477
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6478
	long error = -ENOMEM;
6479
	int node;
B
Balbir Singh 已提交
6480

6481 6482
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6483
		return ERR_PTR(error);
6484

B
Bob Liu 已提交
6485
	for_each_node(node)
6486
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6487
			goto free_out;
6488

6489
	/* root ? */
6490
	if (parent_css == NULL) {
6491
		root_mem_cgroup = memcg;
6492 6493 6494
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6495
	}
6496

6497 6498 6499 6500 6501
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6502
	vmpressure_init(&memcg->vmpressure);
6503 6504
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6505 6506 6507 6508 6509 6510 6511 6512 6513

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6514
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6515
{
6516 6517
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6518

6519 6520 6521
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6522
	if (!parent)
6523 6524
		return 0;

6525
	mutex_lock(&memcg_create_mutex);
6526 6527 6528 6529 6530 6531

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6532 6533
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6534
		res_counter_init(&memcg->kmem, &parent->kmem);
6535

6536
		/*
6537 6538
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6539
		 */
6540
	} else {
6541 6542
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6543
		res_counter_init(&memcg->kmem, NULL);
6544 6545 6546 6547 6548
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6549
		if (parent != root_mem_cgroup)
6550
			mem_cgroup_subsys.broken_hierarchy = true;
6551
	}
6552
	mutex_unlock(&memcg_create_mutex);
6553 6554

	return memcg_init_kmem(memcg, &mem_cgroup_subsys);
B
Balbir Singh 已提交
6555 6556
}

M
Michal Hocko 已提交
6557 6558 6559 6560 6561 6562 6563 6564
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6565
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6566 6567 6568 6569 6570 6571

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6572
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6573 6574
}

6575
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6576
{
6577
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6578
	struct mem_cgroup_event *event, *tmp;
6579 6580 6581 6582 6583 6584

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6585 6586
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6587 6588 6589
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6590
	spin_unlock(&memcg->event_list_lock);
6591

6592 6593
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6594
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6595
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6596
	mem_cgroup_destroy_all_caches(memcg);
6597
	vmpressure_cleanup(&memcg->vmpressure);
6598 6599
}

6600
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6601
{
6602
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6639

6640
	memcg_destroy_kmem(memcg);
6641
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6642 6643
}

6644
#ifdef CONFIG_MMU
6645
/* Handlers for move charge at task migration. */
6646 6647
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6648
{
6649 6650
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6651
	struct mem_cgroup *memcg = mc.to;
6652

6653
	if (mem_cgroup_is_root(memcg)) {
6654 6655 6656 6657 6658 6659 6660 6661
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6662
		 * "memcg" cannot be under rmdir() because we've already checked
6663 6664 6665 6666
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6667
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6668
			goto one_by_one;
6669
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6670
						PAGE_SIZE * count, &dummy)) {
6671
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6688 6689
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6690
		if (ret)
6691
			/* mem_cgroup_clear_mc() will do uncharge later */
6692
			return ret;
6693 6694
		mc.precharge++;
	}
6695 6696 6697 6698
	return ret;
}

/**
6699
 * get_mctgt_type - get target type of moving charge
6700 6701 6702
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6703
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6704 6705 6706 6707 6708 6709
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6710 6711 6712
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6713 6714 6715 6716 6717
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6718
	swp_entry_t	ent;
6719 6720 6721
};

enum mc_target_type {
6722
	MC_TARGET_NONE = 0,
6723
	MC_TARGET_PAGE,
6724
	MC_TARGET_SWAP,
6725 6726
};

D
Daisuke Nishimura 已提交
6727 6728
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6729
{
D
Daisuke Nishimura 已提交
6730
	struct page *page = vm_normal_page(vma, addr, ptent);
6731

D
Daisuke Nishimura 已提交
6732 6733 6734 6735
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6736
		if (!move_anon())
D
Daisuke Nishimura 已提交
6737
			return NULL;
6738 6739
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6740 6741 6742 6743 6744 6745 6746
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6747
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6748 6749 6750 6751 6752 6753 6754 6755
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6756 6757 6758 6759
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6760
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6761 6762 6763 6764 6765
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6766 6767 6768 6769 6770 6771 6772
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6773

6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6793 6794 6795 6796 6797 6798
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6799
		if (do_swap_account)
6800
			*entry = swap;
6801
		page = find_get_page(swap_address_space(swap), swap.val);
6802
	}
6803
#endif
6804 6805 6806
	return page;
}

6807
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6808 6809 6810 6811
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6812
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6813 6814 6815 6816 6817 6818
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6819 6820
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6821 6822

	if (!page && !ent.val)
6823
		return ret;
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6839 6840
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6841
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6842 6843 6844
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6845 6846 6847 6848
	}
	return ret;
}

6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6863
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6884 6885 6886 6887 6888 6889 6890 6891
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6892
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6893 6894
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6895
		spin_unlock(ptl);
6896
		return 0;
6897
	}
6898

6899 6900
	if (pmd_trans_unstable(pmd))
		return 0;
6901 6902
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6903
		if (get_mctgt_type(vma, addr, *pte, NULL))
6904 6905 6906 6907
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6908 6909 6910
	return 0;
}

6911 6912 6913 6914 6915
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6916
	down_read(&mm->mmap_sem);
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6928
	up_read(&mm->mmap_sem);
6929 6930 6931 6932 6933 6934 6935 6936 6937

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6938 6939 6940 6941 6942
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6943 6944
}

6945 6946
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6947
{
6948 6949
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6950
	int i;
6951

6952
	/* we must uncharge all the leftover precharges from mc.to */
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6964
	}
6965 6966 6967 6968 6969 6970
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6971 6972 6973

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6974 6975 6976 6977 6978 6979 6980 6981 6982

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6983
		/* we've already done css_get(mc.to) */
6984 6985
		mc.moved_swap = 0;
	}
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
7001
	spin_lock(&mc.lock);
7002 7003
	mc.from = NULL;
	mc.to = NULL;
7004
	spin_unlock(&mc.lock);
7005
	mem_cgroup_end_move(from);
7006 7007
}

7008
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7009
				 struct cgroup_taskset *tset)
7010
{
7011
	struct task_struct *p = cgroup_taskset_first(tset);
7012
	int ret = 0;
7013
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7014
	unsigned long move_charge_at_immigrate;
7015

7016 7017 7018 7019 7020 7021 7022
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
7023 7024 7025
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

7026
		VM_BUG_ON(from == memcg);
7027 7028 7029 7030 7031

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
7032 7033 7034 7035
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
7036
			VM_BUG_ON(mc.moved_charge);
7037
			VM_BUG_ON(mc.moved_swap);
7038
			mem_cgroup_start_move(from);
7039
			spin_lock(&mc.lock);
7040
			mc.from = from;
7041
			mc.to = memcg;
7042
			mc.immigrate_flags = move_charge_at_immigrate;
7043
			spin_unlock(&mc.lock);
7044
			/* We set mc.moving_task later */
7045 7046 7047 7048

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
7049 7050
		}
		mmput(mm);
7051 7052 7053 7054
	}
	return ret;
}

7055
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7056
				     struct cgroup_taskset *tset)
7057
{
7058
	mem_cgroup_clear_mc();
7059 7060
}

7061 7062 7063
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7064
{
7065 7066 7067 7068
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7069 7070 7071 7072
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7073

7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
7084
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7085
		if (mc.precharge < HPAGE_PMD_NR) {
7086
			spin_unlock(ptl);
7087 7088 7089 7090 7091 7092 7093 7094
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7095
							pc, mc.from, mc.to)) {
7096 7097 7098 7099 7100 7101 7102
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
7103
		spin_unlock(ptl);
7104
		return 0;
7105 7106
	}

7107 7108
	if (pmd_trans_unstable(pmd))
		return 0;
7109 7110 7111 7112
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7113
		swp_entry_t ent;
7114 7115 7116 7117

		if (!mc.precharge)
			break;

7118
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7119 7120 7121 7122 7123
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7124
			if (!mem_cgroup_move_account(page, 1, pc,
7125
						     mc.from, mc.to)) {
7126
				mc.precharge--;
7127 7128
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7129 7130
			}
			putback_lru_page(page);
7131
put:			/* get_mctgt_type() gets the page */
7132 7133
			put_page(page);
			break;
7134 7135
		case MC_TARGET_SWAP:
			ent = target.ent;
7136
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7137
				mc.precharge--;
7138 7139 7140
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7141
			break;
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7156
		ret = mem_cgroup_do_precharge(1);
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7200
	up_read(&mm->mmap_sem);
7201 7202
}

7203
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7204
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7205
{
7206
	struct task_struct *p = cgroup_taskset_first(tset);
7207
	struct mm_struct *mm = get_task_mm(p);
7208 7209

	if (mm) {
7210 7211
		if (mc.to)
			mem_cgroup_move_charge(mm);
7212 7213
		mmput(mm);
	}
7214 7215
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7216
}
7217
#else	/* !CONFIG_MMU */
7218
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7219
				 struct cgroup_taskset *tset)
7220 7221 7222
{
	return 0;
}
7223
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7224
				     struct cgroup_taskset *tset)
7225 7226
{
}
7227
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7228
				 struct cgroup_taskset *tset)
7229 7230 7231
{
}
#endif
B
Balbir Singh 已提交
7232

7233 7234 7235 7236
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7237
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7238 7239 7240 7241 7242 7243
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7244 7245
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7246 7247
}

B
Balbir Singh 已提交
7248 7249 7250
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7251
	.css_alloc = mem_cgroup_css_alloc,
7252
	.css_online = mem_cgroup_css_online,
7253 7254
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7255 7256
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7257
	.attach = mem_cgroup_move_task,
7258
	.bind = mem_cgroup_bind,
7259
	.base_cftypes = mem_cgroup_files,
7260
	.early_init = 0,
B
Balbir Singh 已提交
7261
};
7262

A
Andrew Morton 已提交
7263
#ifdef CONFIG_MEMCG_SWAP
7264 7265
static int __init enable_swap_account(char *s)
{
7266
	if (!strcmp(s, "1"))
7267
		really_do_swap_account = 1;
7268
	else if (!strcmp(s, "0"))
7269 7270 7271
		really_do_swap_account = 0;
	return 1;
}
7272
__setup("swapaccount=", enable_swap_account);
7273

7274 7275
static void __init memsw_file_init(void)
{
7276 7277 7278 7279 7280 7281 7282 7283 7284
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7285
}
7286

7287
#else
7288
static void __init enable_swap_cgroup(void)
7289 7290
{
}
7291
#endif
7292 7293

/*
7294 7295 7296 7297 7298 7299
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7300 7301 7302 7303
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7304
	enable_swap_cgroup();
7305
	mem_cgroup_soft_limit_tree_init();
7306
	memcg_stock_init();
7307 7308 7309
	return 0;
}
subsys_initcall(mem_cgroup_init);