framework.py 201.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27

Y
Yu Yang 已提交
28
import numpy as np
29
import subprocess
S
sneaxiy 已提交
30
import multiprocessing
31
import sys
32
import logging
M
minqiyang 已提交
33
from .. import compat as cpt
34
from .proto import framework_pb2
35 36

from . import core
37
from . import unique_name
38 39
import paddle.version as fluid_version
import warnings
40
import functools
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
S
sneaxiy 已提交
51
    'cuda_pinned_places',
L
lujun 已提交
52
    'in_dygraph_mode',
C
chengduo 已提交
53
    'is_compiled_with_cuda',
54
    'is_compiled_with_xpu',
55
    'Variable',
56
    'load_op_library',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
245
# same base class.
246 247 248
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
249 250 251 252
            "'%s' should be called by imperative Varible in imperative mode, please run it in dygraph "
            "mode. You can turn off paddle.enable_static() if you are in static mode, or turn off "
            "ProgramTranslator if you are using @paddle.jit.to_static" %
            func.__name__)
253 254 255 256

    return __impl__


T
tangwei12 已提交
257 258
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


276 277
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
278
static_only = wrap_decorator(_static_only_)
279
fake_interface_only = wrap_decorator(_fake_interface_only_)
280 281


L
lujun 已提交
282 283
def _dygraph_tracer():
    return _dygraph_tracer_
284

W
Wu Yi 已提交
285

M
minqiyang 已提交
286
def _current_expected_place():
287 288 289
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
290 291 292 293 294 295 296 297 298 299 300
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
317 318


L
Leo Chen 已提交
319 320 321 322
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
323

L
Leo Chen 已提交
324 325 326 327 328 329 330 331 332 333 334 335
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
336
def _cpu_num():
337
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
338 339 340 341 342 343 344 345
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
346
        os.environ['CPU_NUM'] = str(1)
347
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
348 349 350 351 352 353 354 355 356 357
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
358 359


360 361 362 363 364 365 366 367 368
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
384 385 386 387
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

388
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
389 390 391 392

    Examples:
        .. code-block:: python

393 394
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
395 396 397 398
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
399
def cuda_places(device_ids=None):
L
lujun 已提交
400
    """
401 402 403 404
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
405
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
406 407

    If :code:`device_ids` is None, environment variable of
408
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
409
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
410
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
411
    If :code:`FLAGS_selected_gpus` is not set, all visible
412
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
413 414

    If :code:`device_ids` is not None, it should be the device
415
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
416
    the returned list would be 
C
Chen Weihang 已提交
417
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
418

419 420
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
421 422

    Returns:
C
Chen Weihang 已提交
423
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
424 425 426 427

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
428 429
            import paddle
            import paddle.static as static
T
tangwei12 已提交
430

C
Chen Weihang 已提交
431 432 433
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
434 435

    """
S
sneaxiy 已提交
436 437 438
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
439
        device_ids = _cuda_ids()
S
sneaxiy 已提交
440 441 442 443 444
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
483
def cpu_places(device_count=None):
L
lujun 已提交
484
    """
C
Chen Weihang 已提交
485
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
486

S
add doc  
sneaxiy 已提交
487 488
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
489 490
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
491 492
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
493

494 495
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
496 497

    Returns:
C
Chen Weihang 已提交
498
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
499 500 501 502

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
503 504
            import paddle
            import paddle.static as static
T
tangwei12 已提交
505

C
Chen Weihang 已提交
506 507 508
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
509 510
    """

S
sneaxiy 已提交
511 512 513 514 515 516
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
517
    """
518
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
519 520 521

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
522 523 524 525
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
526

527 528
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
529 530

    Returns:
531
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
532 533 534 535

    Examples:
        .. code-block:: python

536
            import paddle.fluid as fluid
L
lujun 已提交
537 538 539 540 541
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
542 543 544
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
545 546
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
547 548


549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
575
@signature_safe_contextmanager
576 577
def name_scope(prefix=None):
    """
578 579
    :api_attr: Static Graph

580
    Generate hierarchical name prefix for the operators in Static Graph.
581

T
Tao Luo 已提交
582 583 584
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
585
        Don't use it in dygraph, since it will cause memory leak.
586 587

    Args:
T
Tao Luo 已提交
588
        prefix(str, optional): prefix. Default is none.
589 590 591

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
592

593 594 595
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
596
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
597
             b = a + 1
598
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
599
                c = b * 1
600
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
601
                d = c / 1
602 603 604
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
605 606 607
                g = f - 1

          # Op are created in the default main program.  
608
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
624 625
    """
    # TODO(panyx0718): Only [0-9a-z].
626
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
627 628 629
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
630
        assert prefix, "namescope prefix can not be empty."
631 632
        global _name_scope
        _name_scope = _name_scope.child(prefix)
633 634 635 636
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
637 638 639 640 641 642 643 644 645 646 647 648


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
649 650 651
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
652 653 654 655


def grad_var_name(var_name):
    """
656 657
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
658 659 660
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
661

662
def convert_np_dtype_to_dtype_(np_dtype):
663 664
    """
    Convert the data type in numpy to the data type in Paddle
665

666
    Args:
667
        np_dtype(np.dtype): the data type in numpy.
668

669 670
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
671 672

    """
673 674
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
675
        return core.VarDesc.VarType.FP32
676
    elif dtype == np.float64:
677
        return core.VarDesc.VarType.FP64
678
    elif dtype == np.float16:
679
        return core.VarDesc.VarType.FP16
680
    elif dtype == np.int32:
681
        return core.VarDesc.VarType.INT32
682
    elif dtype == np.int16:
683
        return core.VarDesc.VarType.INT16
684
    elif dtype == np.int64:
685
        return core.VarDesc.VarType.INT64
686
    elif dtype == np.bool:
687
        return core.VarDesc.VarType.BOOL
688
    elif dtype == np.uint16:
689 690 691
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
692 693
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
694 695
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
696 697 698 699
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
700
    else:
M
minqiyang 已提交
701
        raise ValueError("Not supported numpy dtype %s" % dtype)
702 703 704


def dtype_is_floating(dtype):
705 706 707
    """
    Check the data type is floating or not.
    Args:
708
        dtype(np.dtype|core.VarDesc.VarType): data type.
709 710 711 712 713
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
714
    if not isinstance(dtype, core.VarDesc.VarType):
715 716
        dtype = convert_np_dtype_to_dtype_(dtype)

717 718 719 720
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
721 722


Y
Yang Yang(Tony) 已提交
723
def _debug_string_(proto, throw_on_error=True):
724 725 726 727 728 729 730 731 732 733 734
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
735
    error_fields = list()
Y
Yang Yang(Tony) 已提交
736
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
737 738
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
739 740 741
    return proto.__str__()


742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
799
    target_block = default_main_program().current_block()
800 801 802 803 804 805 806 807 808 809 810

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
811
            })
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
851
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
852
                fill_constant([1], 1, force_cpu=True, out=temp_1)
853
                temp_end = target_block.create_var(dtype=slice_item.dtype)
854
                target_block.append_op(
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
894

895
    # starts
L
Leo Chen 已提交
896
    if contain_var(slice_start):
897 898 899 900 901 902 903 904
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
905 906 907 908
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
909 910 911 912 913 914 915
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
916 917 918
    else:
        attrs['ends'] = slice_end

919 920
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
921
        if contain_var(slice_step):
922 923 924 925 926 927 928
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
929 930
        else:
            attrs['strides'] = slice_step
931 932 933 934 935 936
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
937
        slice_out_var = target_block.create_var(
938 939 940
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

941
        target_block.append_op(
942 943 944 945 946 947 948
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
949
        strided_slice_out_var = target_block.create_var(
950 951 952
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
953
        target_block.append_op(
954 955 956 957 958 959 960 961
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
962
        reverse_out_var = target_block.create_var(
963 964 965
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
966
        target_block.append_op(
967 968 969 970 971 972 973 974 975 976 977
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
978
class Variable(object):
979
    """
J
Jiabin Yang 已提交
980
    **Notes**:
981
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
982

983 984
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
985 986 987
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
988
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
989 990
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
991

992
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
993
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
994

T
tianshuo78520a 已提交
995
    Most of a Variable's member variables can be set to be None. It mean
996
    it is not available or will be specified later.
997

998
    Examples:
999 1000
        In Static Graph Mode:

1001 1002
        .. code-block:: python

1003
            import paddle.fluid as fluid
1004
            cur_program = fluid.Program()
1005 1006 1007 1008
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1009
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1010 1011 1012 1013 1014 1015 1016 1017 1018

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1019 1020
    """

Y
Yu Yang 已提交
1021 1022
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1023
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1024 1025 1026 1027
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1028
                 capacity=None,
Q
QI JUN 已提交
1029
                 persistable=None,
F
fengjiayi 已提交
1030
                 error_clip=None,
Y
Yu Yang 已提交
1031
                 stop_gradient=False,
F
fengjiayi 已提交
1032
                 is_data=False,
H
Huihuang Zheng 已提交
1033
                 need_check_feed=False,
H
hong 已提交
1034
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1035
                 **kwargs):
Y
Yu Yang 已提交
1036 1037
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1038
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1039

Y
Yu Yang 已提交
1040
        if dtype is not None:
1041
            if not isinstance(dtype, core.VarDesc.VarType):
1042
                dtype = convert_np_dtype_to_dtype_(dtype)
1043

H
hong 已提交
1044 1045
        self.belong_to_optimizer = belong_to_optimizer

1046 1047 1048 1049 1050
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1051

1052 1053 1054
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1055

1056 1057 1058 1059 1060 1061 1062
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1063

1064
        if shape is not None:
1065
            if is_new_var:
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1107

1108 1109
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1110

1111 1112 1113 1114 1115 1116 1117
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1118

1119 1120 1121 1122
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1123

1124
    @fake_interface_only
1125 1126
    def detach(self):
        """
J
Jiabin Yang 已提交
1127
        **Notes**:
T
tianshuo78520a 已提交
1128
            **This API is ONLY available in Dygraph mode**
1129

1130
        Returns a new Variable, detached from the current graph.
1131

1132
        Returns:
J
Jiabin Yang 已提交
1133
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1134

1135

1136 1137 1138 1139 1140
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1141
                from paddle.fluid.dygraph import Linear
1142 1143 1144 1145
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1146
                    linear = Linear(32, 64)
1147
                    data = to_variable(data)
1148
                    x = linear(data)
1149 1150 1151
                    y = x.detach()

        """
1152
        pass
1153

1154
    @fake_interface_only
1155
    def numpy(self):
1156
        """
J
Jiabin Yang 已提交
1157
        **Notes**:
T
tianshuo78520a 已提交
1158
            **This API is ONLY available in Dygraph mode**
1159

J
Jiabin Yang 已提交
1160
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1161 1162 1163 1164 1165

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1166
            ndarray: dtype is same as current Variable
1167 1168 1169 1170 1171 1172

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1173
                from paddle.fluid.dygraph import Linear
1174 1175 1176 1177
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1178
                    linear = Linear(32, 64)
1179
                    data = to_variable(data)
1180
                    x = linear(data)
1181 1182 1183
                    print(x.numpy())

        """
1184
        pass
1185

1186
    @fake_interface_only
1187 1188
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1189
        **Notes**:
T
tianshuo78520a 已提交
1190
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1202
                from paddle.fluid.dygraph import Linear
1203 1204
                import numpy as np

1205
                data = np.ones([3, 1024], dtype='float32')
1206
                with fluid.dygraph.guard():
1207
                    linear = fluid.dygraph.Linear(1024, 4)
1208
                    t = to_variable(data)
1209
                    linear(t)  # call with default weight
1210
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1211 1212
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1213 1214

        """
1215
        pass
1216

1217
    @fake_interface_only
1218
    def backward(self, retain_graph=False):
1219
        """
J
Jiabin Yang 已提交
1220
        **Notes**:
T
tianshuo78520a 已提交
1221
            **This API is ONLY available in Dygraph mode**
1222

1223
        Run backward of current Graph which starts from current Tensor.
1224

J
Jiabin Yang 已提交
1225
        Args:
1226 1227 1228 1229
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1230

J
Jiabin Yang 已提交
1231 1232
        Returns:
            NoneType: None
1233 1234 1235 1236 1237

        Examples:
            .. code-block:: python

                import numpy as np
1238 1239
                import paddle
                paddle.disable_static()
1240 1241

                x = np.ones([2, 2], np.float32)
1242 1243 1244 1245 1246 1247 1248
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1249 1250
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1251
                loss.backward()
1252 1253

        """
1254
        pass
1255

1256
    @fake_interface_only
1257
    def gradient(self):
1258
        """
J
Jiabin Yang 已提交
1259
        **Notes**:
T
tianshuo78520a 已提交
1260
            **This API is ONLY available in Dygraph mode**
1261 1262 1263

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1264
        Returns:
1265
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1266 1267 1268 1269 1270 1271 1272

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1273
                # example1: return ndarray
1274 1275 1276 1277 1278 1279 1280 1281 1282
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1283
                    loss2.backward()
1284 1285
                    print(loss2.gradient())

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1299
        """
1300
        pass
1301

1302
    @fake_interface_only
1303
    def clear_gradient(self):
1304
        """
J
Jiabin Yang 已提交
1305
        **Notes**:
T
tianshuo78520a 已提交
1306
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1307 1308

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1309

J
Jiabin Yang 已提交
1310
        Clear  (set to ``0`` ) the Gradient of Current Variable
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1329
                    loss2.backward()
1330 1331 1332 1333 1334
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1335
        pass
X
Xin Pan 已提交
1336

1337
    def __str__(self):
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1354 1355
                import paddle
                import paddle.static as static
1356

1357 1358 1359
                paddle.enable_static()

                cur_program = static.Program()
1360 1361 1362 1363 1364 1365 1366
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
T
tangwei12 已提交
1367
            var_str = "{name} : paddle.{type}.shape{shape}.astype({dtype})". \
1368 1369
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
1370
            var_str = "{name} : paddle.{type})".\
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1385

F
update  
fengjiayi 已提交
1386
    def to_string(self, throw_on_error, with_details=False):
1387 1388 1389
        """
        Get debug string.

J
Jiabin Yang 已提交
1390 1391 1392 1393 1394
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1395

1396 1397
        Returns:
            str: The debug string.
1398 1399 1400 1401 1402

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1403
                import paddle
1404

1405
                paddle.enable_static()
1406 1407 1408 1409 1410
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1411
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1412
                print("=============with detail===============")
1413
                print(new_variable.to_string(True, True))
1414
        """
F
update  
fengjiayi 已提交
1415 1416
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1417
        protostr = self.desc.serialize_to_string()
1418
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1419 1420 1421 1422
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1423 1424 1425
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1426
        return res_str
1427 1428 1429

    __repr__ = __str__

1430
    @property
1431
    def stop_gradient(self):
J
Jiabin Yang 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1447 1448
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1449 1450 1451
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1452 1453
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1454 1455 1456 1457
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1458
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1459 1460
                assert (out1.gradient() == 0).all()
        """
1461
        return self._stop_gradient
1462

1463 1464
    @stop_gradient.setter
    def stop_gradient(self, s):
1465
        self._stop_gradient = s
1466

1467 1468
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1490
        return self.desc.persistable()
1491

Y
Yu Yang 已提交
1492 1493
    @persistable.setter
    def persistable(self, p):
1494
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1495

Y
Yu Yang 已提交
1496 1497
    @property
    def name(self):
J
Jiabin Yang 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1514
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1515

1516 1517 1518 1519 1520 1521 1522 1523
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1536 1537
    @name.setter
    def name(self, new_name):
1538
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1539

Y
Yu Yang 已提交
1540 1541
    @property
    def shape(self):
J
Jiabin Yang 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1559
        # convert to tuple, make it as same as numpy API.
1560
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1561 1562

    @property
F
fengjiayi 已提交
1563
    def dtype(self):
J
Jiabin Yang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1580
        return self.desc.dtype()
Y
Yu Yang 已提交
1581 1582 1583

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1605 1606 1607
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1608
        return self.desc.lod_level()
Y
Yu Yang 已提交
1609

Y
Yu Yang 已提交
1610 1611
    @property
    def type(self):
J
Jiabin Yang 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1628
        return self.desc.type()
Y
Yu Yang 已提交
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1664
    def _set_error_clip(self, error_clip):
1665 1666 1667 1668 1669 1670 1671 1672 1673
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1674 1675
        self.error_clip = error_clip

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1716
            raise ValueError("slice step can not be zero")
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1792
    def _cloneVar(self, copy=False):
1793 1794
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1795 1796
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1797 1798 1799 1800
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1801
        new_var = self._cloneVar()
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1812
        new_var = self._cloneVar()
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1823
                return self._cloneVar(True)
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1842
                return self._cloneVar(True)
1843
            index = int(item)
1844
            if (index > 0 and index >= self.shape[axis]) \
1845 1846 1847 1848 1849 1850 1851
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1852
        return _getitem_impl_(self, item)
1853

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

        axes = []
        starts = []
        ends = []
        max_integer = sys.maxsize
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                start = 0 if start is None else start
                step = 1 if step is None else step

                # TODO: support cases when step != 1
                if step != 1:
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, only support step is 1, "
                        "but received step is {}.".format(step))
                end = max_integer if end is None else end
            else:
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
            axes.append(dim)
            starts.append(start)
            ends.append(end)

        attrs = {'axes': axes, 'starts': starts, 'ends': ends}

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
            value = np.array([value])

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                from .data_feeder import convert_dtype
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

        self.block.append_op(
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
        return self

Y
Yu Yang 已提交
1936

F
fengjiayi 已提交
1937 1938 1939
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1940

1941 1942
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1943 1944 1945 1946
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1947
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1948 1949 1950 1951 1952
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1953 1954 1955 1956
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1966
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1967 1968 1969 1970 1971 1972
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1973 1974 1975 1976 1977 1978 1979 1980
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1981 1982
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1983 1984
        return self.op_proto_map[type]

1985 1986 1987 1988 1989 1990
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1991 1992 1993 1994
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1995
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1996
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1997 1998
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1999 2000
        }

F
fengjiayi 已提交
2001

X
Xin Pan 已提交
2002
class Operator(object):
2003
    """
2004 2005 2006 2007 2008 2009 2010
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2011
        type(str): The type of operator. Default None.
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2032
        Block.append_op or Block._prepend_op instead.
2033 2034 2035 2036

    Examples:
        .. code-block:: python

2037
            import paddle.fluid as fluid
2038
            cur_program = fluid.Program()
2039 2040 2041 2042 2043
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2044
    """
2045
    OP_WITHOUT_KERNEL_SET = {
2046 2047
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2048 2049
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
T
tangwei12 已提交
2050 2051
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue',
        'heter_listen_and_serv'
2052
    }
2053

Y
Yu Yang 已提交
2054 2055
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2056
                 desc,
Y
Yu Yang 已提交
2057 2058 2059
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2060
                 attrs=None):
L
lujun 已提交
2061
        if in_dygraph_mode():
2062 2063
            if type is None:
                raise ValueError(
2064
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2065
            self._type = type
M
minqiyang 已提交
2066
            self.attrs = attrs if attrs else {}
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2081
                )] = self.block.program._op_role
2082 2083 2084

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2085 2086
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2087 2088 2089 2090 2091 2092 2093 2094

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2095
                    "`type` to initialized an Operator can not be None.")
2096 2097
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2098 2099 2100 2101 2102 2103 2104
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2105 2106 2107 2108 2109 2110 2111

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2143
                        if not isinstance(in_args, (list, tuple)):
2144 2145 2146 2147 2148 2149
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2150
                        for index, arg in enumerate(in_args):
2151 2152 2153 2154
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2155
                            elif isinstance(arg, (Variable, core.VarBase)):
2156
                                in_arg_names.append(cpt.to_text(arg.name))
2157
                            else:
2158 2159 2160 2161
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2162 2163
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2188 2189 2190 2191
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2192
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2193
                        if not in_dygraph_mode():
2194 2195 2196 2197
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2216
    def _has_kernel(self, op_type):
2217 2218
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2219
    def to_string(self, throw_on_error):
2220
        """
2221 2222
        Get debug string.

2223
        Args:
2224 2225
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2226

2227 2228
        Returns:
            str: The debug string.
2229 2230

        """
2231
        protostr = self.desc.serialize_to_string()
2232
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2233 2234
        return _debug_string_(proto, throw_on_error)

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2322 2323
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2324 2325 2326 2327 2328
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2329
    def __str__(self):
2330
        return self._to_readable_code()
2331 2332 2333

    __repr__ = __str__

F
fengjiayi 已提交
2334 2335
    @property
    def type(self):
2336
        return self.desc.type()
F
fengjiayi 已提交
2337 2338

    def input(self, name):
2339
        r"""
2340
        Get the input arguments according to the input parameter name.
2341

2342 2343
        Args:
            name(str): The input parameter name.
2344

2345 2346 2347
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2348
        """
F
fengjiayi 已提交
2349 2350
        return self.desc.input(name)

W
Wu Yi 已提交
2351
    def _rename_input(self, old_name, new_name):
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2362
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2363

W
Wu Yi 已提交
2364
    def _rename_output(self, old_name, new_name):
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2375
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2376

F
fengjiayi 已提交
2377 2378 2379 2380
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2381 2382 2383 2384 2385 2386 2387 2388
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2389
    def output(self, name):
2390
        r"""
2391
        Get output arguments by the output parameter name.
2392

2393 2394
        Args:
            name(str): The output parameter name.
2395

2396 2397 2398
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2399
        """
F
fengjiayi 已提交
2400 2401 2402 2403 2404 2405
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2406 2407 2408 2409 2410 2411 2412 2413
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2414
    def has_attr(self, name):
2415
        """
2416 2417
        Whether this Operator has the attribute with name or not.

2418
        Args:
2419
            name(str): the attribute name.
2420

2421 2422
        Returns:
            bool: True if has this attribute.
2423 2424

        """
F
fengjiayi 已提交
2425 2426 2427
        return self.desc.has_attr(name)

    def attr_type(self, name):
2428
        """
2429
        Get the type of attribute by attribute's name.
2430

2431 2432
        Args:
            name(str): the attribute name.
2433

2434 2435
        Returns:
            core.AttrType: the attribute type.
2436
        """
F
fengjiayi 已提交
2437 2438
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2439
    def _set_attr(self, name, val):
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2450 2451
        self._update_desc_attr(name, val)

2452 2453 2454
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2466 2467
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2468 2469
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2470
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2471 2472 2473 2474
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2475
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2476

F
fengjiayi 已提交
2477 2478 2479 2480 2481
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2482
        """
2483 2484
        Get the attribute by name.

2485
        Args:
2486
            name(str): the attribute name.
2487

2488 2489
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2490 2491
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2492
        return self.desc.attr(name)
Y
Yu Yang 已提交
2493

W
Wu Yi 已提交
2494
    def _block_attr_id(self, name):
2495
        """
G
gongweibao 已提交
2496
        Get the block attribute's id by name.
2497

2498 2499
        Args:
            name(str): the attribute name.
2500

2501 2502
        Returns:
            int: the block index.
2503
        """
W
Wu Yi 已提交
2504
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2505

W
Wu Yi 已提交
2506
    def _block_attr(self, name):
G
gongweibao 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2517
        id = self._block_attr_id(name)
G
gongweibao 已提交
2518 2519 2520
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2521
    def _blocks_attr(self, name):
G
gongweibao 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2532
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2533 2534 2535 2536 2537
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2538
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2549
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2550

J
JiayiFeng 已提交
2551
    def all_attrs(self):
F
fengjiayi 已提交
2552
        """
2553 2554 2555
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2556
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2557 2558 2559 2560
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2561 2562
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2563
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2564 2565 2566
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2567
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2568 2569 2570 2571
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2572 2573
        return attr_map

2574 2575 2576
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2577 2578 2579 2580

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2581 2582 2583
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2584 2585 2586 2587 2588 2589 2590 2591

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2592 2593
            return False

2594 2595 2596 2597 2598 2599
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2600

Y
Yu Yang 已提交
2601
class Block(object):
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2616
        use `Program._create_block()` to create a block.
2617 2618 2619 2620

    Examples:
        .. code-block:: python

2621 2622 2623
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2624 2625 2626 2627 2628 2629 2630 2631 2632
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2633
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2634
        self.desc = program.desc.block(idx)
2635
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2636
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2637
        self.program = program
2638
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2639

2640
    def __str__(self):
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2687

F
fengjiayi 已提交
2688 2689
    def to_string(self, throw_on_error, with_details=False):
        """
2690 2691
        Get debug string.

F
fengjiayi 已提交
2692 2693
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2694
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2695
            with_details(bool): more details about variables and parameters
2696 2697
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2698

2699 2700
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2701 2702 2703 2704
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2705
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2706 2707
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2708
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2709
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2710
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2711
            for op in self.ops:
F
fengjiayi 已提交
2712 2713
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2714 2715 2716
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2717 2718
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2719 2720
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2721 2722 2723

    __repr__ = __str__

Y
Yu Yang 已提交
2724 2725
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2726
        return self.desc.parent
Y
Yu Yang 已提交
2727

Y
Yu Yang 已提交
2728 2729 2730 2731
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2732
    def _set_forward_block_idx(self, idx):
2733 2734 2735 2736 2737 2738 2739 2740 2741
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2742
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2743

2744 2745 2746 2747 2748 2749 2750 2751
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2752 2753
    @property
    def idx(self):
Y
Yu Yang 已提交
2754
        return self.desc.id
Y
Yu Yang 已提交
2755

Q
Qiao Longfei 已提交
2756
    def var(self, name):
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2770
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2771 2772 2773
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2774 2775
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2776
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2777
        return v
Q
Qiao Longfei 已提交
2778

X
Xin Pan 已提交
2779
    def _find_var_recursive(self, name):
2780 2781 2782 2783 2784 2785 2786
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2787
            Variable: the Variable with the giving name. Or None if not found.
2788
        """
Y
Yu Yang 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2813
        return None
Y
Yu Yang 已提交
2814

X
Xin Pan 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2834

Q
Qiao Longfei 已提交
2835
    def all_parameters(self):
2836
        return list(self.iter_parameters())
2837

2838
    def iter_parameters(self):
M
minqiyang 已提交
2839
        return (item[1] for item in six.iteritems(self.vars)
2840
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2841

Y
Yu Yang 已提交
2842
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2843 2844 2845
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2846 2847 2848
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2849
        return var
Y
Yu Yang 已提交
2850

Q
Qiao Longfei 已提交
2851 2852 2853
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2854
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2855 2856
        """
        Rename variable in vars and ops' inputs and outputs
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2869
        """
M
minqiyang 已提交
2870 2871
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2872

T
typhoonzero 已提交
2873
        if not self.has_var(name):
2874
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2875 2876
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2877
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2878 2879 2880 2881 2882 2883
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2884
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2885 2886 2887 2888
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2889
        orig_var_type = v.type
M
minqiyang 已提交
2890
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2891
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2892
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2893
        if var_type == "Parameter":
L
Leo Chen 已提交
2894 2895
            if in_dygraph_mode():
                var = ParamBase(
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2906 2907
                var = Parameter(
                    self,
2908 2909 2910 2911 2912 2913 2914 2915 2916
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2917
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2918 2919
            var = Variable(
                self,
T
typhoonzero 已提交
2920
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2921 2922 2923 2924
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2925
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2926 2927 2928
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2929
        self._sync_with_cpp()
2930
        return var
T
typhoonzero 已提交
2931

2932 2933 2934
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2935
        self.desc._remove_var(cpt.to_bytes(name))
2936 2937
        del self.vars[name]

Y
Yu Yang 已提交
2938 2939
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2940
        param = None
L
Leo Chen 已提交
2941
        if in_dygraph_mode():
2942
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2943 2944
        else:
            param = Parameter(global_block, *args, **kwargs)
2945 2946 2947 2948 2949 2950
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2951
        if 'initializer' in kwargs:
2952 2953 2954 2955 2956

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2957
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2958
                        # are treated as initialization ops that cause error.
2959 2960 2961
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2973
                # TODO already inited, do nothing, should log a warning
2974 2975 2976
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2977
        return param
Y
Yu Yang 已提交
2978

Y
Yu Yang 已提交
2979
    def append_op(self, *args, **kwargs):
2980 2981 2982 2983 2984 2985
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2986
        if in_dygraph_mode():
2987
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2988
            type = kwargs.get("type", None)
2989 2990 2991
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2992
                type=type,
M
minqiyang 已提交
2993 2994
                inputs=None,
                outputs=None,
2995
                attrs=attrs)
2996

M
minqiyang 已提交
2997 2998 2999
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3000
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3001 3002

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3003
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3004 3005
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3006
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3007
        else:
3008 3009 3010 3011 3012 3013 3014 3015 3016
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
3017
            self.ops.append(op)
M
minqiyang 已提交
3018

3019 3020
        return op

W
Wu Yi 已提交
3021
    def _insert_op(self, index, *args, **kwargs):
3022 3023 3024 3025 3026 3027 3028 3029 3030
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3031 3032
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
3033 3034 3035 3036
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3054 3055 3056 3057 3058 3059 3060 3061 3062
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3063 3064
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3065
        self.desc._remove_op(index, index + 1)
3066 3067
        del self.ops[index]

W
Wu Yi 已提交
3068
    def _slice_ops(self, start, end):
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3079
        return self.ops[start:end]
Y
Yancey1989 已提交
3080

W
Wu Yi 已提交
3081
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3082
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3083 3084
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3085
            op = Operator(
J
Jiabin Yang 已提交
3086
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3087

J
Jiabin Yang 已提交
3088
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3089
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3090 3091
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3092
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3093
        else:
3094 3095 3096 3097 3098 3099 3100 3101
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3102
            self.ops.insert(0, op)
3103

Y
Yu Yang 已提交
3104 3105
        return op

W
Wu Yi 已提交
3106
    def _sync_with_cpp(self):
3107
        """
3108 3109
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3110
        """
Q
Qiao Longfei 已提交
3111 3112 3113 3114 3115
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3116
        # sync variables removed from c++ end
3117
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3118
            if not self.desc.find_var(cpt.to_bytes(var)):
3119 3120
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3121
        # sync operators from cpp
3122 3123 3124 3125
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3142 3143 3144 3145 3146

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3147
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3148 3149 3150 3151 3152 3153 3154

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3168 3169 3170 3171
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3172
    def _copy_param_info_from(self, other):
3173
        """
3174 3175
        Copy the information of parameters from the other block.

3176
        Args:
3177 3178 3179 3180 3181
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3182 3183 3184 3185 3186

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3187 3188
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3189
        for p in other.iter_parameters():
3190 3191 3192
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3193 3194
                # if the Parameter is pruned, v may be None
                continue
3195
            assert isinstance(v, Variable)
3196
            new_p = None
L
Leo Chen 已提交
3197 3198
            if in_dygraph_mode():
                new_p = ParamBase(
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3210 3211
                new_p = Parameter(
                    block=self,
3212 3213 3214
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3215 3216
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3217 3218 3219 3220 3221 3222
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3223 3224
            self.vars[new_p.name] = new_p

3225
    def _clone_variable(self, var, force_persistable=True):
3226 3227
        """
        Clone a variable into current block.
3228

3229 3230
        Args:
            var: the variable to be cloned.
3231 3232 3233
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3234 3235

        Returns:
3236
            Variable: the new  variable cloned from 'var' in current block.
3237 3238
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3239 3240 3241 3242 3243
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3244 3245
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3246
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3247 3248 3249 3250 3251 3252
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3253
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3254 3255
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3256 3257 3258 3259 3260 3261 3262
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3263
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3264 3265
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3266
        return ret_var
3267

Y
Yu Yang 已提交
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3364
    def remove_input_by_id(self, node_id):
3365 3366 3367 3368 3369 3370
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3371
        self.node.remove_input(node_id)
3372

3373
    def remove_input(self, node):
3374 3375 3376 3377
        """
        Remove a node from inputs.

        Args:
3378
            node(IrNode): the node being removed.
3379
        """
3380
        self.node.remove_input(node.node)
3381

3382
    def append_input(self, node):
3383 3384 3385 3386
        """
        Append a node in inputs.

        Args:
3387
            node(IrNode): the node being appended.
3388
        """
3389
        self.node.append_input(node.node)
3390 3391 3392 3393 3394 3395 3396 3397

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3398
    def remove_output_by_id(self, node_id):
3399 3400 3401 3402 3403 3404
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3405
        self.node.remove_output(node_id)
3406

3407
    def remove_output(self, node):
3408 3409 3410 3411
        """
        Remove a node from outputs.

        Args:
3412
            node(IrNode): the node being removed.
3413
        """
3414
        self.node.remove_output(node.node)
3415

3416
    def append_output(self, node):
3417 3418 3419 3420
        """
        Append a node in outputs.

        Args:
3421
            node(IrNode): the node being appended.
3422
        """
3423
        self.node.append_output(node.node)
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3471
            "The node variable description can not be None."
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3482
            "The node variable description can not be None."
3483 3484
        return self.node.var().persistable()

3485 3486 3487 3488 3489 3490 3491 3492
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3493
            "The node variable description can not be None."
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3504
            "The node variable description can not be None."
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3515
            "The node variable description can not be None."
3516 3517
        return self.node.var().shape()

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3565
            "The node operator description can not be None."
3566 3567
        self.node.op()._rename_input(old_input_name, new_input_name)

3568 3569 3570 3571 3572 3573 3574 3575 3576
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3577
            "The node operator description can not be None."
3578 3579
        self.node.op()._rename_output(old_output_name, new_output_name)

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3591
            "The node operator description can not be None."
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3605
            "The node operator description can not be None."
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3616
            "The node operator description can not be None."
3617 3618
        return self.node.op().set_type(new_type)

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3634
            "The node operator description can not be None."
3635 3636 3637 3638
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3639
                all(isinstance(v, Block) for v in val):
3640 3641
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3642
                isinstance(val, core.ProgramDesc):
3643 3644 3645 3646
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3647 3648 3649 3650 3651 3652 3653 3654
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3655
            "The node operator description can not be None."
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3666
            "The node operator description can not be None."
3667 3668
        return self.node.op().output_arg_names()

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3690 3691
class IrGraph(object):
    """
3692
    Python IrGraph. Beneath it is a core.Graph, which is used for
3693
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3694 3695
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3696 3697 3698 3699
    """

    def __init__(self, graph, for_test=False):
        """
3700 3701
        Construct an IrGraph using core.Graph.

3702 3703 3704 3705 3706 3707 3708 3709 3710
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3711 3712 3713 3714
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3715 3716 3717
        Warns:
            The method only clones the graph structure, not its attributes.

3718 3719 3720
        Returns:
            IrGraph: A new and duplicated graph.
        """
3721
        g = self.graph.clone()
3722 3723
        return IrGraph(g, self._for_test)

3724
    def is_test(self):
3725 3726 3727
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3728 3729
        return self._for_test

W
WangZhen 已提交
3730
    def all_nodes(self):
3731 3732 3733
        """
        Return all nodes included in the graph as a set.
        """
3734
        return {IrNode(node) for node in self.graph.nodes()}
3735

3736
    def all_var_nodes(self):
3737 3738 3739
        """
        Return all variable nodes included in the graph as a set.
        """
3740
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3741

3742
    def all_persistable_nodes(self):
3743 3744 3745
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3746 3747 3748 3749 3750
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3751
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3752

3753
    def all_op_nodes(self):
3754 3755 3756
        """
        Return all operator nodes included in the graph as a set.
        """
3757
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3758

3759
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3771
            IrVarNode: the created persistable variable node.
3772
        """
3773 3774 3775 3776 3777
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3778
        return IrVarNode(self.graph.create_var_node(var_desc))
3779 3780

    def create_var_node(self, name, var_type, shape, var_dtype):
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3792
            IrVarNode: the created variable node.
3793 3794
        """

3795 3796 3797 3798
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3799
        return IrVarNode(self.graph.create_var_node(var_desc))
3800

3801 3802 3803 3804 3805 3806
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3807
    def create_var_node_from_desc(self, var_desc):
3808 3809 3810 3811 3812 3813 3814 3815
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3816
            IrVarNode: the created variable node.
3817
        """
3818
        return IrVarNode(self.graph.create_var_node(var_desc))
3819 3820

    def create_op_node(self, op_type, attrs, inputs, outputs):
3821 3822 3823 3824 3825 3826 3827
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3828
            outputs(dict): the outputs of the operator node.
3829 3830

        Returns:
3831
            IrOpNode: the created operator node.
3832
        """
3833 3834
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3835
        for attr, value in six.iteritems(attrs):
3836
            self._update_desc_attr(op_desc, attr, value)
3837
        for input_name, var_nodes in six.iteritems(inputs):
3838 3839 3840 3841
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3842
        for output_name, var_nodes in six.iteritems(outputs):
3843 3844 3845 3846
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3847
        return IrOpNode(self.graph.create_op_node(op_desc))
3848 3849

    def create_op_node_from_desc(self, op_desc):
3850 3851 3852 3853 3854 3855 3856
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3857
            IrOpNode: the created operator node.
3858
        """
3859
        return IrOpNode(self.graph.create_op_node(op_desc))
3860 3861

    def update_input_link(self, old_input_node, new_input_node, op_node):
3862 3863 3864 3865
        """
        Update the input's link of a operator node.

        Args:
3866 3867 3868
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3869
        """
3870
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3871
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3872
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3873 3874 3875 3876
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3877
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3878

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3889
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3890
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3891 3892 3893 3894 3895 3896
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3897
    def link_to(self, node_in, node_out):
3898 3899 3900 3901
        """
        Connect two nodes.

        Args:
3902 3903
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3904
        """
3905
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3906
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3907 3908
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3909 3910

    def safe_remove_nodes(self, remove_nodes):
3911 3912 3913 3914 3915 3916 3917
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3918
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3919 3920 3921 3922
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3923 3924
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3925

Z
Zhen Wang 已提交
3926 3927 3928 3929 3930 3931 3932 3933
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3934
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3935 3936 3937 3938
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3939
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3940 3941 3942
                        ]
                    else:
                        var_nodes[each_var_name].append(
3943 3944
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3945 3946
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3947
    def has_circle(self):
3948 3949 3950 3951 3952 3953
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3954 3955 3956
        return core.has_circle(self.graph)

    def graph_num(self):
3957 3958 3959 3960 3961 3962
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3963 3964 3965
        return core.graph_num(self.graph)

    def topology_sort(self):
3966 3967 3968
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3969
        Notes: the `graph` can not contain a circle.
3970 3971

        Returns:
Z
Zhen Wang 已提交
3972
            list(IrNode): nodes in topology order.
3973
        """
3974
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3975
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3976 3977

    def build_adjacency_list(self):
3978 3979 3980 3981
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3982
            dict{IrNode: set(IrNode)}: the adjacency list.
3983
        """
3984 3985 3986 3987 3988
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3989

3990 3991 3992 3993 3994 3995 3996 3997
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3998
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3999 4000 4001 4002 4003
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4004 4005
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4006 4007 4008
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4009 4010 4011 4012 4013
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4014
        remove_ctr_vars = set()
4015
        if remove_ctr_var:
4016
            for node in self.all_var_nodes():
4017 4018 4019
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4020 4021
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4022 4023
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4024 4025 4026 4027 4028 4029
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4030 4031 4032 4033
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4034 4035
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4036 4037 4038 4039 4040 4041 4042
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4043 4044 4045
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4046
        WARN: When the graph includes backward operator nodes, the
4047 4048 4049 4050 4051 4052
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4053
        convert_pass = core.get_pass('graph_to_program_pass')
4054 4055
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4056 4057 4058 4059
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4087
class Program(object):
D
dzhwinter 已提交
4088
    """
4089
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4090
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4091
    it will contain nested block.
4092

J
Jiabin Yang 已提交
4093 4094 4095
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4096

J
Jiabin Yang 已提交
4097
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4098
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4099 4100 4101 4102 4103 4104 4105
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4106
    **Notes**:
4107 4108 4109
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4110 4111

    Returns:
J
Jiabin Yang 已提交
4112
        Program: An empty Program.
D
dzhwinter 已提交
4113 4114

    Examples:
4115 4116
        .. code-block:: python

4117 4118 4119 4120
            import paddle
            import paddle.static as static

            paddle.enable_static()
4121

4122 4123 4124 4125 4126
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4127
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4128 4129 4130

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4131 4132 4133

    """

4134 4135
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4136 4137
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4138 4139
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4140
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4141
        self.__op_role_var = []
T
tangwei12 已提交
4142

4143 4144
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4145
        self._is_distributed = False
4146
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4147
        self._is_chief = False
4148 4149 4150
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4151
        self._endpoints = []
4152 4153 4154
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4155
        self._trainers_endpoints = []
4156
        # the distributed lookup table names
T
tangwei12 已提交
4157
        self._distributed_lookup_table = None
4158 4159 4160

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4161 4162
        self._use_lamb = False

4163 4164 4165
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4166

4167 4168 4169
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4170
        self._program_config = None
4171

H
hutuxian 已提交
4172 4173 4174
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4175 4176 4177
        # appending gradients times
        self._appending_grad_times = 0

4178 4179 4180 4181
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4182 4183 4184
        # compiled program, i.e. Graph
        self._graph = None

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4195 4196
                import paddle
                import paddle.static as static
4197

4198 4199 4200
                paddle.enable_static()

                prog = static.default_main_program()
4201 4202 4203 4204 4205
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4206
                prog1 = static.default_main_program()
4207 4208 4209 4210 4211 4212 4213 4214
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4215
    @property
4216
    def _op_role(self):
Y
yuyang18 已提交
4217 4218 4219 4220 4221 4222 4223 4224
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4225
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4226 4227 4228 4229
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4230 4231
        return self._current_role

4232 4233
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4234 4235 4236
        self._current_role = role

    @property
4237
    def _op_role_var(self):
Y
yuyang18 已提交
4238
        """
4239
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4240

4241
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4242 4243 4244

        Notes: This is a very low-level API. Users should not use it directly.
        """
4245
        return self.__op_role_var
Y
yuyang18 已提交
4246

4247
    @signature_safe_contextmanager
4248 4249 4250 4251 4252
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4253 4254 4255 4256
        try:
            yield
        finally:
            self._current_role = tmp_role
4257

S
rename  
sneaxiy 已提交
4258
    @signature_safe_contextmanager
W
Wu Yi 已提交
4259
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4260 4261 4262 4263 4264 4265 4266
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4267
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4268 4269 4270

        Examples:

4271
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4272
            >>> p, g = backward(...)
W
Wu Yi 已提交
4273
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4274 4275
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4276
        tmp_role = self._current_role
4277
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4278

Y
yuyang18 已提交
4279 4280
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4281
        self.__op_role_var = [
4282 4283 4284
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4285 4286 4287 4288 4289
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4290

S
rename  
sneaxiy 已提交
4291
    @signature_safe_contextmanager
X
Xin Pan 已提交
4292
    def _lr_schedule_guard(self, is_with_opt=False):
4293 4294 4295 4296 4297 4298 4299
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4300 4301 4302 4303
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4304 4305 4306

        Examples:

4307
            >>> import paddle.fluid as fluid
4308 4309 4310 4311
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4312 4313

        tmp_role = self._current_role
4314
        tmp_var = self.__op_role_var
4315

4316 4317
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4318 4319
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4320
        # TODO(typhoonzero): how to set target learning rate var
4321
        self.__op_role_var = []
4322 4323 4324 4325 4326
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4327

4328
    def __str__(self):
Y
yuyang18 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4358 4359
            import paddle
            import paddle.static as static
4360

4361 4362 4363
            paddle.enable_static()

            cur_program = static.Program()
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4380
            program_str += '\n'
4381
        return program_str
Y
Yang Yang(Tony) 已提交
4382

F
fengjiayi 已提交
4383 4384 4385
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4386

J
Jiabin Yang 已提交
4387 4388 4389
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4390

J
Jiabin Yang 已提交
4391
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4392

H
haowang101779990 已提交
4393
        Returns:
J
Jiabin Yang 已提交
4394
            str: The debug string describe current Program.
Y
yuyang18 已提交
4395 4396

        Raises:
J
Jiabin Yang 已提交
4397
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4398

4399 4400 4401
        Examples:
            .. code-block:: python

4402 4403 4404 4405
                import paddle
                import paddle.static as static

                paddle.enable_static()
4406

4407 4408 4409
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4410
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4411
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4412
                print("program string without detail: {}".format(prog_string))
4413
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4414
        """
4415 4416 4417 4418 4419 4420 4421 4422 4423
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4424 4425 4426 4427 4428 4429
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4430 4431
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4432 4433
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4434

W
Wu Yi 已提交
4435
    def _get_desc(self):
Y
yuyang18 已提交
4436 4437 4438 4439 4440 4441 4442
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4443 4444
        return self.desc

X
version  
Xin Pan 已提交
4445 4446 4447
    def _version(self):
        return self.desc._version()

4448
    def clone(self, for_test=False):
Y
yuyang18 已提交
4449
        """
4450 4451 4452 4453
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4454

4455
        Create a new Program with forward content of original one when ``for_test=True``.
4456
        Create a new Program as same as the original one when ``for_test=False``.
4457

4458
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4459 4460 4461
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4462

4463 4464
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4465 4466
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4467
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4468

J
Jiabin Yang 已提交
4469
        For Example:
4470
          ::
L
Luo Tao 已提交
4471

4472 4473 4474 4475 4476 4477
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4478
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4479
            loss = paddle.mean(pred)
4480
            # Here we use clone before Momentum
4481 4482
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4483
            optimizer.minimize(loss)
4484

J
Jiabin Yang 已提交
4485
        Args:
4486

4487 4488
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4489

J
Jiabin Yang 已提交
4490
        Returns:
4491
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4492

Y
yuyang18 已提交
4493 4494 4495

        Examples:

4496 4497 4498 4499 4500 4501 4502
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4519
            1. To clone a test program, the sample code is:
4520 4521 4522
                .. code-block:: python

                    import six
4523 4524 4525 4526 4527 4528
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4541 4542
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4543 4544 4545

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4546 4547 4548
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4549
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4550 4551
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4552
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4553 4554
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4555
                            test_program = train_program.clone(for_test=True)
4556
                    print_prog(test_program)
J
Jiabin Yang 已提交
4557 4558 4559 4560

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4561
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4562 4563 4564 4565
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4566 4567 4568
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4569 4570 4571
                            sgd.minimize(avg_loss)


4572
            2. The clone method can be avoid if you create program for training and program for testing individually.
4573 4574 4575
                .. code-block:: python

                    import six
4576 4577 4578 4579 4580 4581
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4593

4594
                    def network():
4595
                        img = static.data(name='image', shape=[None, 784])
4596
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4597 4598
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4599
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4600 4601
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4602 4603
                        return avg_loss

4604 4605 4606 4607 4608
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4609
                            avg_loss = network()
4610
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4611
                            sgd.minimize(avg_loss)
4612
                    # the test startup program is not used.
4613 4614
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4615 4616
                            avg_loss = network()
                    print_prog(test_program_2)
4617

4618
            The two code snippets above will generate and print same programs.
4619
        """
4620

T
tangwei12 已提交
4621
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4622 4623 4624
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4625
        pruned_origin_block_id_map = None
4626
        if for_test:
4627 4628 4629 4630 4631 4632 4633 4634 4635
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4636
        else:
4637
            p = Program()
G
gongweibao 已提交
4638 4639
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4640
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4641 4642 4643
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4644 4645

            p._current_role = self._current_role
4646
            p.__op_role_var = self.__op_role_var
4647
            p._appending_grad_times = self._appending_grad_times
4648 4649
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4650

T
tangwei12 已提交
4651
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4652
            # its desc.
W
Wu Yi 已提交
4653
            p._sync_with_cpp()
4654

W
Wu Yi 已提交
4655
        p._copy_param_info_from(self)
4656
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4657
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4658
        return p
4659

4660
    def _prune(self, targets):
Y
yuyang18 已提交
4661 4662 4663 4664 4665 4666 4667 4668
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4669
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4670 4671 4672 4673
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4674
        """
4675
        return self._prune_with_input([], targets)
4676 4677

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4678
        """
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4689
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4690 4691 4692 4693 4694 4695
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4696
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4697 4698 4699
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4700 4701
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4702 4703
        if not isinstance(targets, list):
            targets = [targets]
4704 4705 4706

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4707 4708 4709
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4710

4711 4712 4713 4714
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4715 4716 4717
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4718
                else:
4719 4720 4721
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4722 4723 4724 4725 4726 4727 4728 4729

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4730 4731 4732 4733 4734 4735 4736 4737 4738
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4739
                        # Skip optimize op except for optimize op in targets,
4740 4741 4742 4743 4744 4745
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4746 4747 4748 4749 4750 4751 4752 4753
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4754

4755
        res = Program()
4756 4757 4758
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4759 4760 4761
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4762
        res._sync_with_cpp()
4763 4764 4765 4766 4767

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4768 4769
        return res

X
Xin Pan 已提交
4770
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4771
        """
F
fengjiayi 已提交
4772 4773 4774 4775 4776
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4777
        3. change the :code:`is_test`
Y
yuyang18 已提交
4778 4779 4780
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4781
        Args:
X
Xin Pan 已提交
4782 4783
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4784

Y
yuyang18 已提交
4785 4786 4787 4788 4789 4790
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4791
        res = Program()
4792
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4793 4794 4795 4796

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4797
        if prune_read_op:
4798 4799 4800 4801 4802 4803 4804 4805 4806
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4807
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4808 4809

        # change all `is_test` attributes to True
M
minqiyang 已提交
4810
        for i in six.moves.range(res.desc.num_blocks()):
4811
            block = res.desc.block(i)
M
minqiyang 已提交
4812
            for j in six.moves.range(block.op_size()):
4813 4814
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4815
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4816 4817 4818
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4819
        res._sync_with_cpp()
4820 4821
        return res

4822 4823
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4824
        """
4825 4826 4827
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4828

4829 4830
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4831

J
Jiabin Yang 已提交
4832
        Args:
Y
yuyang18 已提交
4833

J
Jiabin Yang 已提交
4834
            binary_str_type (str): the binary prootbuf string.
4835

J
Jiabin Yang 已提交
4836 4837
        Returns:
            Program: A deserialized Program.
4838 4839 4840 4841

        Examples:
            .. code-block:: python

4842 4843 4844 4845
                import paddle
                import paddle.static as static

                paddle.enable_static()
4846

4847 4848 4849 4850
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4851

4852
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4853

4854
                    z = paddle.matmul(x=x, y=y)
4855

4856 4857
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4858

4859
                    print(static.default_main_program())
4860
                    print(prog_restored)
Y
yuyang18 已提交
4861
        """
4862 4863
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4864
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4865
        p._sync_with_cpp()
4866
        return p
Y
Yu Yang 已提交
4867

4868
    @staticmethod
4869
    def _construct_from_desc(desc):
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4885 4886
    @property
    def random_seed(self):
Y
yuyang18 已提交
4887
        """
J
Jiabin Yang 已提交
4888
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4889 4890
        the random seed from random device.

4891 4892
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4893 4894 4895

        Returns:
            int64: Random seed in current Program
4896

4897 4898 4899 4900

        Examples:
            .. code-block:: python

4901 4902 4903
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4904

4905 4906 4907
                paddle.enable_static()

                prog = static.default_main_program()
4908
                random_seed = prog.random_seed
4909
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4910 4911 4912
                print(random_seed)
                ## 0
                ## the default random seed is 0
4913

4914
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4915
                prog.random_seed = 1
4916
                z_var = F.dropout(x_var, 0.7)
4917

4918
                print(prog.random_seed)
4919 4920
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4921
        """
D
dzhwinter 已提交
4922 4923
        return self._seed

Q
qiaolongfei 已提交
4924 4925
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4926
        """
4927 4928
        The number of :ref:`api_guide_Block_en`  in this Program.

4929 4930
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4931 4932 4933

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4934

4935 4936 4937 4938

        Examples:
            .. code-block:: python

4939 4940 4941 4942
                import paddle
                import paddle.static as static

                paddle.enable_static()
4943

4944
                prog = static.default_main_program()
4945 4946
                num_blocks = prog.num_blocks
                print(num_blocks)
4947

4948 4949
                # print result:
                # 1
Y
yuyang18 已提交
4950
        """
Q
qiaolongfei 已提交
4951 4952
        return self.desc.num_blocks()

D
dzhwinter 已提交
4953 4954 4955
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4956 4957 4958
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4959 4960
        self._seed = seed

Y
Yu Yang 已提交
4961
    def __repr__(self):
4962
        return self.__str__()
4963

Y
Yu Yang 已提交
4964
    def global_block(self):
Y
yuyang18 已提交
4965
        """
4966 4967
        .. note::
            This API has no effect in Dygraph mode.
4968 4969 4970

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4971 4972
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4973

4974 4975 4976 4977

        Examples:
            .. code-block:: python

4978 4979 4980 4981
                import paddle
                import paddle.static as static

                paddle.enable_static()
4982

4983
                prog = static.default_main_program()
4984 4985
                gb_block = prog.global_block()
                print(gb_block)
4986

Y
yuyang18 已提交
4987
        """
Y
Yu Yang 已提交
4988 4989
        return self.blocks[0]

Q
Qiao Longfei 已提交
4990
    def block(self, index):
Y
yuyang18 已提交
4991
        """
4992 4993
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4994

4995 4996
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4997 4998
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4999

J
Jiabin Yang 已提交
5000 5001
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5002 5003 5004 5005

        Examples:
            .. code-block:: python

5006 5007 5008 5009
                import paddle
                import paddle.static as static

                paddle.enable_static()
5010

5011
                prog = static.default_main_program()
5012 5013
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5014
        """
Q
Qiao Longfei 已提交
5015 5016
        return self.blocks[index]

Y
Yu Yang 已提交
5017
    def current_block(self):
Y
yuyang18 已提交
5018
        """
5019 5020
        .. note::
            This API has no effect in Dygraph mode.
5021

J
Jiabin Yang 已提交
5022 5023
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5024

J
Jiabin Yang 已提交
5025 5026
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5027

5028 5029 5030
        Examples:
            .. code-block:: python

5031 5032 5033 5034
                import paddle
                import paddle.static as static

                paddle.enable_static()
5035

5036
                prog = static.default_main_program()
5037 5038
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5039
        """
Y
Yu Yang 已提交
5040 5041
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5042
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5043 5044 5045 5046 5047
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5048

Y
yuyang18 已提交
5049 5050 5051 5052 5053
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5054
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5055 5056 5057
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5058 5059 5060 5061
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5062
    def _rollback(self):
Y
yuyang18 已提交
5063 5064 5065 5066 5067
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5068 5069
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5070
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5081 5082 5083
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5084
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5085

W
Wu Yi 已提交
5086
    def _copy_param_info_from(self, other):
5087
        """
5088
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5089

Y
yuyang18 已提交
5090 5091 5092
        Notes: This is a very low level API. Users should not invoke it
        directly.

5093 5094 5095 5096 5097 5098 5099
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5100 5101 5102
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5103

W
Wu Yi 已提交
5104
        self.global_block()._copy_param_info_from(other.global_block())
5105

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5117 5118 5119
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5120 5121
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5122
        self._parameters_on_pservers = other._parameters_on_pservers
5123
        self._endpoints = other._endpoints
5124
        self._ps_endpoint = other._ps_endpoint
5125 5126
        self._distributed_lookup_table = other._distributed_lookup_table

5127
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5128 5129
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5130

Y
yuyang18 已提交
5131 5132 5133
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5134 5135
        Args:
            other(Program): Other program
5136 5137 5138 5139
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5140 5141 5142 5143 5144

        Returns:
            None
        """
        if not isinstance(other, Program):
5145 5146 5147
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5148

5149 5150 5151 5152 5153
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5154 5155 5156

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5157 5158
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5159
            for var in list(block.vars.values()):
5160 5161 5162 5163 5164 5165 5166
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5167

5168
    def list_vars(self):
Y
yuyang18 已提交
5169
        """
5170
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5171

J
Jiabin Yang 已提交
5172
        Returns:
5173
            iterable Tensors: The Generator will yield every Tensor in this program.
5174 5175 5176 5177

        Examples:
            .. code-block:: python

5178 5179
                import paddle
                import paddle.static as static
5180

5181 5182 5183 5184 5185
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5186 5187
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5188

5189 5190
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5191
        """
5192
        for each_block in self.blocks:
5193
            for each_var in list(each_block.vars.values()):
5194 5195
                yield each_var

5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5206 5207 5208 5209
                import paddle
                import paddle.static as static

                paddle.enable_static()
5210

5211 5212
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5213
                hidden = static.nn.fc(x=data, size=10)
5214 5215
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5216 5217 5218 5219 5220 5221 5222

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5223 5224
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5235

5236
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5237
class Parameter(Variable):
5238
    """
5239
    Parameter is derived from Variable. A parameter is a persistable
5240
    Variable, and will be updated by optimizers after each iteration.
5241
    The training of a neural network is essentially the updating of
5242 5243
    its parameters.

5244
    Relative to a general Variable, a Parameter has several its own
5245 5246
    member variables:

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5257 5258
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5259 5260
    """

5261 5262 5263 5264 5265 5266
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5267 5268 5269 5270 5271
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5272
        if len(shape) == 0:
5273 5274
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5275 5276 5277

        for each in shape:
            if each < 0:
5278 5279 5280
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5281 5282

        Variable.__init__(
5283 5284 5285 5286 5287 5288 5289
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5290 5291 5292 5293
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5294 5295
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5296
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5297

5298 5299
        self.need_clip = kwargs.get('need_clip', True)

5300 5301
        self.is_distributed = False

F
fengjiayi 已提交
5302
    def __str__(self):
5303
        return self._to_readable_code()
F
fengjiayi 已提交
5304

F
update  
fengjiayi 已提交
5305 5306 5307
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5308

F
update  
fengjiayi 已提交
5309 5310 5311 5312 5313 5314 5315 5316
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5317 5318 5319 5320 5321 5322 5323 5324 5325
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5326 5327 5328 5329 5330 5331
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5332
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5333
            for attr_name in additional_attr:
5334 5335
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5336 5337
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5338 5339 5340 5341
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5342

5343 5344
class ParamBase(core.VarBase):
    """
5345 5346 5347
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5348 5349 5350
    The training of a neural network is essentially the updating of
    its ParamBase.

5351
    Relative to a general Tensor, a ParamBase has several its own
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5364 5365
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5396 5397
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5398 5399 5400 5401 5402 5403 5404

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5405 5406
        self.need_clip = kwargs.get('need_clip', True)

5407
        self.is_distributed = False
5408
        # self.block = default_main_program().global_block()
5409

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5423
    def __str__(self):
5424
        """
5425
        Convert a ParamBase object to a readable string.
5426

5427
        Returns(str): A readable string.
5428 5429 5430 5431

        Examples:
            .. code-block:: python

5432
                import paddle
5433 5434 5435 5436 5437 5438 5439
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5440
        """
5441 5442
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5443

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
                
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5474 5475 5476
    __repr__ = __str__


Y
Yu Yang 已提交
5477
# program is a global instance.
Y
Yu Yang 已提交
5478 5479
_main_program_ = Program()
_startup_program_ = Program()
5480

5481

5482
def default_startup_program():
Y
Yu Yang 已提交
5483
    """
Y
yuyang18 已提交
5484 5485
    Get default/global startup program.

5486 5487
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5488

5489 5490
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5491

5492 5493
    Returns:
        Program: current default startup program.
5494

5495
    Returns type: 
5496 5497 5498 5499

    Examples:
        .. code-block:: python

5500
            import paddle
5501

5502
            paddle.enable_static()
5503 5504 5505 5506
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5507
    """
Y
Yu Yang 已提交
5508
    return _startup_program_
5509

5510

5511
def default_main_program():
Y
Yu Yang 已提交
5512
    """
5513
    This API can be used to get ``default main program`` which store the 
5514
    descriptions of Ops and tensors.
T
tangwei12 已提交
5515

5516
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5517
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5518

5519 5520
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5521
    :code:`default_main_program` when the program is not specified.
5522

5523
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5524

Y
Yu Yang 已提交
5525
    Returns:
5526
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5527 5528 5529 5530

    Examples:
        ..  code-block:: python

5531
            import paddle
5532

5533
            paddle.enable_static()
5534
            # Sample Network:
5535 5536 5537
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5538

5539 5540 5541
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5542
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5543
    """
Y
Yu Yang 已提交
5544
    return _main_program_
Y
Yu Yang 已提交
5545 5546 5547 5548 5549


def switch_main_program(program):
    """
    Switch the main program to a new program.
5550

Y
Yu Yang 已提交
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5565
    Switch the startup program to a new program
Y
Yu Yang 已提交
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5578
@signature_safe_contextmanager
Y
Yu Yang 已提交
5579 5580
def program_guard(main_program, startup_program=None):
    """
5581 5582
    :api_attr: Static Graph

5583 5584 5585
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5586

G
guofei 已提交
5587
    Args:
5588 5589
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5590 5591 5592 5593
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5594
    Examples:
5595
       .. code-block:: python
T
tangwei12 已提交
5596

5597
          import paddle
Y
yuyang18 已提交
5598

5599 5600 5601 5602 5603
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5604
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5605 5606 5607

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5608

Y
Yu Yang 已提交
5609
    Examples:
5610
       .. code-block:: python
Y
yuyang18 已提交
5611

5612
          import paddle
5613

5614 5615 5616 5617 5618
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5619

Y
Yu Yang 已提交
5620
    """
5621
    from .data_feeder import check_type
5622 5623
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5624 5625
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5626
        check_type(startup_program, 'startup_program', Program,
5627
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5628
        startup_program = switch_startup_program(startup_program)
5629 5630 5631 5632 5633 5634
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5635 5636


W
Wu Yi 已提交
5637
def _get_var(name, program=None):
X
xuwei06 已提交
5638
    """
Y
yuyang18 已提交
5639
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5640

X
xuwei06 已提交
5641 5642 5643
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5644
        If None, default_global_program() will be used.
X
xuwei06 已提交
5645 5646 5647 5648 5649 5650 5651

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5652
    assert isinstance(program, Program)
X
xuwei06 已提交
5653 5654

    return program.global_block().var(name)
5655 5656


S
rename  
sneaxiy 已提交
5657
@signature_safe_contextmanager
L
lujun 已提交
5658 5659 5660 5661
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5662
    core._switch_tracer(tracer)
M
minqiyang 已提交
5663

5664 5665 5666 5667 5668
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5669 5670


S
rename  
sneaxiy 已提交
5671
@signature_safe_contextmanager
L
lujun 已提交
5672
def _dygraph_place_guard(place):
5673 5674 5675
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5676

5677 5678 5679
    try:
        yield
    finally:
5680
        _global_expected_place_ = tmp_place
5681 5682 5683 5684


def load_op_library(lib_filename):
    """
5685
    :api_attr: Static Graph
T
tangwei12 已提交
5686

5687 5688 5689
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5690
    Please note, the type of custom operators can't have the same type
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5757 5758 5759 5760 5761
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5762 5763 5764 5765
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5766 5767
    if index:
        device = ":".join([device, index])
5768
    pre_device = switch_device(device)
5769 5770 5771 5772
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
                          core.CUDAPinnedPlace, core.CUDAPlace)):
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
    if (place == "device"):
        return core.Place()

    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
    raise ValueError(
        "paddle support CPUPlace, CUDAPlace,CUDAPinnedPlace and XPUPlace, Please check your Place Input"
    )


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret