nn.py 369.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
shippingwang 已提交
182
    'shuffle_channel',
S
sneaxiy 已提交
183
    'py_func',
184
    'psroi_pool',
H
heqiaozhi 已提交
185
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
186
    'huber_loss',
Z
zhaozhehao 已提交
187
    'tree_conv',
Y
Yu Yang 已提交
188 189
]

J
jerrywgz 已提交
190 191
kIgnoreIndex = -100

Y
Yu Yang 已提交
192 193 194 195 196 197 198

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
199
       is_test=False,
200
       name=None):
Y
Yu Yang 已提交
201
    """
202
    **Fully Connected Layer**
Y
Yu Yang 已提交
203

204 205 206 207 208 209 210 211
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
212
    to the output as well.
C
caoying03 已提交
213

C
caoying03 已提交
214
    This process can be formulated as follows:
215 216 217

    .. math::

218
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
219 220 221

    In the above equation:

C
caoying03 已提交
222 223 224 225
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
226
    * :math:`Act`: The activation function.
C
caoying03 已提交
227
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
228 229

    Args:
R
ranqiu 已提交
230 231 232 233 234 235 236 237 238 239
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
240
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
241 242 243 244
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
245 246
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
247
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
248
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
249
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
250

251
    Returns:
F
fengjiayi 已提交
252
        Variable: The transformation result.
253 254

    Raises:
C
caoying03 已提交
255
        ValueError: If rank of the input tensor is less than 2.
256 257 258 259

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
260
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
261
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
262
    """
C
caoying03 已提交
263

C
caoying03 已提交
264
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
265 266 267 268

    dtype = helper.input_dtype()

    mul_results = []
269 270
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
271 272 273
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
274

Y
Yu Yang 已提交
275
        w = helper.create_parameter(
276
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
277
        tmp = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
282
            outputs={"Out": tmp},
M
mozga-intel 已提交
283 284
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
285 286 287 288
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
289
    else:
X
Xin Pan 已提交
290
        pre_bias = helper.create_variable_for_type_inference(dtype)
291
        helper.append_op(
292 293 294
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
295
            attrs={"use_mkldnn": False})
296 297 298 299
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
300 301


302 303 304
def embedding(input,
              size,
              is_sparse=False,
305
              is_distributed=False,
306 307 308
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
309
    """
310 311
    **Embedding Layer**

312
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
313 314
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
315 316 317

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
318 319

    Args:
320 321 322 323 324
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
325
        is_distributed(bool): Whether to run lookup table from remote parameter server.
326 327
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
328
            with zeros whenever lookup encounters it in :attr:`input`. If
329
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
330 331
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
332
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
333

334 335 336
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
337

338 339
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
340

C
chengduoZH 已提交
341
          dict_size = len(dataset.ids)
342
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
343
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
344 345 346
    """

    helper = LayerHelper('embedding', **locals())
347
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
348 349
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
350 351
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
352
    tmp = helper.create_variable_for_type_inference(dtype)
353 354
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
355 356 357 358 359
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
360 361 362
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
363
            'remote_prefetch': remote_prefetch,
364 365
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
366 367 368
    return tmp


W
wopeizl 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
385

W
wopeizl 已提交
386 387 388 389 390 391 392 393 394 395 396
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
397

W
wopeizl 已提交
398 399 400 401
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
402

W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
489 490


P
phlrain 已提交
491 492 493 494 495 496
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
497
         dropout_prob=0.0,
P
phlrain 已提交
498 499 500 501 502
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
503
    """
P
phlrain 已提交
504
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
505 506

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
507
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
508 509
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
510
    .. math::
M
minqiyang 已提交
511 512 513 514 515 516 517

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
518
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
519 520 521 522

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
523 524

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
525 526 527 528 529 530
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
531 532 533
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
534
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
535

M
minqiyang 已提交
536
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
537 538 539 540 541
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
542
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
543 544 545 546 547
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
548
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
549 550
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
551 552
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
553 554 555 556 557 558
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
559
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
560

L
liuhongyu 已提交
561 562

    Returns:
M
minqiyang 已提交
563 564
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
565
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
566

H
haowang101779990 已提交
567 568 569 570
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
571
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
572 573
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
590
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
591 592 593 594 595 596
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
597 598 599
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
659 660 661 662 663 664 665 666 667 668 669
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
670 671
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
672 673 674
    """
    **Dynamic LSTMP Layer**

675 676 677 678 679 680
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
681 682 683 684 685

    The formula is as follows:

    .. math::

686
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
687

688
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
689

690
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
691

692
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
693

694
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
695

696
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
697

698
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
699

Y
Yibing Liu 已提交
700 701 702 703 704 705
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
706
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
707
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
708
          bias vector).
Y
Yibing Liu 已提交
709 710 711
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
712
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
713
    * :math:`h`: The hidden state.
714
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
715 716
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
717
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
718
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
719
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
720 721
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
722 723 724 725

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
726

Y
Yibing Liu 已提交
727 728 729 730 731 732 733 734 735 736 737 738
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
739
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
740 741
                               hidden-hidden weight and projection weight.

742 743
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
744 745
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
746 747
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
748
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
749 750 751 752 753

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
754
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
755 756 757 758 759 760
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
761
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
762 763 764
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
765
                                - The shape is (1 x 7D).
C
chengduo 已提交
766 767 768 769 770

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
771 772 773 774 775 776 777 778 779
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
780
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
781 782
                              default "tanh".
        proj_activation(str): The activation for projection output.
783
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
784 785
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
786 787
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
788 789

    Returns:
790 791 792 793
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
794 795

    Examples:
796

Y
Yibing Liu 已提交
797 798
        .. code-block:: python

799 800 801 802
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
803
            hidden_dim, proj_dim = 512, 256
804
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
805
                                     act=None, bias_attr=None)
806 807 808
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
809 810 811 812
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
813
    """
814

C
chengduo 已提交
815
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
816
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
817
    size = size // 4
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826 827
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
828 829 830 831 832 833
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
862 863 864 865 866 867 868
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
869 870
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
871
    """
872
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
873

874 875 876
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
877

G
guosheng 已提交
878 879 880 881 882 883 884 885 886
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
887

G
guosheng 已提交
888
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
889

Q
Qiao Longfei 已提交
890 891 892

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
893 894 895 896 897 898 899 900 901 902 903 904
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
905
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
906 907
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
908 909 910 911
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
912
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
913 914

    Args:
915 916
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
917
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
918
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
919 920
            is the hidden size.
        size(int): The dimension of the gru cell.
921
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
922 923
            hidden-hidden weight matrix. Note:

924
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
925
              :math:`D` is the hidden size.
926
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
927
              The first part are weights of the update gate and reset gate with
928
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
929
              candidate hidden state with shape :math:`(D \\times D)`.
930 931 932 933 934

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
935
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
936
            the bias in the update gate, reset gate and candidate calculations.
937 938 939
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
940 941
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
942
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
943 944 945
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
946
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
947
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
948 949 950 951
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
952 953

    Returns:
G
guosheng 已提交
954
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
955
            and sequence length is the same with the input.
956

G
guosheng 已提交
957
    Examples:
958

G
guosheng 已提交
959 960
        .. code-block:: python

961 962 963 964
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
965
            hidden_dim = 512
966
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
967
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
968 969 970 971 972 973 974 975 976
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
977
    batch_size = input.shape[0]
G
guosheng 已提交
978
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
979
    if h_0:
G
guosheng 已提交
980
        assert h_0.shape == (
Y
Yancey 已提交
981 982 983
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
984

X
Xin Pan 已提交
985 986 987 988
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1002 1003
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1004 1005 1006 1007
        })
    return hidden


Y
Yu Yang 已提交
1008 1009 1010
def gru_unit(input,
             hidden,
             size,
1011 1012
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1013
             activation='tanh',
Q
Qiao Longfei 已提交
1014 1015
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1016
    """
1017 1018 1019
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1020
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1021
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1022

1023 1024
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1025

1026
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1027

1028
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1045 1046

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1047 1048 1049
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1050 1051
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1052 1053
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1054 1055 1056
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1057 1058 1059

    Args:
        input (Variable): The fc transformed input value of current step.
1060
        hidden (Variable): The hidden value of gru unit from previous step.
1061
        size (integer): The input dimension value.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1076
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1077
            the bias in the update gate, reset gate and candidate calculations.
1078 1079 1080
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1081 1082
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1083 1084 1085 1086
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1087

1088 1089 1090 1091 1092 1093
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1094

1095
             # assuming we have x_t_data and prev_hidden of size=10
1096
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1097 1098
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1111
    size = size // 3
Y
Yu Yang 已提交
1112 1113

    # create weight
1114 1115
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1116

X
Xin Pan 已提交
1117 1118 1119
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1120
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1121
    # create bias
1122
    if helper.bias_attr:
Y
Yu Yang 已提交
1123 1124 1125
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1126
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1127 1128 1129

    helper.append_op(
        type='gru_unit',
1130
        inputs=inputs,
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1137 1138
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1139 1140 1141 1142 1143
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1144
@templatedoc()
1145
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1146 1147 1148 1149 1150 1151 1152
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1153
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1154 1155 1156 1157
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1158 1159 1160
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1161 1162

    """
Y
Yu Yang 已提交
1163 1164 1165 1166 1167 1168
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1169 1170 1171 1172 1173 1174 1175 1176
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1192 1193 1194 1195
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1196

W
wopeizl 已提交
1197 1198
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1199

W
wopeizl 已提交
1200
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1201

W
wopeizl 已提交
1202
        label(${label_type}): ${label_comment}
1203

W
wopeizl 已提交
1204 1205
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1206

W
wopeizl 已提交
1207 1208
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1209

W
wopeizl 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1220
                "Transition": transition,
W
wopeizl 已提交
1221 1222
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1223

W
wopeizl 已提交
1224
    return viterbi_path
Y
Yu Yang 已提交
1225 1226


Y
yi.wu 已提交
1227
@templatedoc()
F
fengjiayi 已提交
1228
def cos_sim(X, Y):
Y
Yu Yang 已提交
1229
    """
Y
yi.wu 已提交
1230 1231 1232
    ${comment}

    Args:
1233 1234
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1235

Y
yi.wu 已提交
1236
    Returns:
1237
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1238
    """
F
fengjiayi 已提交
1239
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1240 1241 1242
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1253 1254 1255 1256 1257
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1258
            dropout_implementation="downgrade_in_infer"):
1259 1260 1261 1262 1263
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1264
    training. The dropout operator randomly sets (according to the given dropout
1265 1266 1267
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1268 1269
    dropout op can be removed from the program to make the program more efficient.

1270
    Args:
1271 1272
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1273 1274 1275 1276 1277 1278 1279
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1280 1281
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1282
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1283 1284 1285 1286 1287 1288

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1289
                                        2. upscale_in_train, upscale the outcome at training time
1290

H
haowang101779990 已提交
1291 1292
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1293

H
haowang101779990 已提交
1294 1295
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1296

M
minqiyang 已提交
1297

1298
    Returns:
1299
        Variable: A tensor variable is the shape with `x`.
1300 1301

    Examples:
1302

1303 1304
        .. code-block:: python

1305 1306
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1307 1308
    """

F
fengjiayi 已提交
1309
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1310 1311 1312
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1313 1314 1315 1316

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1317 1318 1319 1320 1321
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1322 1323 1324 1325
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1326 1327
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1328
        })
1329 1330 1331
    return out


J
jerrywgz 已提交
1332
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1333
    """
Y
Yibing Liu 已提交
1334 1335
    **Cross Entropy Layer**

1336 1337 1338
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1339 1340

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1341
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1342

Y
Yibing Liu 已提交
1343
        .. math::
Y
yangyaming 已提交
1344

Y
Yibing Liu 已提交
1345 1346 1347
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1348 1349
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1350 1351 1352 1353 1354

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1355
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1356 1357 1358
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1359 1360
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1361
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1362

Y
Yibing Liu 已提交
1363
    Args:
Y
yangyaming 已提交
1364
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1365 1366 1367 1368
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1369
        label (Variable|list): the ground truth which is a 2-D tensor. When
1370 1371 1372 1373
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1374
        soft_label (bool): a flag indicating whether to
1375
                                           interpretate the given labels as soft
1376
                                           labels. Default: `False`.
M
minqiyang 已提交
1377 1378
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1379
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1380 1381 1382 1383 1384

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1385 1386 1387
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1388

H
haowang101779990 已提交
1389 1390
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1391

H
haowang101779990 已提交
1392 1393
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1394 1395 1396 1397 1398 1399

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1400
    """
F
fengjiayi 已提交
1401
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1402
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1403 1404 1405 1406 1407
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1408 1409
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1410 1411 1412
    return out


F
frankwhzhang 已提交
1413
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1414 1415 1416
    """
    Bayesian Personalized Ranking Loss Operator.

1417
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1418 1419 1420 1421 1422 1423
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1424 1425 1426 1427 1428 1429
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1430 1431
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1432 1433 1434
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1435 1436 1437
    Examples:
        .. code-block:: python

1438
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1439
    """
1440 1441 1442 1443 1444 1445

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1446
                'Label': [label]},
1447 1448 1449 1450
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1451
def square_error_cost(input, label):
Y
Yu Yang 已提交
1452
    """
1453 1454
    **Square error cost layer**

1455 1456
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1471 1472
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1473 1474

    Returns:
G
guosheng 已提交
1475
        Variable: The tensor variable storing the element-wise squared error \
1476
                  difference of input and label.
1477 1478 1479 1480 1481 1482 1483 1484

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1485
    """
F
fengjiayi 已提交
1486
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1487
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1488 1489 1490 1491 1492 1493
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1494
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1495
    helper.append_op(
F
fengjiayi 已提交
1496 1497
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1498 1499 1500
    return square_out


Y
yi.wu 已提交
1501
@templatedoc()
Y
Yu Yang 已提交
1502 1503 1504 1505
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1506
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1507
    """
Y
yi.wu 已提交
1508
    **Chunk Evaluator**
Y
yi.wu 已提交
1509

Y
yangyaming 已提交
1510
    This function computes and outputs the precision, recall and
1511
    F1-score of chunk detection.
Y
yi.wu 已提交
1512

M
minqiyang 已提交
1513
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1514
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1515 1516 1517 1518 1519 1520

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1521

Y
yi.wu 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1547

Y
yi.wu 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1572
    Args:
1573 1574 1575 1576 1577
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1578

Y
yi.wu 已提交
1579
    Returns:
Y
update  
yi.wu 已提交
1580 1581 1582
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1583

Y
yi.wu 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1596
    """
F
fengjiayi 已提交
1597
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1598 1599

    # prepare output
X
Xin Pan 已提交
1600 1601 1602 1603 1604 1605 1606
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612 1613 1614

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1615 1616 1617 1618
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1619 1620 1621
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1622 1623
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1624
        })
1625 1626
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1627 1628


1629
@templatedoc()
Y
Yu Yang 已提交
1630 1631 1632 1633 1634 1635 1636
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1637 1638
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1639 1640 1641 1642
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1643 1644 1645 1646 1647 1648 1649

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1663

1664 1665
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1666 1667 1668 1669 1670 1671 1672
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1673
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1684
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1685 1686 1687 1688 1689 1690
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1691
def sequence_softmax(input, use_cudnn=False, name=None):
1692 1693 1694
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1695
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1712 1713 1714
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1727 1728
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1729
    softmax_out = helper.create_variable_for_type_inference(dtype)
1730 1731 1732 1733 1734 1735 1736 1737
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1738
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1739
    """
1740
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1741
    has the same shape as the input.
Q
qiaolongfei 已提交
1742

1743 1744 1745 1746 1747 1748
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1749
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1750 1751 1752 1753 1754 1755 1756

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1757
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1758 1759 1760 1761 1762 1763 1764 1765

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1766 1767 1768
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1781 1782
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1783
    softmax_out = helper.create_variable_for_type_inference(dtype)
1784 1785 1786 1787 1788 1789 1790 1791
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1792 1793 1794
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1795 1796
           stride=1,
           padding=0,
1797
           dilation=1,
Y
Yu Yang 已提交
1798 1799 1800
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1801
           use_cudnn=True,
1802 1803
           act=None,
           name=None):
Y
Yu Yang 已提交
1804
    """
C
chengduoZH 已提交
1805
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1806 1807
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1808
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1809 1810 1811 1812 1813 1814 1815
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1816 1817 1818
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1819

1820
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1821

C
chengduoZH 已提交
1822 1823
    .. math::

C
refine  
chengduoZH 已提交
1824
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1825

T
tensor-tang 已提交
1826
    Where:
C
chengduoZH 已提交
1827

1828 1829 1830 1831 1832
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1833
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1834 1835 1836

    Example:

1837 1838
        - Input:

W
weixing02 已提交
1839
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1840

W
weixing02 已提交
1841
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1842

1843
        - Output:
T
tensor-tang 已提交
1844

W
weixing02 已提交
1845
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1846

C
chengduoZH 已提交
1847
        Where
1848 1849

        .. math::
C
chengduoZH 已提交
1850

W
weixing02 已提交
1851 1852
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1853 1854

    Args:
1855
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1856
        num_filters(int): The number of filter. It is as same as the output
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1874 1875 1876 1877 1878
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1879
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1880 1881 1882 1883 1884
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1885 1886
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1887 1888
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1889
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1890
            will be named automatically. Default: None
C
chengduoZH 已提交
1891 1892

    Returns:
G
guosheng 已提交
1893
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1894 1895
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1896
    Raises:
1897 1898
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1899

C
chengduoZH 已提交
1900 1901 1902
    Examples:
        .. code-block:: python

1903 1904
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1905 1906 1907
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1908
    assert param_attr is not False, "param_attr should not be False here."
1909
    l_type = 'conv2d'
X
xzl 已提交
1910 1911
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1912
        l_type = 'depthwise_conv2d'
1913 1914 1915 1916

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1917 1918 1919 1920 1921
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1922
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1923

C
chengduoZH 已提交
1924 1925 1926
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1927
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1928

C
chengduoZH 已提交
1929 1930
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1931 1932

    input_shape = input.shape
M
minqiyang 已提交
1933
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1934 1935

    def _get_default_param_initializer():
C
chengduo 已提交
1936 1937
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1938 1939 1940 1941 1942 1943 1944 1945
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1946
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1962
    helper.append_op(
1963
        type=l_type,
Y
Yu Yang 已提交
1964 1965 1966 1967 1968
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1969 1970 1971
        attrs={
            'strides': stride,
            'paddings': padding,
1972
            'dilations': dilation,
C
chengduoZH 已提交
1973
            'groups': groups,
1974
            'use_cudnn': use_cudnn,
1975
            'use_mkldnn': False,
1976
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
1977
        })
Y
Yu Yang 已提交
1978 1979 1980 1981 1982 1983

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2001 2002 2003 2004 2005 2006
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2016 2017
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2018 2019 2020
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2021
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2047
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2048 2049
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2050
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2051 2052
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2053
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2054 2055
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2056
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2057 2058 2059 2060 2061 2062
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2073 2074
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2075 2076
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2077
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2078
            will be named automatically. Default: None.
C
chengduoZH 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2091 2092
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2093 2094 2095
    """

    l_type = 'conv3d'
C
chengduo 已提交
2096
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2107
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2121 2122 2123
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2124 2125 2126 2127 2128 2129 2130 2131
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2132
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2147
            'use_mkldnn': False
C
chengduoZH 已提交
2148 2149
        })

2150
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2151 2152 2153 2154

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2155
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2156
    """
Y
yangyaming 已提交
2157 2158 2159
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2171
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2172 2173 2174 2175 2176
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2177
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2178 2179 2180 2181 2182 2183 2184

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2185 2186
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2187

L
Luo Tao 已提交
2188 2189
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2190
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2191
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2192
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2193 2194 2195 2196 2197 2198 2199

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2200

Y
yangyaming 已提交
2201
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2202 2203 2204 2205 2206
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2207 2208
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2209
    """
F
fengjiayi 已提交
2210
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2211
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2212 2213
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2214 2215 2216 2217 2218 2219

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2220 2221
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2222

Y
yangyaming 已提交
2223 2224 2225 2226 2227
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2228 2229 2230
    return pool_out


C
add doc  
chengduoZH 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2250
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2251 2252 2253 2254 2255
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2256
def sequence_first_step(input):
L
Luo Tao 已提交
2257
    """
L
Luo Tao 已提交
2258
    This function gets the first step of sequence.
L
Luo Tao 已提交
2259 2260 2261 2262

    .. code-block:: text

       x is a 1-level LoDTensor:
2263
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2264 2265 2266 2267 2268
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2269
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2270
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2271

L
Luo Tao 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2281

Y
yangyaming 已提交
2282
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2283 2284 2285
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2286 2287 2288
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2289
def sequence_last_step(input):
L
Luo Tao 已提交
2290
    """
L
Luo Tao 已提交
2291
    This function gets the last step of sequence.
L
Luo Tao 已提交
2292 2293 2294 2295

    .. code-block:: text

       x is a 1-level LoDTensor:
2296
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2297 2298 2299 2300 2301
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2302
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2303
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2304

L
Luo Tao 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2314

Y
yangyaming 已提交
2315
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2316 2317 2318
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2319 2320 2321
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2322 2323 2324 2325
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2326
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2327 2328 2329 2330 2331
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2332

H
haowang101779990 已提交
2333
              - Case:
Y
Yibing Liu 已提交
2334

2335
            Given the input Variable **input**:
2336

2337 2338 2339
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2340

2341
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2342

2343
            the output Variable will be
2344

2345 2346 2347
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2348

M
minqiyang 已提交
2349
    Note:
H
haowang101779990 已提交
2350
          The first dimension size of **input**, **offset** and **length**
2351
          should be equal. The **offset** should start from 0.
2352

Y
Yibing Liu 已提交
2353
    Args:
2354
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2355
                         sequences.
Y
Yibing Liu 已提交
2356 2357 2358 2359 2360 2361
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2362
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2373
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2374 2375 2376 2377
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2378
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2393
@templatedoc()
Y
Yu Yang 已提交
2394
def pool2d(input,
C
chengduoZH 已提交
2395 2396
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2397 2398
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2399
           global_pooling=False,
C
chengduoZH 已提交
2400
           use_cudnn=True,
2401
           ceil_mode=False,
2402 2403
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2404
    """
F
fengjiayi 已提交
2405
    ${comment}
2406 2407

    Args:
2408 2409 2410
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2411
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2412
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2413 2414
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2415
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2416 2417 2418 2419 2420 2421
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2422 2423 2424
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2425
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2426
                        layer will be named automatically.
2427
        exclusive (bool): Whether to exclude padding points in average pooling
2428
                          mode, default is true
F
fengjiayi 已提交
2429

2430
    Returns:
F
fengjiayi 已提交
2431
        Variable: The pooling result.
F
fengjiayi 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
S
sneaxiy 已提交
2444
          pool2d = fluid.layers.pool2d(
2445 2446 2447 2448
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2449
                            global_pooling=False)
Y
Yu Yang 已提交
2450 2451 2452 2453 2454
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2455

C
chengduoZH 已提交
2456 2457 2458 2459 2460
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2461 2462 2463 2464
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2465 2466
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2467

C
Add doc  
chengduoZH 已提交
2468
    l_type = 'pool2d'
2469 2470

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2471
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2472
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2473 2474

    helper.append_op(
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2486 2487
            "use_mkldnn": False,
            "exclusive": exclusive,
2488 2489 2490 2491 2492
        })

    return pool_out


S
sneaxiy 已提交
2493
@templatedoc()
2494 2495 2496 2497 2498 2499 2500 2501
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2502 2503
           name=None,
           exclusive=True):
2504
    """
S
sneaxiy 已提交
2505
    ${comment}
2506 2507

    Args:
S
sneaxiy 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2518 2519 2520 2521 2522 2523 2524
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2525
        exclusive (bool): Whether to exclude padding points in average pooling
2526
                          mode, default is true
2527

2528
    Returns:
2529
        Variable: output of pool3d layer.
S
sneaxiy 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2543 2544 2545 2546 2547
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2548

C
chengduoZH 已提交
2549 2550 2551 2552 2553
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2554 2555 2556
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2557

C
chengduoZH 已提交
2558 2559
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2560

2561 2562
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2563
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2564
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2565 2566

    helper.append_op(
2567
        type=l_type,
Y
Yu Yang 已提交
2568 2569 2570 2571 2572 2573 2574
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2575
            "paddings": pool_padding,
2576
            "use_cudnn": use_cudnn,
2577
            "ceil_mode": ceil_mode,
2578 2579
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2580 2581 2582 2583 2584
        })

    return pool_out


2585 2586 2587 2588 2589 2590 2591
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
S
sneaxiy 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).

    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2613 2614 2615 2616 2617 2618 2619 2620 2621

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
S
sneaxiy 已提交
2622 2623
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2638
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2639
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2640
          # of input data into m * n grids averagely and performs poolings in each
2641 2642
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2643
          #
2644 2645 2646 2647 2648 2649 2650 2651
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2652 2653
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2654
          pool_out = fluid.layers.adaptive_pool2d(
2655 2656
                            input=data,
                            pool_size=[3, 3],
2657
                            pool_type='avg')
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2668
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2694
    return (pool_out, mask) if require_index else pool_out
2695 2696 2697 2698 2699 2700 2701 2702 2703


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
S
sneaxiy 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).

    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2729 2730 2731

    Args:
        input (Variable): The input tensor of pooling operator. The format of
S
sneaxiy 已提交
2732 2733 2734
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2735
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
S
sneaxiy 已提交
2736
            it must contain three integers, (Depth, Height, Width).
2737
        pool_type: ${pooling_type_comment}
S
sneaxiy 已提交
2738 2739
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2754 2755
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2756
          # of input data into l * m * n grids averagely and performs poolings in each
2757 2758
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2759
          #
2760 2761 2762 2763 2764 2765 2766 2767 2768
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2769
          #                 output[:, :, i, j, k] =
2770 2771
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2772 2773
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2774
          pool_out, mask = fluid.layers.adaptive_pool3d(
2775
                            input=data,
S
sneaxiy 已提交
2776
                            pool_size=[3, 3, 3],
2777
                            pool_type='avg')
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2788
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2814
    return (pool_out, mask) if require_index else pool_out
2815 2816


Y
Yu Yang 已提交
2817 2818 2819 2820 2821 2822 2823
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2824
               data_layout='NCHW',
Y
Yang Yang 已提交
2825
               in_place=False,
2826 2827
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2828
               moving_variance_name=None,
2829
               do_model_average_for_mean_and_var=False,
2830 2831
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2832
    """
Q
qiaolongfei 已提交
2833 2834 2835 2836
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2837

Q
qiaolongfei 已提交
2838
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2839

Q
qiaolongfei 已提交
2840 2841
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2842 2843 2844
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2871
    Args:
Q
qiaolongfei 已提交
2872
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2873 2874 2875 2876
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2877 2878 2879 2880 2881 2882 2883 2884
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2885
        data_layout(string, default NCHW): NCHW|NHWC
2886
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2887 2888 2889 2890
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2891
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2892
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2893 2894 2895 2896 2897
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2898 2899

    Returns:
Q
qiaolongfei 已提交
2900
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2901 2902 2903 2904 2905 2906 2907

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2908
    """
C
chengduo 已提交
2909
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2910 2911 2912
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2913 2914 2915 2916
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2934 2935 2936
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2937 2938

    bias = helper.create_parameter(
2939
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2940 2941
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2942
        bias.stop_gradient = True
Y
Yu Yang 已提交
2943

2944 2945
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2946 2947 2948
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2949
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2950
        shape=param_shape,
W
Wu Yi 已提交
2951
        dtype=dtype)
2952 2953 2954 2955 2956 2957
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2958
            trainable=False,
W
wanghaoshuang 已提交
2959
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2960
        shape=param_shape,
W
Wu Yi 已提交
2961
        dtype=dtype)
2962
    variance.stop_gradient = True
Y
Yu Yang 已提交
2963 2964 2965 2966 2967 2968

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2969 2970 2971 2972
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2973

X
Xin Pan 已提交
2974 2975
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2993 2994 2995 2996
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
S
sneaxiy 已提交
2997
            "data_layout": data_layout,
X
Xin Pan 已提交
2998
            "use_mkldnn": False,
2999 3000
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3001
        })
Y
Yu Yang 已提交
3002 3003 3004 3005

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3133
@templatedoc()
G
guosheng 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3144
    ${comment}
G
guosheng 已提交
3145 3146 3147

    The formula is as follows:

Y
yuyang18 已提交
3148
    ..  math::
G
guosheng 已提交
3149 3150 3151 3152 3153 3154 3155

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3156 3157 3158 3159 3160 3161 3162 3163
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3164

G
guosheng 已提交
3165 3166
    Args:
        input(Variable): The input tensor variable.
3167
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3168
            normalization. Default True.
3169
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3170 3171
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3172
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3173
            Default 1.
3174
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3175
            division by zero. Default 1e-05.
G
guosheng 已提交
3176
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3177 3178
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3179 3180
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3181
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3182 3183
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3184
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3185
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3186
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3187 3188 3189
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3190 3191

    Returns:
Y
yuyang18 已提交
3192
        ${y_comment}
G
guosheng 已提交
3193 3194 3195

    Examples:

Y
yuyang18 已提交
3196 3197 3198
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3214
    if shift:
G
guosheng 已提交
3215 3216 3217 3218 3219 3220
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3221 3222 3223 3224 3225
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3253
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3301 3302
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
S
sneaxiy 已提交
3303
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3319 3320 3321 3322
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3323 3324 3325
                     padding=0,
                     stride=1,
                     dilation=1,
3326
                     groups=None,
C
caoying03 已提交
3327
                     param_attr=None,
3328
                     bias_attr=None,
C
chengduoZH 已提交
3329
                     use_cudnn=True,
3330
                     act=None,
C
caoying03 已提交
3331
                     name=None):
Y
Yu Yang 已提交
3332
    """
3333 3334 3335 3336 3337 3338 3339 3340
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3341 3342
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3343 3344 3345
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3346 3347 3348 3349 3350

    For each input :math:`X`, the equation is:

    .. math::

3351
        Out = \sigma (W \\ast X + b)
3352

3353
    Where:
3354 3355 3356

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3357 3358 3359 3360
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3361

3362 3363 3364 3365
    Example:

        - Input:

3366
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3367

3368
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3369 3370 3371

        - Output:

3372
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3373 3374

        Where
Y
Yu Yang 已提交
3375

3376 3377
        .. math::

3378 3379
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3380 3381
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3382 3383

    Args:
3384 3385 3386 3387
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3388 3389 3390 3391
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3420
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3421 3422 3423
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3424
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3425
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3426 3427

    Returns:
3428
        Variable: The tensor variable storing the convolution transpose result.
3429 3430

    Raises:
3431 3432
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3433 3434 3435 3436

    Examples:
       .. code-block:: python

3437 3438
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3439
    """
C
chengduo 已提交
3440
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3441 3442 3443 3444 3445 3446 3447 3448
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3449 3450 3451
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3452 3453 3454
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3455

C
chengduoZH 已提交
3456 3457
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3458

Y
Yu Yang 已提交
3459 3460 3461 3462 3463
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3464

Y
Yu Yang 已提交
3465 3466
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3467

C
chengduoZH 已提交
3468
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3469
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3470
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3471
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3472
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3473 3474 3475
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3476

3477 3478 3479 3480 3481 3482 3483
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3484
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3485
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3486

Y
Yu Yang 已提交
3487 3488 3489
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3490
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3491
    helper.append_op(
3492
        type=op_type,
Y
Yu Yang 已提交
3493 3494
        inputs={'Input': [input],
                'Filter': [img_filter]},
3495
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3496
        attrs={
3497
            'output_size': output_size,
3498 3499 3500 3501 3502
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3503 3504
        })

3505 3506 3507
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3508 3509


3510
def conv3d_transpose(input,
Y
Yu Yang 已提交
3511 3512 3513
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3514 3515 3516
                     padding=0,
                     stride=1,
                     dilation=1,
3517
                     groups=None,
C
caoying03 已提交
3518
                     param_attr=None,
3519
                     bias_attr=None,
C
chengduoZH 已提交
3520
                     use_cudnn=True,
3521
                     act=None,
C
caoying03 已提交
3522
                     name=None):
Y
Yu Yang 已提交
3523
    """
3524
    **Convlution3D transpose layer**
3525

3526
    The convolution3D transpose layer calculates the output based on the input,
3527
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3528 3529 3530 3531 3532 3533
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3534 3535 3536
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3537 3538 3539 3540 3541

    For each input :math:`X`, the equation is:

    .. math::

3542
        Out = \sigma (W \\ast X + b)
3543 3544 3545

    In the above equation:

3546 3547
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3548 3549 3550 3551
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3552

3553 3554 3555 3556
    Example:

        - Input:

3557
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3558

3559
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3560 3561 3562

        - Output:

3563
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3564 3565

        Where
Y
Yu Yang 已提交
3566

3567 3568
        .. math::

3569 3570 3571
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3572 3573

    Args:
3574
        input(Variable): The input image with [N, C, D, H, W] format.
3575 3576 3577
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3578
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3579 3580
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3581
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3582 3583 3584
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3585 3586
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3587
        stride(int|tuple): The stride size. If stride is a tuple, it must
3588 3589
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3590
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3591 3592 3593
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3594 3595 3596 3597 3598
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3608 3609
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3610 3611
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3612 3613
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3614 3615

    Returns:
3616
        Variable: The tensor variable storing the convolution transpose result.
3617 3618

    Raises:
3619 3620
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3621 3622 3623 3624

    Examples:
       .. code-block:: python

3625 3626
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3627
    """
C
chengduo 已提交
3628
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3629 3630
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3631
    if not isinstance(input, Variable):
3632
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3633 3634
    input_channel = input.shape[1]

3635 3636 3637
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3638

C
chengduoZH 已提交
3639 3640 3641
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3642 3643 3644 3645 3646 3647
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3648 3649 3650
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3651

3652
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3653
                         padding[0] - 1) // dilation[0] + 1
3654
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3655
                         padding[1] - 1) // dilation[1] + 1
3656
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3657
                         padding[2] - 1) // dilation[2] + 1
3658
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3659
    else:
3660 3661
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3662

3663
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3664
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3665 3666 3667
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3668
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3669
    helper.append_op(
3670
        type=l_type,
Y
Yu Yang 已提交
3671 3672
        inputs={'Input': [input],
                'Filter': [img_filter]},
3673
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3674 3675 3676 3677
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3678
            'groups': groups,
C
chengduoZH 已提交
3679 3680
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3681

3682 3683
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3684
    return out
Y
yangyaming 已提交
3685 3686


Y
yangyaming 已提交
3687
def sequence_expand(x, y, ref_level=-1, name=None):
3688
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3689 3690 3691 3692
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3693 3694 3695 3696 3697

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3698
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3699
                x.data = [[a], [b], [c], [d]]
3700 3701 3702
                x.dims = [4, 1]

            y is a LoDTensor:
3703 3704
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3705

Y
yangyaming 已提交
3706
            ref_level: 0
3707

Y
yangyaming 已提交
3708
            then output is a 1-level LoDTensor:
3709
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3710
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3711 3712 3713 3714
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3715
                x.data = [[a], [b], [c]]
3716 3717 3718
                x.dims = [3, 1]

            y is a LoDTensor:
3719
                y.lod = [[2, 0, 3]]
3720

Y
yangyaming 已提交
3721
            ref_level: -1
3722

Y
yangyaming 已提交
3723 3724 3725
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3726 3727 3728
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3729 3730
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3731
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3732
                        will be named automatically.
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3743
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3744
    """
Y
yangyaming 已提交
3745
    helper = LayerHelper('sequence_expand', input=x, **locals())
3746
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3747
    tmp = helper.create_variable_for_type_inference(dtype)
3748
    helper.append_op(
Y
yangyaming 已提交
3749 3750 3751 3752 3753
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3754
    return tmp
3755 3756


C
chengduo 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3813
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3814 3815 3816 3817 3818 3819 3820 3821
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3822
@templatedoc()
3823
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3824 3825 3826 3827 3828
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3829 3830 3831
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3832
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3833 3834 3835 3836
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3837 3838 3839
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3840

F
fengjiayi 已提交
3841
    Returns:
M
minqiyang 已提交
3842
        Variable: The padded sequence batch and the original lengths before
3843
                  padding. All sequences has the same length.
M
minqiyang 已提交
3844

F
fengjiayi 已提交
3845 3846 3847 3848 3849 3850 3851
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3852
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3853
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3854 3855 3856 3857 3858
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3859 3860
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3861 3862 3863 3864

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3865 3866 3867 3868 3869 3870
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3871 3872
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3873
        attrs={'padded_length': maxlen})
3874
    return out, length
F
fengjiayi 已提交
3875 3876


3877
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3878
    """
3879
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3880

3881 3882
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3883 3884 3885 3886 3887 3888 3889 3890 3891
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3892 3893 3894
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3895
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3896 3897 3898 3899 3900 3901

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3902
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3903 3904 3905 3906 3907 3908

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3909 3910
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3925
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3937 3938 3939 3940 3941 3942 3943
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3944
                is_accumulated=True,
3945 3946
                name=None,
                return_parent_idx=False):
3947
    """
3948 3949
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3950 3951 3952

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3953 3954

    This layer does the search in beams for one time step. Specifically, it
3955 3956 3957
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3969 3970 3971 3972

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3973

3974
    Args:
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
3998 3999
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4000 4001
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4002 4003 4004 4005
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4006

4007
    Returns:
4008 4009 4010 4011
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4012 4013 4014 4015

    Examples:
        .. code-block:: python

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4033
    helper = LayerHelper('beam_search', **locals())
4034 4035 4036 4037 4038 4039
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4040

X
Xin Pan 已提交
4041 4042 4043
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4044 4045 4046 4047 4048
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4049 4050 4051

    helper.append_op(
        type='beam_search',
4052
        inputs=inputs,
Q
Qiao Longfei 已提交
4053 4054 4055
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4056
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4057 4058 4059 4060 4061 4062
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4063
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4064
        })
4065 4066 4067 4068
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4069 4070


4071 4072 4073 4074 4075 4076 4077
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4088

4089 4090 4091 4092 4093 4094
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4095

4096 4097
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4098

4099 4100 4101 4102 4103 4104
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4105 4106
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4122 4123 4124 4125
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4126
              param_attr=None,
C
caoying03 已提交
4127 4128
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4129 4130 4131 4132
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4133
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4134

4135
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4136

4137
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4138

4139
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4140 4141 4142

            h_t & = o_t tanh(c_t)

4143 4144 4145 4146 4147 4148
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4149 4150 4151

        .. math::

4152
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4153 4154 4155 4156 4157 4158 4159 4160

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4161
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4162 4163

    Args:
Y
yangyaming 已提交
4164 4165 4166 4167 4168 4169
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4170
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4183 4184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4185 4186

    Returns:
Y
yangyaming 已提交
4187
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4188 4189

    Raises:
4190 4191 4192 4193
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4194 4195 4196 4197 4198 4199

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4200
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4201
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4202
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4219
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4220 4221 4222 4223
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4224 4225
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4226 4227 4228
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4229
    size = cell_t_prev.shape[1]
4230
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4231 4232
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4233
                param_attr=param_attr,
4234
                bias_attr=bias_attr)
Y
yangyaming 已提交
4235
    dtype = x_t.dtype
X
Xin Pan 已提交
4236 4237
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4247
    return h, c
G
guosheng 已提交
4248 4249


C
caoying03 已提交
4250
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4251
    """
Y
yangyaming 已提交
4252
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4253 4254 4255

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4256
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4257 4258
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4259 4260
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4261
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4262
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4263
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4264 4265
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4266 4267 4268

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4269

G
guosheng 已提交
4270 4271 4272 4273 4274 4275
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4276
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4277 4278 4279 4280
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4281 4282 4283 4284

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4285
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4286 4287 4288
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4289 4290
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4291
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4292 4293
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4294 4295 4296 4297 4298
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4299
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4300 4301 4302 4303
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4304 4305


C
caoying03 已提交
4306
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4307
    """
Y
Yibing Liu 已提交
4308
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4309 4310 4311

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4312 4313 4314
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4315
            must be in the range :math:`[-rank(input), rank(input))`. If
4316
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4317
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4318 4319
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4320
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4321
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4322
                       will be named automatically.
G
guosheng 已提交
4323 4324

    Returns:
Y
Yibing Liu 已提交
4325
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4326

G
guosheng 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4337 4338
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4339 4340 4341 4342 4343 4344 4345

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4346 4347
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4348
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4349 4350
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4351 4352 4353 4354 4355
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4356
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4357 4358 4359 4360
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4361 4362


C
caoying03 已提交
4363
def reduce_max(input, dim=None, keep_dim=False, name=None):
4364
    """
Y
yangyaming 已提交
4365
    Computes the maximum of tensor elements over the given dimension.
4366 4367 4368

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4369
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4370 4371 4372
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4373
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4374 4375
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4376
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4377 4378
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4379 4380 4381

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4382

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4394 4395 4396 4397 4398 4399 4400

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4401 4402
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4403
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4404 4405
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4406 4407 4408 4409 4410
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4411
            'dim': dim if dim != None else [0],
4412 4413 4414 4415 4416 4417
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4418
def reduce_min(input, dim=None, keep_dim=False, name=None):
4419
    """
Y
yangyaming 已提交
4420
    Computes the minimum of tensor elements over the given dimension.
4421 4422 4423

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4424
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4425 4426 4427
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4428
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4429 4430
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4431
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4432 4433
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4434 4435 4436

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4437

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4449 4450 4451 4452 4453 4454 4455

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4456 4457
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4458
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4459 4460
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4461 4462 4463 4464 4465
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4466
            'dim': dim if dim != None else [0],
4467 4468 4469 4470
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4471 4472


4473 4474 4475 4476 4477 4478
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4479
        dim (list|int|None): The dimensions along which the product is performed. If
4480 4481
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4482 4483
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4484 4485 4486
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4487
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4488
            layer will be named automatically.
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4503
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4504
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4505 4506 4507 4508 4509 4510 4511

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4512 4513
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4514
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4515 4516
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4517 4518 4519 4520 4521
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4522
            'dim': dim if dim != None else [0],
4523 4524 4525 4526 4527 4528
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4529
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4530
    """
C
caoying03 已提交
4531
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4532 4533 4534

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4535 4536 4537 4538 4539
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4540
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4541
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4542
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4543 4544
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4545 4546

    Returns:
D
dzhwinter 已提交
4547
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4557 4558
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4574
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4597
    .. math::
4598 4599

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4600 4601 4602 4603 4604

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4605
        x(Variable|list): The input tensor to l2_normalize layer.
4606
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4607 4608
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4609
        epsilon(float): The epsilon value is used to avoid division by zero, \
4610
            the defalut value is 1e-10.
4611
        name(str|None): A name for this layer(optional). If set None, the layer \
4612
            will be named automatically.
C
caoying03 已提交
4613 4614

    Returns:
4615
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4616 4617

    Examples:
4618

C
caoying03 已提交
4619 4620
        .. code-block:: python

4621 4622 4623 4624
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4625 4626
    """

F
fengjiayi 已提交
4627 4628
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4629 4630
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4631 4632
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4633
    helper.append_op(
4634 4635 4636 4637
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4638
        attrs={
4639 4640
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4641 4642
        })
    return out
4643 4644


S
sneaxiy 已提交
4645
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4646
    """
Y
ying 已提交
4647 4648 4649 4650
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4651

C
chengduoZH 已提交
4652
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4653
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4654

4655 4656 4657 4658 4659
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4660
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4661

C
chengduoZH 已提交
4662
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4663
      performs in the following way.
G
guosheng 已提交
4664

4665
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4666
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4667
        last two dimensions and a batched matrix multiply supporting broadcast
4668
        applies on the two tensors.
G
guosheng 已提交
4669

Y
ying 已提交
4670 4671
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4672
    removed after matrix multiplication.
G
guosheng 已提交
4673 4674 4675

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4676 4677 4678
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4679
        alpha (float): The scale of output. Default 1.0.
4680
        name(str|None): A name for this layer(optional). If set None, the layer
4681
            will be named automatically.
G
guosheng 已提交
4682 4683

    Returns:
4684
        Variable: The product Tensor variable.
G
guosheng 已提交
4685

G
guosheng 已提交
4686 4687 4688
    Examples:
        .. code-block:: python

4689
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4690 4691
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4692

4693 4694
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4695

4696 4697
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4698

4699 4700
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4701 4702 4703 4704

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4705 4706
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4707

Y
ying 已提交
4708
            # x: [M], y: [N]
4709
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4710
    """
Y
ying 已提交
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4723
            y_shape = y_shape + [1]
Y
ying 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4740
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4741
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4742
    helper.append_op(
4743 4744 4745 4746
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4747 4748 4749
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4750
            'alpha': float(alpha),
S
sneaxiy 已提交
4751
        })
4752
    return out
4753 4754


4755
def topk(input, k, name=None):
Q
qingqing01 已提交
4756 4757 4758 4759
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4760
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4761 4762 4763 4764 4765 4766
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4788 4789 4790
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4791
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4792
                 of input.
4793
        name(str|None): A name for this layer(optional). If set None, the layer
4794
                       will be named automatically.
F
fengjiayi 已提交
4795
                       Default: None
Q
qingqing01 已提交
4796 4797

    Returns:
4798 4799 4800
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4801
        within the last dimension of input.
Q
qingqing01 已提交
4802

F
fengjiayi 已提交
4803 4804
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4805 4806 4807 4808 4809 4810 4811

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4812 4813
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4814 4815 4816 4817 4818 4819
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4820 4821
    helper.append_op(
        type="top_k",
W
whs 已提交
4822
        inputs=inputs,
Q
qingqing01 已提交
4823 4824
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4825
        attrs=attrs)
Q
qingqing01 已提交
4826 4827 4828 4829 4830
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4831
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4832
    """
Y
ying 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4842

Y
ying 已提交
4843
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4844

4845
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4846 4847
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4848
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4849

4850
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4851 4852
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4853

4854 4855 4856
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4857
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4858
                          the length of reference string.
4859
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4860
                                     calculating edit distance.
4861
        name (str): The name of this layer. It is optional.
4862

W
wanghaoshuang 已提交
4863
    Returns:
W
wanghaoshuang 已提交
4864
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4865 4866 4867 4868

    Examples:
        .. code-block:: python

T
tink2123 已提交
4869 4870
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4871
            cost = fluid.layers.edit_distance(input=x,label=y)
4872
    """
4873
    helper = LayerHelper("edit_distance", **locals())
4874

4875
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4876
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4877 4878
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4879 4880 4881 4882 4883

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4884
            attrs={"tokens": ignored_tokens})
4885 4886 4887 4888 4889
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4890
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4891
            attrs={"tokens": ignored_tokens})
4892 4893
        label = erased_label

4894
    # edit distance op
X
Xin Pan 已提交
4895 4896
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4897 4898 4899 4900
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4901 4902
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4903 4904
        attrs={"normalized": normalized})

4905
    return edit_distance_out, sequence_num
4906 4907 4908 4909 4910


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4911

Y
ying 已提交
4912 4913 4914 4915
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4933
        input.lod = [[4, 4]]
M
minqiyang 已提交
4934

W
whs 已提交
4935
        Computation:
4936

W
whs 已提交
4937 4938 4939 4940 4941 4942
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4943 4944 4945 4946 4947

        output.data = [[2],
                       [1],
                       [3]]

4948
        output.lod = [[2, 1]]
4949

W
whs 已提交
4950

4951 4952
    Args:

Y
ying 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4962
        name (str): The name of this layer. It is optional.
4963 4964

    Returns:
H
haowang101779990 已提交
4965 4966 4967
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4968
                  LoD [[]] and dims [1, 1].
4969 4970 4971 4972 4973

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4974

4975
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4976
    """
4977
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4978
    _, topk_indices = topk(input, k=1)
4979 4980

    # ctc align op
X
Xin Pan 已提交
4981
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4982 4983 4984
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4985
        outputs={"Output": [ctc_out]},
4986 4987
        attrs={"merge_repeated": True,
               "blank": blank})
4988
    return ctc_out
4989 4990


W
Wu Yi 已提交
4991
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4992
    """
4993 4994
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4995
    to compute Connectionist Temporal Classification (CTC) loss.
4996 4997
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4998 4999 5000
    input tensor.

    Args:
5001
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5002 5003 5004 5005
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5006
       label (Variable): The ground truth of variable-length sequence,
5007 5008 5009
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5010 5011
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5012 5013 5014
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5015
         follewed by a mean_op.
W
Wu Yi 已提交
5016
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5017 5018

    Returns:
5019 5020
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5021 5022

    Examples:
5023

W
wanghaoshuang 已提交
5024
        .. code-block:: python
5025

5026 5027 5028
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5029 5030

    """
F
fengjiayi 已提交
5031
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5032 5033
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5034 5035 5036 5037 5038 5039
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5040 5041 5042 5043 5044
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5045
    return loss_out
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5061 5062 5063
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5064 5065 5066 5067 5068
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5069

5070
            out.lod  = [[0, 1, 3]]
5071 5072 5073 5074

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5075 5076 5077 5078 5079 5080 5081
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5082 5083 5084

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5085 5086

    Returns:
5087

5088 5089 5090 5091 5092
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5093
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5094
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5095 5096
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5097
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5098 5099 5100 5101 5102 5103
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5104 5105


5106 5107 5108 5109
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5110 5111 5112 5113 5114 5115
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5116
        num_neg_samples=None,
5117 5118 5119
        name=None,
        sampler="uniform",
        custom_dist=None,
5120 5121
        seed=0,
        is_sparse=False):
5122 5123 5124 5125 5126 5127 5128
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5129 5130
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5131
            sample is 1.0.
C
chengduo 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5141
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5142 5143
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5144 5145 5146
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5147
        custom_dist (float[]): A float[] with size=num_total_classes.
5148 5149 5150 5151
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5152
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5153

5154
    Returns:
Y
Yibing Liu 已提交
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5182 5183 5184 5185 5186 5187 5188 5189 5190

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5191

5192
    """
Y
Yang Yu 已提交
5193 5194 5195
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5196 5197

    dim = input.shape[1]
Y
Yang Yu 已提交
5198 5199 5200 5201 5202 5203
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5204
    inputs = {}
C
chengduo 已提交
5205 5206 5207 5208 5209 5210 5211
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5212 5213 5214
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5215

5216 5217 5218 5219
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5220 5221 5222 5223 5224 5225 5226

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5227 5228 5229 5230 5231 5232 5233 5234 5235
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5236
            if normal_prob - 1.0 > 0:
5237
                bigs.append((i, normal_prob))
5238
            elif 1.0 - normal_prob > 0:
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5254
            if big_left - 1.0 > 0:
5255
                bigs.append((big_idx, big_left))
5256
            elif 1.0 - big_left > 0:
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5286 5287 5288 5289
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5290 5291 5292 5293 5294
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5295 5296 5297 5298
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5299

Y
Yang Yu 已提交
5300 5301
    attrs = {
        'num_total_classes': int(num_total_classes),
5302 5303
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5304
        'sampler': sampler,
5305 5306
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5307
    }
Y
Yang Yu 已提交
5308 5309 5310

    helper.append_op(
        type='nce',
C
chengduo 已提交
5311
        inputs=inputs,
Y
Yang Yu 已提交
5312 5313 5314 5315 5316 5317
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5318
    return cost / (num_neg_samples + 1)
5319 5320


C
chengduo 已提交
5321 5322
def hsigmoid(input,
             label,
5323
             num_classes,
C
chengduo 已提交
5324 5325
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5326
             name=None,
5327 5328 5329
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5330
             is_sparse=False):
W
weixing02 已提交
5331 5332
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5333
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5334
    complete binary tree, or you can use is_custom to pass your own tree to
5335
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5336 5337 5338 5339 5340 5341
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5342
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5343
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5344

5345 5346
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5347 5348 5349 5350
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5351
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5352
       related to the same batch of inputs.
5353

W
weixing02 已提交
5354
    Args:
M
minqiyang 已提交
5355
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5356 5357 5358 5359
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5360 5361
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5362
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5374
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5375
            it should be in leaf -> root order
M
minqiyang 已提交
5376 5377 5378
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5379
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5380
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5381
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5382
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5383
             of W and input will be sparse.
W
weixing02 已提交
5384 5385

    Returns:
J
JiabinYang 已提交
5386
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5387 5388 5389 5390 5391

    Examples:

        .. code-block:: python

G
guosheng 已提交
5392 5393 5394
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5395 5396 5397 5398
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5399 5400
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5401
    dim = input.shape[1]
5402
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5403 5404 5405
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5406 5407 5408 5409
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5410 5411
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5412 5413 5414
    else:
        pass

J
JiabinYang 已提交
5415
    weights = None
5416 5417 5418 5419
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5420
    if not is_custom:
J
JiabinYang 已提交
5421 5422 5423 5424 5425 5426 5427 5428
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5429
            shape=[num_classes, dim],
J
JiabinYang 已提交
5430 5431
            is_bias=False,
            dtype=input.dtype)
5432 5433 5434
    inputs = {
        "X": input,
        "W": weights,
5435
        "PathTable": path_table,
5436
        "PathCode": path_code,
5437 5438
        "Label": label
    }
W
weixing02 已提交
5439
    if helper.bias_attr:
5440
        if not is_custom:
J
JiabinYang 已提交
5441 5442
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5443
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5444 5445 5446 5447 5448 5449
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5450
                shape=[num_classes, 1],
J
JiabinYang 已提交
5451 5452 5453
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5454 5455
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5456
        inputs=inputs,
W
weixing02 已提交
5457
        outputs={"Out": out,
5458 5459 5460 5461 5462 5463 5464
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5465 5466 5467
    return out


Y
fix ci.  
ying 已提交
5468
def transpose(x, perm, name=None):
Y
ying 已提交
5469 5470 5471 5472 5473 5474 5475
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5476 5477 5478
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5479 5480 5481 5482 5483 5484 5485

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5486
            # use append_batch_size=False to avoid prepending extra
5487
            # batch size in shape
5488
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5489
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5490
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5491 5492
    """

Y
fix ci.  
ying 已提交
5493
    if len(perm) != len(x.shape):
Y
ying 已提交
5494 5495 5496
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5497 5498 5499 5500 5501 5502
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5503 5504

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5505 5506
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5507
    helper.append_op(
5508
        type='transpose2',
Y
fix ci.  
ying 已提交
5509
        inputs={'X': [x]},
5510 5511
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5512 5513
        attrs={'axis': perm})
    return out
5514 5515


5516 5517 5518 5519 5520 5521 5522
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5523
    """
5524 5525 5526 5527 5528 5529 5530
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5559 5560 5561 5562 5563 5564 5565 5566 5567
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5568 5569 5570
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5571 5572 5573 5574 5575
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5603 5604 5605
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5618
            output.dims = {8, 8}
5619

5620
            output.lod = [[4, 4]]
5621

T
Tink_Y 已提交
5622
    Examples:
5623 5624 5625

        .. code-block:: python

5626 5627
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5628 5629

    """
W
wanghaoshuang 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5640 5641 5642 5643 5644 5645 5646
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5647
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5648
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5649
    helper.append_op(
5650
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5651
    return out
5652 5653


Y
yuyang18 已提交
5654
@templatedoc()
5655
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5656 5657
    """
    ${comment}
5658 5659

    Args:
Y
yuyang18 已提交
5660
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5661 5662
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5663 5664 5665 5666 5667
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5668
        ${out_comment}.
5669 5670

    Examples:
Y
yuyang18 已提交
5671 5672 5673 5674
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5675 5676 5677 5678 5679 5680
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5681
    out = helper.create_variable_for_type_inference(dtype)
5682 5683 5684 5685 5686
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5687
    return helper.append_activation(out)
5688 5689


Y
yuyang18 已提交
5690
@templatedoc()
5691 5692
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5693 5694 5695 5696 5697 5698 5699
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5700 5701

    Args:
Y
yuyang18 已提交
5702 5703
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5704 5705

    Returns:
Y
yuyang18 已提交
5706
        ${out_comment}.
5707 5708
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5709 5710 5711 5712 5713

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5714
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5715 5716 5717 5718 5719 5720
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5721 5722


5723 5724 5725
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5726
                               ignore_index=kIgnoreIndex,
5727 5728
                               numeric_stable_mode=False,
                               return_softmax=False):
5729 5730
    """
    **Softmax With Cross Entropy Operator.**
5731

5732 5733 5734 5735
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5736

5737 5738 5739
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5740

5741 5742 5743
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5744

5745
    The equation is as follows:
5746

5747
    1) Hard label (one-hot label, so every sample has exactly one class)
5748

5749 5750 5751 5752
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5753

5754 5755 5756
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5757

5758 5759 5760 5761
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5762 5763 5764
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5765

H
haowang101779990 已提交
5766
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5767

H
haowang101779990 已提交
5768
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5769

H
haowang101779990 已提交
5770
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5771 5772 5773

    and then cross entropy loss is calculated by softmax and label.

5774 5775 5776 5777 5778 5779 5780 5781
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5782 5783
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5784
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5785 5786 5787
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5788 5789 5790
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5791
                                    stable algorithm. Default: False
5792
        return_softmax (bool): A flag indicating whether to return the softmax
5793
                               along with the cross entropy loss. Default: False
5794

5795
    Returns:
H
haowang101779990 已提交
5796 5797 5798 5799 5800
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5801 5802 5803 5804 5805 5806 5807

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5808 5809
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5810 5811
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5812 5813
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5814 5815 5816 5817 5818 5819
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5820 5821 5822 5823 5824
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5825 5826 5827 5828

    if return_softmax:
        return loss, softmax

5829 5830 5831 5832 5833
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5834 5835
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5836
    For each instance, it computes the smooth L1 loss element by element first
5837
    and then sums all the losses. So the shape of ouput Variable is
5838
    [batch_size, 1].
5839

5840 5841
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5842
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5843
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5844
            L1 loss op with same shape as :attr:`x`.
5845
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5846 5847
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5848
            by this tensor element by element.
5849
        outside_weight (Variable|None): A tensor with rank at least 2. This
5850 5851
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5852
            element by element.
5853
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5854 5855
           scalar with default value 1.0.

5856
    Returns:
5857
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5858 5859 5860 5861 5862

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5863 5864
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5865
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5866
            out = fluid.layers.smooth_l1(x=fc, y=label)
5867
    """
5868

5869
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5870 5871
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5884 5885 5886 5887


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5888
    This layer creates the one-hot representations for input indices.
5889 5890

    Args:
Y
Yibing Liu 已提交
5891 5892
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5893 5894

    Returns:
Y
Yibing Liu 已提交
5895
        Variable: The one-hot representations of input.
5896 5897

    Examples:
C
caoying03 已提交
5898
        .. code-block:: python
5899

Y
Yibing Liu 已提交
5900 5901
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5902 5903
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5904
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5905 5906 5907 5908 5909 5910
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5911 5912


Y
Yu Yang 已提交
5913
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5914
    """
Y
yi.wu 已提交
5915 5916 5917
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5918 5919 5920 5921 5922 5923

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5924 5925
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5926 5927 5928 5929 5930 5931

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5932 5933
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5934 5935
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5936 5937 5938 5939 5940
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5941
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5942
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5943 5944
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5945
            outputs={'Out': [counter]},
M
minqiyang 已提交
5946 5947
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5948 5949 5950
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5951 5952


5953
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5954
    """
C
caoying03 已提交
5955 5956
    Gives a new shape to the input Tensor without changing its data.

5957 5958 5959 5960 5961
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5962

5963
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5964

5965 5966 5967 5968
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5969
    2. 0 means the actual dimension value is going to be copied from the
5970 5971 5972 5973
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5974 5975

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5976
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5977
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5978

5979
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5980 5981
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5982 5983
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5984
    dimensions.
C
caoying03 已提交
5985

5986
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5987 5988 5989 5990
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5991 5992

    Args:
5993
        x(variable): The input tensor.
C
caoying03 已提交
5994 5995
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5996 5997 5998 5999 6000
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6001 6002
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
6003
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
6004 6005 6006 6007 6008 6009
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
6010
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6011

6012
    Returns:
G
guosheng 已提交
6013 6014 6015 6016
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6017

X
Xin Pan 已提交
6018 6019 6020
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6021 6022
    Examples:
        .. code-block:: python
G
guosheng 已提交
6023

6024
            data = fluid.layers.data(
6025
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6026
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6027
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6028 6029 6030
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6031
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6032 6033 6034 6035 6036
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6037

6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6053
    helper = LayerHelper("reshape2", **locals())
6054 6055
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6056
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6057
    helper.append_op(
6058
        type="reshape2",
X
Xin Pan 已提交
6059
        inputs=inputs,
D
dzhwinter 已提交
6060
        attrs={"shape": shape},
6061 6062
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6063

D
dzhwinter 已提交
6064
    return helper.append_activation(out)
6065

6066

6067
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6068
    """
M
minqiyang 已提交
6069 6070 6071
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6072
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6073

H
haowang101779990 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6095

Y
Yibing Liu 已提交
6096
    Args:
6097
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6098
        axes (list): List of integers, indicating the dimensions to be squeezed.
6099
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6100 6101 6102 6103 6104 6105 6106 6107

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6108
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6109 6110
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6111 6112
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6113
    helper.append_op(
6114
        type="squeeze2",
6115
        inputs={"X": input},
Y
Yibing Liu 已提交
6116
        attrs={"axes": axes},
6117 6118
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6119

6120 6121 6122
    return out


6123
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6124
    """
M
minqiyang 已提交
6125 6126 6127
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6128

M
minqiyang 已提交
6129
    For example:
H
haowang101779990 已提交
6130 6131 6132

    .. code-block:: text

M
minqiyang 已提交
6133
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6134
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6135

Y
Yibing Liu 已提交
6136
    Args:
6137
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6138
        axes (list): List of integers, indicating the dimensions to be inserted.
6139
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6140 6141 6142 6143 6144 6145 6146 6147

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6148
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6149 6150
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6151 6152
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6153
    helper.append_op(
6154
        type="unsqueeze2",
6155
        inputs={"X": input},
Y
Yibing Liu 已提交
6156
        attrs={"axes": axes},
6157 6158
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6159

6160 6161
    return out

6162

Y
yangyaming 已提交
6163
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6164
    """
Y
Yibing Liu 已提交
6165
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6166 6167 6168 6169
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6170
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6171 6172 6173 6174 6175 6176

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6177
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6178 6179 6180
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6181
            target_lod: [4, 2]
Y
yangyaming 已提交
6182 6183

            then we get a 1-level LoDTensor:
6184
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6185 6186 6187 6188 6189 6190
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6191
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6192 6193 6194 6195
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6196
                y.data = [[2, 4]]
Y
yangyaming 已提交
6197 6198 6199
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6200
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6201 6202 6203 6204 6205 6206
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6207
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6208 6209 6210 6211
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6212
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6213 6214 6215 6216
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6217
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6218 6219 6220 6221 6222
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6223
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6224
                           from :attr:`y`.
Y
yangyaming 已提交
6225
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6226
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6227 6228

    Returns:
Y
Yibing Liu 已提交
6229
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6230 6231

    Raises:
Y
Yibing Liu 已提交
6232
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6233 6234 6235 6236 6237 6238 6239 6240 6241

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6242
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6268
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6297 6298
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6311 6312 6313
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6327 6328 6329 6330


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6331
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6332
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6333

G
guosheng 已提交
6334 6335 6336 6337
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6360
                         The length of :attr:paddings must be
G
guosheng 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6371

G
guosheng 已提交
6372 6373 6374 6375 6376 6377
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6378
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6379 6380 6381 6382 6383 6384 6385
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6386 6387


C
chengduo 已提交
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6419 6420
		And
            pad_value = -1,
C
chengduo 已提交
6421

T
Tink_Y 已提交
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6457
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6458 6459 6460 6461 6462 6463 6464 6465 6466
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6467 6468 6469 6470 6471 6472 6473
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6474 6475
    called label-smoothing regularization (LSR).

6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6499
                              be :math:`(1, class\_num)`.
6500 6501
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6502
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6522
    smooth_label = helper.create_variable_for_type_inference(dtype)
6523 6524 6525 6526 6527 6528 6529
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6530 6531


W
wopeizl 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6568 6569


J
jerrywgz 已提交
6570 6571 6572 6573 6574 6575
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6576 6577
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6594 6595 6596
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6597 6598 6599 6600 6601 6602
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6603
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6644 6645
        .. code-block:: python

W
whs 已提交
6646 6647 6648 6649
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6650
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6651 6652 6653 6654 6655 6656
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6657 6658


6659 6660 6661 6662
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6663
                 resample='BILINEAR',
6664 6665
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6666
                 align_mode=1):
6667
    """
Q
qiaolongfei 已提交
6668
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6669

6670
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6671 6672 6673
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6674

6675
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6676

6677
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6678

6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6689
    Align_corners and align_mode are optinal parameters,the calculation method 
6690 6691 6692 6693
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6694
      For scale:
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6707
      if:
6708 6709 6710 6711 6712 6713 6714 6715
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6716
      else:
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6727
      if:
6728 6729 6730 6731 6732 6733 6734 6735 6736
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6737
      else:
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6753
    Args:
6754
        input (Variable): The input tensor of image resize layer,
6755 6756
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6757
        out_shape(list|tuple|Variable|None): Output shape of image resize
6758 6759
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6760
        scale(float|None): The multiplier for the input height or width.
6761 6762 6763
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6764 6765
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6766
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6767
                       currently.
6768
                       Default: 'BILINEAR'
6769 6770 6771
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6772
                                :attr:`out_shape` and :attr:`scale` specifying
6773 6774 6775 6776 6777 6778 6779
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6780 6781
                                constructing stage.
                                Default: None
6782 6783 6784 6785
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6786
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6787 6788
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6789 6790

    Returns:
Q
update  
qiaolongfei 已提交
6791 6792
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6793

6794 6795 6796
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6797
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6798 6799 6800
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6801 6802
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6803

6804 6805 6806
    Examples:
        .. code-block:: python

6807
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6808
    """
6809 6810 6811 6812
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6813 6814
    if resample not in resample_methods:
        raise ValueError(
6815
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6816
        )
6817
    resample_type = resample_methods[resample]
6818 6819 6820 6821 6822 6823

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6824
    if out_shape is None and scale is None:
6825
        raise ValueError("One of out_shape and scale must not be None.")
6826
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6827
    dtype = helper.input_dtype()
6828 6829 6830 6831

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6832 6833 6834
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6835
    if out_shape is not None:
6836 6837 6838 6839
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6840
            inputs['OutSize'] = out_shape
6841 6842 6843 6844 6845 6846 6847 6848
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6849 6850 6851 6852
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6853 6854 6855 6856 6857
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6858
    out = helper.create_variable_for_type_inference(dtype)
6859
    helper.append_op(
6860
        type='{}_interp'.format(resample_type),
6861
        inputs=inputs,
6862
        outputs={"Out": out},
6863 6864 6865 6866 6867 6868 6869
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
6870
    return out
F
stash  
fengjiayi 已提交
6871 6872


6873
@templatedoc(op_type="bilinear_interp")
6874 6875 6876 6877
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6878 6879
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
6880
                    align_mode=1):
6881
    """
6882 6883
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6884 6885
    in priority order.

6886 6887 6888 6889
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6890 6891
    again in the other direction.

6892
    For details of bilinear interpolation, please refer to Wikipedia:
6893
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6894

T
tink2123 已提交
6895
    Align_corners and align_mode are optinal parameters,the calculation 
6896 6897 6898
    method of interpolation can be selected by them.


T
tink2123 已提交
6899
    Align_corners and align_mode are optinal parameters,the calculation method 
6900 6901 6902 6903
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6904
      For scale:
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
6916
      if:
6917 6918 6919 6920 6921 6922 6923 6924 6925
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6926 6927
      else:

6928 6929 6930 6931 6932 6933 6934 6935
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
6936 6937 6938 6939
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6940

Y
yuyang18 已提交
6941 6942 6943 6944 6945
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6946 6947 6948
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6949
                                :attr:`out_shape` and :attr:`scale` specifying
6950 6951 6952 6953 6954 6955 6956
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6957 6958
                                constructing stage.
                                Default: None
6959 6960
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
6961 6962 6963

    Returns:
        ${out_comment}.
6964 6965 6966 6967 6968

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6969 6970
    """

6971 6972
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
6973 6974


6975
@templatedoc(op_type="nearest_interp")
6976 6977 6978 6979
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
6980 6981
                   actual_shape=None,
                   align_corners=True):
6982
    """
6983
    Resize input by performing nearest neighbor interpolation in both the
6984 6985
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6986 6987
    out_shape and scale in priority order.

6988 6989
    Example:

T
tink2123 已提交
6990
      For scale:
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
7003
      if:
7004 7005 7006 7007 7008 7009 7010 7011
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
7012
      else:
7013 7014 7015 7016 7017 7018 7019 7020 7021
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


7022
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7023
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7024 7025 7026 7027 7028

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7029

Y
yuyang18 已提交
7030 7031 7032 7033 7034
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7035 7036 7037
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7038
                                :attr:`out_shape` and :attr:`scale` specifying
7039 7040 7041 7042 7043 7044 7045
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7046 7047
                                constructing stage.
                                Default: None
7048
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7049 7050 7051

    Returns:
        ${out_comment}.
7052 7053 7054 7055 7056

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7057 7058
    """

7059 7060
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7061 7062 7063 7064


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7065 7066 7067
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7068 7069 7070 7071 7072 7073 7074
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7075
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7076

7077
    Returns:
Q
update  
qiaolongfei 已提交
7078
        Variable: The output is a 4-D tensor of the shape
7079
        (num_batches, channls, out_h, out_w).
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7090 7091 7092
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7093 7094 7095
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7096 7097
def gather(input, index):
    """
Q
qiaolongfei 已提交
7098 7099
    **Gather Layer**

7100
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7101 7102 7103 7104
    of X indexed by `index` and concatenate them together.

    .. math::

7105
        Out = X[Index]
W
whs 已提交
7106 7107 7108 7109 7110 7111 7112


    .. code-block:: text


                Given:

7113 7114
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7125
        input (Variable): The source input with rank>=1.
W
whs 已提交
7126 7127 7128 7129 7130 7131
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7132

W
whs 已提交
7133 7134 7135 7136 7137 7138
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7139
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7140 7141 7142 7143 7144 7145 7146 7147
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7179
    out = helper.create_variable_for_type_inference(dtype)
7180 7181 7182 7183 7184 7185 7186 7187 7188
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7198

Q
Qingsheng Li 已提交
7199
    Given the following input:
H
haowang101779990 已提交
7200

Q
Qingsheng Li 已提交
7201
    .. code-block:: text
H
haowang101779990 已提交
7202

Q
Qingsheng Li 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7215

Q
Qingsheng Li 已提交
7216
    .. code-block:: text
H
haowang101779990 已提交
7217

Q
Qingsheng Li 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7233
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7244
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7245 7246 7247 7248 7249 7250 7251 7252 7253
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7267

7268 7269 7270
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7271
    """
F
stash  
fengjiayi 已提交
7272
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7273
    dtype = x.dtype
X
Xin Pan 已提交
7274
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7275
    if seed is None:
7276
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7277
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7278
    if isinstance(seed, int):
F
fengjiayi 已提交
7279 7280 7281 7282 7283
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7284 7285 7286 7287
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7288
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7289 7290
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7291 7292
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7293
    return out
W
whs 已提交
7294 7295


7296
def log(x, name=None):
W
wanghaoshuang 已提交
7297 7298 7299 7300 7301
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7302
        Out = \\ln(x)
W
wanghaoshuang 已提交
7303 7304

    Args:
7305
        x (Variable): Input tensor.
7306 7307
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7308 7309 7310 7311 7312 7313 7314 7315

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7316
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7317 7318
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7319
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7320
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7321
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7322 7323 7324
    return out


7325
def relu(x, name=None):
W
wanghaoshuang 已提交
7326 7327
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7328
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7329 7330 7331 7332
    the tensor elementwise.

    .. math::

7333
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7334 7335

    Args:
7336
        x (Variable): The input tensor.
7337 7338
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7339 7340 7341 7342 7343 7344 7345 7346

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7347
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7348 7349
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7350
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7351
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7352 7353
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7354
    return out
7355 7356


C
chengduo 已提交
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7398 7399 7400
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7401 7402 7403 7404
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7405
    .. math::
7406

H
haowang101779990 已提交
7407
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7408

7409
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7410 7411 7412 7413 7414
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7415
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7416
                           Its shape should be the same as input.
7417
        num_classes (int): The possible number of labels.
W
whs 已提交
7418 7419

    Returns:
M
minqiyang 已提交
7420 7421
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7422
                     Three variables:
M
minqiyang 已提交
7423

H
haowang101779990 已提交
7424 7425 7426
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7427 7428 7429 7430

    Examples:

        .. code-block:: python
7431

W
whs 已提交
7432 7433 7434 7435
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7436 7437 7438
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7439 7440
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7441 7442
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7443
        outputs={
W
whs 已提交
7444 7445 7446
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7447 7448 7449
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7518
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7519 7520 7521 7522 7523

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7524
            isinstance(shape, Variable)):
7525 7526 7527 7528 7529
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7530
    out = helper.create_variable_for_type_inference(x.dtype)
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7548 7549


W
whs 已提交
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7567

W
whs 已提交
7568
              out_shape = [2, 3, 5, 5]
7569

W
whs 已提交
7570
          Step 1:
7571

W
whs 已提交
7572 7573 7574
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7575

W
whs 已提交
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7621
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7622
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7635

W
whs 已提交
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7647
            isinstance(out_shape, Variable)):
W
whs 已提交
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7669 7670
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7671

7672 7673
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7674
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7675 7676 7677
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7678

7679 7680
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7681

H
haowang101779990 已提交
7682 7683
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7684 7685
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7686

H
haowang101779990 已提交
7687 7688 7689 7690 7691 7692 7693 7694
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7695 7696 7697

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7732
    out = helper.create_variable_for_type_inference("float32")
7733 7734 7735 7736 7737 7738 7739 7740

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7741 7742


M
minqiyang 已提交
7743 7744
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7745
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7746
    which compares left score and right score passed in.
M
minqiyang 已提交
7747
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7748 7749 7750

    .. math::

H
haowang101779990 已提交
7751
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7752 7753

    Args:
M
minqiyang 已提交
7754
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7755 7756
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7757
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7758 7759
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7760

M
minqiyang 已提交
7761
    Returns:
M
minqiyang 已提交
7762
       Variable: The ranking loss.
H
haowang101779990 已提交
7763

M
minqiyang 已提交
7764
    Raises:
M
minqiyang 已提交
7765
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7766

M
minqiyang 已提交
7767
    Examples:
H
haowang101779990 已提交
7768

M
minqiyang 已提交
7769
        .. code-block:: python
H
haowang101779990 已提交
7770

M
minqiyang 已提交
7771 7772 7773 7774 7775
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7776
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7777 7778 7779 7780 7781 7782
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7783 7784
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7808
        .. code-block:: text
W
whs 已提交
7809

T
Tink_Y 已提交
7810
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7811

T
Tink_Y 已提交
7812 7813
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7814

T
Tink_Y 已提交
7815
	      Case 0:
M
minqiyang 已提交
7816

T
Tink_Y 已提交
7817 7818 7819
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7820

T
Tink_Y 已提交
7821 7822 7823
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7824

T
Tink_Y 已提交
7825
	      Case 1:
M
minqiyang 已提交
7826

T
Tink_Y 已提交
7827 7828
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7829

T
Tink_Y 已提交
7830 7831 7832
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7833

T
Tink_Y 已提交
7834
	      Case 2:
M
minqiyang 已提交
7835

T
Tink_Y 已提交
7836 7837
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7838

T
Tink_Y 已提交
7839 7840 7841
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7842 7843


W
whs 已提交
7844 7845
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7846
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7870
    out = helper.create_variable_for_type_inference(dtype)
7871 7872 7873 7874 7875 7876 7877 7878 7879
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7880
    helper.append_op(
7881
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7882 7883 7884 7885

    return out


7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7898 7899 7900 7901 7902

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7903 7904
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7905 7906
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7907
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7928 7929 7930 7931 7932

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7933 7934
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7935 7936
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7937
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7958 7959 7960 7961 7962

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7963 7964
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7965 7966
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7967
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7989 7990 7991 7992 7993

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7994
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7995
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7996 7997
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7998
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8021 8022 8023 8024 8025

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8026 8027
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8028 8029
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8030
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8052 8053 8054 8055 8056

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8057 8058
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8059 8060
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8061
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8062 8063 8064 8065 8066 8067 8068 8069
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8070 8071 8072 8073
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8074 8075
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8076 8077 8078

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8079
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8080
          weight (alpha).
J
jerrywgz 已提交
8081
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8082 8083 8084
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8085
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8086
          will be named automatically.
J
jerrywgz 已提交
8087 8088 8089 8090 8091 8092 8093 8094

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8095
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8109
        attr=helper.param_attr,
J
jerrywgz 已提交
8110 8111 8112 8113
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8114
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8115 8116 8117 8118 8119 8120 8121 8122 8123
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8124 8125 8126 8127 8128 8129 8130 8131 8132 8133
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8134
    Returns:
8135
        output(${out_type}): ${out_comment}
8136 8137 8138

    Examples:

8139
    .. code-block:: python
8140

H
haowang101779990 已提交
8141 8142
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8143 8144
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8145
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8164
    Returns:
8165
        output(${out_type}): ${out_comment}
8166 8167 8168 8169 8170

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8171 8172
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8173 8174
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8175
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8193
    Returns:
8194
        output(${out_type}): ${out_comment}
8195 8196 8197 8198 8199

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8200 8201
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8202 8203
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8204
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8205 8206 8207 8208 8209 8210 8211 8212
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8213 8214 8215 8216
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8217

H
haowang101779990 已提交
8218
    For Example:
M
minqiyang 已提交
8219

H
haowang101779990 已提交
8220
    .. code-block:: text
8221

H
haowang101779990 已提交
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8243 8244 8245

    Args:
        x (Variable): A tensor of rank >= axis.
8246 8247
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8248 8249 8250 8251 8252 8253 8254 8255
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8256 8257 8258
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8259 8260 8261 8262
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8263
        ValueError: If axis is not in range [0, rank(x)].
8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8280 8281
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8282
    helper.append_op(
8283
        type='flatten2',
8284
        inputs={"X": x},
8285 8286
        outputs={'Out': out,
                 'XShape': x_shape},
8287 8288
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8289 8290


C
chenweihang 已提交
8291
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8292
    """
C
chenweihang 已提交
8293
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8294
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8295 8296
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8297

H
haowang101779990 已提交
8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8315 8316

    Args:
C
chenweihang 已提交
8317 8318 8319
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8331 8332
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8333 8334 8335 8336 8337 8338
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8339
    return out
8340

8341

S
sneaxiy 已提交
8342 8343 8344 8345 8346 8347 8348 8349 8350
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8351

S
sneaxiy 已提交
8352
    .. math::
8353

S
sneaxiy 已提交
8354 8355 8356
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8357
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8358 8359 8360 8361
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8362 8363 8364
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8365 8366
    Returns:
        Variable: The output sequence mask.
8367

S
sneaxiy 已提交
8368 8369
    """

Q
qingqing01 已提交
8370
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8371
    if name is None:
X
Xin Pan 已提交
8372
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8373
    else:
X
Xin Pan 已提交
8374
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8375

Q
qingqing01 已提交
8376 8377 8378
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8379 8380
        outputs={'Y': out},
        attrs={
8381
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8382 8383 8384
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8385 8386


X
Xin Pan 已提交
8387
def stack(x, axis=0):
S
sneaxiy 已提交
8388 8389 8390 8391
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8392 8393 8394 8395 8396 8397 8398

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8399
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8400
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8401 8402

    Args:
8403
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8404
        axis (int|None): The axis along which all inputs are stacked.
8405

S
sneaxiy 已提交
8406 8407
    Returns:
        Variable: The stacked variable.
8408

S
sneaxiy 已提交
8409 8410
    """

X
Xin Pan 已提交
8411 8412 8413 8414 8415 8416
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8417
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8418
    helper.append_op(
S
sneaxiy 已提交
8419 8420
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8421

X
Xin Pan 已提交
8422
    return out
D
dzhwinter 已提交
8423 8424 8425 8426 8427 8428 8429


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8430

D
dzhwinter 已提交
8431 8432 8433
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8434
    raised.
D
dzhwinter 已提交
8435 8436

    Args:
M
minqiyang 已提交
8437
        x (Variable): Input variable.
D
dzhwinter 已提交
8438 8439
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8440

D
dzhwinter 已提交
8441 8442
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8443

D
dzhwinter 已提交
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8454
    for _ in range(num):
X
Xin Pan 已提交
8455
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8456 8457 8458 8459 8460 8461 8462 8463

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8476

W
whs 已提交
8477 8478 8479 8480
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8481

W
whs 已提交
8482
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8483

W
whs 已提交
8484
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8485

W
whs 已提交
8486 8487 8488 8489
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8490

W
whs 已提交
8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8507
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8508 8509 8510 8511 8512 8513
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8514 8515


G
fix  
gongweibao 已提交
8516 8517 8518
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8519
@templatedoc()
G
fix  
gongweibao 已提交
8520 8521 8522 8523 8524 8525 8526 8527 8528
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8529
    ${comment}
G
fix  
gongweibao 已提交
8530 8531

    Args:
G
gongweibao 已提交
8532 8533 8534
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8535
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8536 8537 8538
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8539 8540
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8541
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8542

8543 8544 8545 8546 8547
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8548 8549 8550
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8551
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8568 8569


G
gongweibao 已提交
8570
@templatedoc()
X
Xin Pan 已提交
8571
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8572
    """
G
gongweibao 已提交
8573
    ${comment}
G
fix  
gongweibao 已提交
8574 8575

    Args:
G
gongweibao 已提交
8576 8577 8578 8579
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8580 8581 8582
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8583
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8584

8585 8586 8587 8588
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8589 8590 8591
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8592
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8603
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8604 8605 8606 8607 8608
        })

    return out


G
gongweibao 已提交
8609
@templatedoc()
G
fix  
gongweibao 已提交
8610
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8611
    """
G
gongweibao 已提交
8612
    ${comment}
G
fix  
gongweibao 已提交
8613 8614

    Args:
G
gongweibao 已提交
8615 8616 8617 8618
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8619
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8620 8621

    Returns:
G
gongweibao 已提交
8622
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8623

8624 8625 8626 8627 8628 8629 8630 8631 8632 8633
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8634 8635 8636
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8637
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8649
@templatedoc()
G
fix  
gongweibao 已提交
8650 8651 8652 8653 8654 8655 8656 8657 8658
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8659
    ${comment}
G
fix  
gongweibao 已提交
8660 8661

    Args:
G
gongweibao 已提交
8662 8663
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8664
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8665 8666 8667 8668
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8669
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8670 8671

    Returns:
G
gongweibao 已提交
8672
        out (Variable): ${out_comment}
8673 8674 8675 8676 8677 8678 8679 8680

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8681 8682 8683
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8684
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8703
@templatedoc()
X
Xin Pan 已提交
8704
def sum(x):
G
fix  
gongweibao 已提交
8705
    """
G
gongweibao 已提交
8706
    ${comment}
G
fix  
gongweibao 已提交
8707 8708

    Args:
G
gongweibao 已提交
8709
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8710 8711

    Returns:
G
gongweibao 已提交
8712
        out (Variable): ${out_comment}
8713 8714 8715 8716 8717 8718

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8719 8720 8721
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8722 8723
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8724 8725 8726 8727
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8728
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8729 8730 8731 8732

    return out


G
gongweibao 已提交
8733
@templatedoc()
G
fix  
gongweibao 已提交
8734 8735
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8736
    ${comment}
G
fix  
gongweibao 已提交
8737 8738

    Args:
G
gongweibao 已提交
8739 8740 8741 8742
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8743 8744

    Returns:
G
gongweibao 已提交
8745
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8746

8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8758 8759 8760
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8761 8762
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8774
@templatedoc()
G
fix  
gongweibao 已提交
8775 8776
def shape(input):
    """
G
gongweibao 已提交
8777
    ${comment}
G
fix  
gongweibao 已提交
8778 8779

    Args:
G
gongweibao 已提交
8780
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8781 8782

    Returns:
G
gongweibao 已提交
8783
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8784

8785 8786 8787 8788 8789 8790
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8791 8792 8793
    """

    helper = LayerHelper('shape', **locals())
8794
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8795
    helper.append_op(
G
fix  
gongweibao 已提交
8796
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8797 8798

    return out
G
merge  
gongweibao 已提交
8799 8800


S
sneaxiy 已提交
8801 8802 8803 8804 8805 8806 8807 8808
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8809 8810
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8811
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8812 8813 8814
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8815

S
sneaxiy 已提交
8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8827
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8828 8829 8830 8831 8832 8833 8834 8835
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8836
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8837
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8838 8839 8840 8841 8842 8843

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8844
    if name is None:
X
Xin Pan 已提交
8845
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8846 8847 8848
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8849 8850 8851 8852 8853 8854 8855 8856 8857 8858

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8859
    return helper.append_activation(out)
S
sneaxiy 已提交
8860 8861


X
Xin Pan 已提交
8862
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8863 8864 8865
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8866
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8867 8868 8869
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8870
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8871 8872 8873
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8874
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8875 8876 8877
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8878
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8879 8880 8881
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8882
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8883 8884 8885
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8886
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8898 8899
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8900
        ])
M
minqiyang 已提交
8901 8902


8903
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8904 8905
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8906 8907
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8908 8909 8910

    if out is None:
        if name is None:
X
Xin Pan 已提交
8911
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8927
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8939 8940 8941 8942 8943 8944 8945 8946 8947

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8948 8949 8950 8951 8952 8953 8954
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8955
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8967 8968 8969 8970 8971 8972 8973 8974 8975

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8976 8977 8978 8979 8980 8981 8982
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8983
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8995 8996 8997 8998 8999 9000 9001 9002 9003

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9004 9005 9006 9007 9008 9009 9010
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9011
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9022 9023 9024 9025 9026 9027 9028

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9029 9030 9031 9032
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9048 9049 9050 9051 9052 9053 9054

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9055 9056 9057 9058 9059
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9060 9061 9062 9063
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9087 9088 9089 9090 9091 9092 9093

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9094 9095 9096 9097 9098
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9099 9100 9101 9102
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9103 9104 9105 9106 9107 9108 9109 9110

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9129
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9130 9131 9132 9133 9134 9135 9136 9137 9138 9139
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9182
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9183 9184 9185 9186 9187 9188 9189 9190 9191
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9192 9193
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9194 9195 9196 9197 9198 9199
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9200 9201 9202
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9203 9204
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9205 9206 9207 9208 9209 9210
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9211
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9212
        name(basestring|None): Name of the output.
9213 9214
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9215 9216 9217

    Returns:
        out(${out_type}): ${out_comment}
9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9232 9233 9234 9235 9236
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9237
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9238 9239 9240 9241 9242 9243 9244 9245
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9246 9247
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9268
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9269 9270 9271 9272 9273 9274 9275 9276 9277 9278
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9279 9280


J
JiabinYang 已提交
9281
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9282
    """
J
JiabinYang 已提交
9283
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9284 9285 9286

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9287
    The attr blocksize indicates the input block size.
9288 9289

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9290
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9291 9292

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9293
    (but keeping all data)
J
JiabinYang 已提交
9294

J
JiabinYang 已提交
9295
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9296
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9297 9298 9299 9300 9301
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9302
    Args:
J
JiabinYang 已提交
9303
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9304
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9305 9306

    Returns:
J
JiabinYang 已提交
9307
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9308 9309

    Raises:
J
JiabinYang 已提交
9310
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9311 9312 9313 9314 9315 9316

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9317
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9318
                x=data, blocksize=2)
J
JiabinYang 已提交
9319 9320
    """

J
JiabinYang 已提交
9321
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9322

J
JiabinYang 已提交
9323 9324
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9325 9326

    if name is None:
J
JiabinYang 已提交
9327 9328
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9329 9330 9331 9332 9333
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9334
        type="space_to_depth",
J
JiabinYang 已提交
9335
        inputs={"X": x},
J
JiabinYang 已提交
9336
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9337
        outputs={"Out": out})
J
JiabinYang 已提交
9338 9339
    return out

J
JiabinYang 已提交
9340

S
sneaxiy 已提交
9341 9342
@templatedoc()
def sequence_reverse(x, name=None):
9343
    """
S
sneaxiy 已提交
9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9355
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9366 9367


9368 9369 9370 9371 9372 9373
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9374

9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9394
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9407 9408


B
barrierye 已提交
9409
def similarity_focus(input, axis, indexes, name=None):
9410
    """
B
barrierye 已提交
9411
    SimilarityFocus Operator
B
barrierye 已提交
9412 9413

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9414

9415 9416 9417
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9418
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9419 9420 9421 9422 9423 9424 9425
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9426
       each index.
B
barrierye 已提交
9427 9428 9429 9430
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9480
    Args:
9481
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9482
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9483
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9484
            1, 2 or 3.
B
barrierye 已提交
9485
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9486 9487

    Returns:
H
haowang101779990 已提交
9488 9489
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9490

B
barrierye 已提交
9491 9492
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9493

B
barrierye 已提交
9494
            data = fluid.layers.data(
B
barrierye 已提交
9495 9496
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9497

B
barrierye 已提交
9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9510 9511 9512 9513 9514
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9515 9516 9517 9518 9519 9520 9521
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9522 9523


M
minqiyang 已提交
9524 9525
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9526 9527
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9528 9529
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9568
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9569
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9570 9571 9572 9573 9574 9575

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9576

M
minqiyang 已提交
9577 9578 9579
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9580 9581
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9582 9583
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9584 9585 9586 9587 9588 9589 9590
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9591 9592


D
dengkaipeng 已提交
9593
@templatedoc()
9594 9595
def grid_sampler(x, grid, name=None):
    """
9596
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9597
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9598 9599 9600 9601
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9602
    interpolation value of 4 nearest corner points.
9603

H
haowang101779990 已提交
9604
    .. code-block:: text
9605

H
haowang101779990 已提交
9606 9607
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9608

H
haowang101779990 已提交
9609 9610
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9611

H
haowang101779990 已提交
9612 9613 9614
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9615

H
haowang101779990 已提交
9616 9617 9618 9619 9620 9621 9622 9623 9624
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9625

H
haowang101779990 已提交
9626 9627 9628 9629
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9630

H
haowang101779990 已提交
9631 9632 9633 9634
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9635

H
haowang101779990 已提交
9636 9637 9638 9639
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9640

H
haowang101779990 已提交
9641 9642
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9643 9644

    Args:
9645 9646 9647
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9648 9649

    Returns:
H
haowang101779990 已提交
9650
        Variable: Output of shape [N, C, H, W] data samples input X
9651 9652
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9653 9654 9655 9656 9657 9658 9659 9660
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9661

D
dengkaipeng 已提交
9662 9663 9664 9665 9666 9667 9668 9669 9670
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9671
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9672 9673
    ipts = {'X': x, 'Grid': grid}

9674
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9675 9676 9677
    return out


G
gmcather 已提交
9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9744
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9766 9767 9768 9769
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9770
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9771 9772
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9773
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9774 9775

    .. math::
H
haowang101779990 已提交
9776 9777 9778
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9779 9780

    Where:
H
haowang101779990 已提交
9781 9782
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9797

G
gmcather 已提交
9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9814 9815 9816 9817 9818 9819 9820 9821 9822 9823


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9824
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9825

Q
Qiao Longfei 已提交
9826
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9827 9828 9829
    For example:

    .. math::
H
haowang101779990 已提交
9830
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9831

Q
Qiao Longfei 已提交
9832
    In this formula:
9833 9834
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9835
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9836
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9837 9838 9839
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9840 9841
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9842 9843 9844
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9845
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9846
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9847
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9848 9849 9850 9851
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9852
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9853 9854 9855 9856

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9857
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9858 9859
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9860
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9861 9862 9863 9864

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9865
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9906 9907


S
shippingwang 已提交
9908
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
9909 9910
    """
    **Shuffle Channel Operator**
9911

S
shippingwang 已提交
9912 9913 9914 9915 9916 9917
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
9918
    
S
shippingwang 已提交
9919
    .. code-block:: text
9920

S
shippingwang 已提交
9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
9949
    Args: 
S
shippingwang 已提交
9950 9951
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
9952 9953

    Returns:
S
shippingwang 已提交
9954 9955
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
9956 9957

    Raises:
S
shippingwang 已提交
9958
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
9959 9960 9961

    Examples:
        .. code-block:: python
9962 9963

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
9964
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
9965 9966 9967
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
9968
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
9969 9970 9971 9972 9973 9974 9975 9976 9977

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
9978
    return out
S
Add  
shippingwang 已提交
9979 9980


S
sneaxiy 已提交
9981
class PyFuncRegistry(object):
S
sneaxiy 已提交
9982 9983 9984
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9985
        if func is None or not callable(func):
S
sneaxiy 已提交
9986 9987 9988
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9989
        # find named args using reflection
S
sneaxiy 已提交
9990 9991 9992 9993 9994 9995 9996
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9997 9998 9999
        '''
        Why record self here?

M
minqiyang 已提交
10000 10001
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10002
           to find the registered function corresponding
M
minqiyang 已提交
10003
           to :code:`idx`.
S
sneaxiy 已提交
10004

M
minqiyang 已提交
10005 10006
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10007
           whose reference count is 1 would cause
M
minqiyang 已提交
10008
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10009 10010
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10011
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10026 10027 10028 10029 10030 10031 10032 10033 10034
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10035

S
sneaxiy 已提交
10036 10037
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10038 10039

        ret = []
S
sneaxiy 已提交
10040 10041 10042
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10043 10044
                continue

S
sneaxiy 已提交
10045 10046
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10047

S
sneaxiy 已提交
10048 10049 10050
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10051

S
sneaxiy 已提交
10052
        return tuple(ret)
S
sneaxiy 已提交
10053 10054


S
sneaxiy 已提交
10055 10056 10057 10058
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10059

S
sneaxiy 已提交
10060 10061 10062 10063 10064 10065 10066 10067
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10068
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10069

S
sneaxiy 已提交
10070 10071
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10072 10073 10074 10075
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10076
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10077
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10078 10079
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10080 10081 10082 10083 10084
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10085
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10086
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10087
                                       None means no backward. Default None.
S
sneaxiy 已提交
10088
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10089
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10090 10091
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10092
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10093 10094 10095

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10096 10097

    Examples:
M
minqiyang 已提交
10098

S
sneaxiy 已提交
10099 10100 10101 10102 10103
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10104
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10105 10106
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10107
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10108 10109 10110
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10111
        >>>
S
sneaxiy 已提交
10112 10113 10114 10115 10116
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10117
        >>>     print(x)
S
sneaxiy 已提交
10118 10119 10120 10121 10122 10123
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10124
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10125 10126
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10127 10128
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10129 10130 10131 10132 10133 10134 10135 10136
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10137
    """
S
sneaxiy 已提交
10138
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10139 10140 10141
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10142
        x = [x]
S
sneaxiy 已提交
10143 10144
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10145

S
sneaxiy 已提交
10146 10147 10148
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10149
        out_list = [out]
S
sneaxiy 已提交
10150
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10151
        out_list = out
S
sneaxiy 已提交
10152 10153 10154
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10155

S
sneaxiy 已提交
10156 10157
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10158
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10159 10160

    for each_out in out_list:
S
sneaxiy 已提交
10161 10162
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10163 10164
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10165

S
sneaxiy 已提交
10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10181 10182 10183 10184

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10185 10186
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10187 10188 10189
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10190
        })
S
sneaxiy 已提交
10191
    return out
S
sneaxiy 已提交
10192 10193 10194


# For debug usage
S
sneaxiy 已提交
10195 10196 10197 10198
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10251

M
minqiyang 已提交
10252

M
minqiyang 已提交
10253
def huber_loss(input, label, delta):
10254
    """
M
minqiyang 已提交
10255 10256 10257
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10258 10259 10260 10261

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10262
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10263 10264 10265 10266

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10267
        huber\_loss = 0.5 * (label - input) * (label - input)
10268 10269 10270 10271 10272 10273 10274


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10275
        delta (float): The parameter of huber loss, which controls
10276 10277 10278
                       the range of outliers

    Returns:
M
minqiyang 已提交
10279
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10280 10281 10282 10283 10284

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10285
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10286
    """
M
minqiyang 已提交
10287
    helper = LayerHelper('huber_loss', **locals())
10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)