framework.py 200.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27

Y
Yu Yang 已提交
28
import numpy as np
29
import subprocess
S
sneaxiy 已提交
30
import multiprocessing
31
import sys
32
import logging
M
minqiyang 已提交
33
from .. import compat as cpt
34
from .proto import framework_pb2
35 36

from . import core
37
from . import unique_name
38 39
import paddle.version as fluid_version
import warnings
40
import functools
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
S
sneaxiy 已提交
51
    'cuda_pinned_places',
L
lujun 已提交
52
    'in_dygraph_mode',
C
chengduo 已提交
53
    'is_compiled_with_cuda',
54
    'is_compiled_with_xpu',
55
    'Variable',
56
    'load_op_library',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
245
# same base class.
246 247 248 249 250 251 252 253 254
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


T
tangwei12 已提交
255 256
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


274 275
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
276
static_only = wrap_decorator(_static_only_)
277
fake_interface_only = wrap_decorator(_fake_interface_only_)
278 279


L
lujun 已提交
280 281
def _dygraph_tracer():
    return _dygraph_tracer_
282

W
Wu Yi 已提交
283

M
minqiyang 已提交
284
def _current_expected_place():
285 286 287
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
288 289 290 291 292 293 294 295 296 297 298
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
315 316


L
Leo Chen 已提交
317 318 319 320
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
321

L
Leo Chen 已提交
322 323 324 325 326 327 328 329 330 331 332 333
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
334
def _cpu_num():
335
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
336 337 338 339 340 341 342 343
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
344
        os.environ['CPU_NUM'] = str(1)
345
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
346 347 348 349 350 351 352 353 354 355
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
356 357


358 359 360 361 362 363 364 365 366
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
382 383 384 385
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

386
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
387 388 389 390

    Examples:
        .. code-block:: python

391 392
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
393 394 395 396
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
397
def cuda_places(device_ids=None):
L
lujun 已提交
398
    """
399 400 401 402
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
403
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
404 405

    If :code:`device_ids` is None, environment variable of
406
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
407
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
408
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
409
    If :code:`FLAGS_selected_gpus` is not set, all visible
410
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
411 412

    If :code:`device_ids` is not None, it should be the device
413
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
414
    the returned list would be 
C
Chen Weihang 已提交
415
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
416

417 418
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
419 420

    Returns:
C
Chen Weihang 已提交
421
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
422 423 424 425

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
426 427
            import paddle
            import paddle.static as static
T
tangwei12 已提交
428

C
Chen Weihang 已提交
429 430 431
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
432 433

    """
S
sneaxiy 已提交
434 435 436
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
437
        device_ids = _cuda_ids()
S
sneaxiy 已提交
438 439 440 441 442
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
481
def cpu_places(device_count=None):
L
lujun 已提交
482
    """
C
Chen Weihang 已提交
483
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
484

S
add doc  
sneaxiy 已提交
485 486
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
487 488
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
489 490
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
491

492 493
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
494 495

    Returns:
C
Chen Weihang 已提交
496
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
497 498 499 500

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
501 502
            import paddle
            import paddle.static as static
T
tangwei12 已提交
503

C
Chen Weihang 已提交
504 505 506
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
507 508
    """

S
sneaxiy 已提交
509 510 511 512 513 514
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
515
    """
516
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
517 518 519

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
520 521 522 523
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
524

525 526
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
527 528

    Returns:
529
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
530 531 532 533

    Examples:
        .. code-block:: python

534
            import paddle.fluid as fluid
L
lujun 已提交
535 536 537 538 539
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
540 541 542
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
543 544
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
545 546


547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
573
@signature_safe_contextmanager
574 575
def name_scope(prefix=None):
    """
576 577
    :api_attr: Static Graph

578
    Generate hierarchical name prefix for the operators in Static Graph.
579

T
Tao Luo 已提交
580 581 582
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
583
        Don't use it in dygraph, since it will cause memory leak.
584 585

    Args:
T
Tao Luo 已提交
586
        prefix(str, optional): prefix. Default is none.
587 588 589

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
590

591 592 593
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
594
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
595
             b = a + 1
596
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
597
                c = b * 1
598
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
599
                d = c / 1
600 601 602
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
603 604 605
                g = f - 1

          # Op are created in the default main program.  
606
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
622 623
    """
    # TODO(panyx0718): Only [0-9a-z].
624
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
625 626 627
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
628
        assert prefix, "namescope prefix can not be empty."
629 630
        global _name_scope
        _name_scope = _name_scope.child(prefix)
631 632 633 634
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
635 636 637 638 639 640 641 642 643 644 645 646


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
647 648 649
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
650 651 652 653


def grad_var_name(var_name):
    """
654 655
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
656 657 658
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
659

660
def convert_np_dtype_to_dtype_(np_dtype):
661 662
    """
    Convert the data type in numpy to the data type in Paddle
663

664
    Args:
665
        np_dtype(np.dtype): the data type in numpy.
666

667 668
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
669 670

    """
671 672
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
673
        return core.VarDesc.VarType.FP32
674
    elif dtype == np.float64:
675
        return core.VarDesc.VarType.FP64
676
    elif dtype == np.float16:
677
        return core.VarDesc.VarType.FP16
678
    elif dtype == np.int32:
679
        return core.VarDesc.VarType.INT32
680
    elif dtype == np.int16:
681
        return core.VarDesc.VarType.INT16
682
    elif dtype == np.int64:
683
        return core.VarDesc.VarType.INT64
684
    elif dtype == np.bool:
685
        return core.VarDesc.VarType.BOOL
686
    elif dtype == np.uint16:
687 688 689
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
690 691
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
692 693
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
694 695 696 697
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
698
    else:
M
minqiyang 已提交
699
        raise ValueError("Not supported numpy dtype %s" % dtype)
700 701 702


def dtype_is_floating(dtype):
703 704 705
    """
    Check the data type is floating or not.
    Args:
706
        dtype(np.dtype|core.VarDesc.VarType): data type.
707 708 709 710 711
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
712
    if not isinstance(dtype, core.VarDesc.VarType):
713 714
        dtype = convert_np_dtype_to_dtype_(dtype)

715 716 717 718
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
719 720


Y
Yang Yang(Tony) 已提交
721
def _debug_string_(proto, throw_on_error=True):
722 723 724 725 726 727 728 729 730 731 732
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
733
    error_fields = list()
Y
Yang Yang(Tony) 已提交
734
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
735 736
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
737 738 739
    return proto.__str__()


740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
797
    target_block = default_main_program().current_block()
798 799 800 801 802 803 804 805 806 807 808

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
809
            })
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
849
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
850
                fill_constant([1], 1, force_cpu=True, out=temp_1)
851
                temp_end = target_block.create_var(dtype=slice_item.dtype)
852
                target_block.append_op(
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
892

893
    # starts
L
Leo Chen 已提交
894
    if contain_var(slice_start):
895 896 897 898 899 900 901 902
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
903 904 905 906
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
907 908 909 910 911 912 913
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
914 915 916
    else:
        attrs['ends'] = slice_end

917 918
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
919
        if contain_var(slice_step):
920 921 922 923 924 925 926
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
927 928
        else:
            attrs['strides'] = slice_step
929 930 931 932 933 934
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
935
        slice_out_var = target_block.create_var(
936 937 938
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

939
        target_block.append_op(
940 941 942 943 944 945 946
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
947
        strided_slice_out_var = target_block.create_var(
948 949 950
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
951
        target_block.append_op(
952 953 954 955 956 957 958 959
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
960
        reverse_out_var = target_block.create_var(
961 962 963
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
964
        target_block.append_op(
965 966 967 968 969 970 971 972 973 974 975
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
976
class Variable(object):
977
    """
J
Jiabin Yang 已提交
978
    **Notes**:
979
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
980

981 982
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
983 984 985
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
986
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
987 988
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
989

990
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
991
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
992

T
tianshuo78520a 已提交
993
    Most of a Variable's member variables can be set to be None. It mean
994
    it is not available or will be specified later.
995

996
    Examples:
997 998
        In Static Graph Mode:

999 1000
        .. code-block:: python

1001
            import paddle.fluid as fluid
1002
            cur_program = fluid.Program()
1003 1004 1005 1006
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1007
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1008 1009 1010 1011 1012 1013 1014 1015 1016

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1017 1018
    """

Y
Yu Yang 已提交
1019 1020
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1021
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1022 1023 1024 1025
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1026
                 capacity=None,
Q
QI JUN 已提交
1027
                 persistable=None,
F
fengjiayi 已提交
1028
                 error_clip=None,
Y
Yu Yang 已提交
1029
                 stop_gradient=False,
F
fengjiayi 已提交
1030
                 is_data=False,
H
Huihuang Zheng 已提交
1031
                 need_check_feed=False,
H
hong 已提交
1032
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1033
                 **kwargs):
Y
Yu Yang 已提交
1034 1035
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1036
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1037

Y
Yu Yang 已提交
1038
        if dtype is not None:
1039
            if not isinstance(dtype, core.VarDesc.VarType):
1040
                dtype = convert_np_dtype_to_dtype_(dtype)
1041

H
hong 已提交
1042 1043
        self.belong_to_optimizer = belong_to_optimizer

1044 1045 1046 1047 1048
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1049

1050 1051 1052
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1053

1054 1055 1056 1057 1058 1059 1060
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1061

1062
        if shape is not None:
1063
            if is_new_var:
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1105

1106 1107
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1108

1109 1110 1111 1112 1113 1114 1115
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1116

1117 1118 1119 1120
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1121

1122
    @fake_interface_only
1123 1124
    def detach(self):
        """
J
Jiabin Yang 已提交
1125
        **Notes**:
T
tianshuo78520a 已提交
1126
            **This API is ONLY available in Dygraph mode**
1127

1128
        Returns a new Variable, detached from the current graph.
1129

1130
        Returns:
J
Jiabin Yang 已提交
1131
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1132

1133

1134 1135 1136 1137 1138
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1139
                from paddle.fluid.dygraph import Linear
1140 1141 1142 1143
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1144
                    linear = Linear(32, 64)
1145
                    data = to_variable(data)
1146
                    x = linear(data)
1147 1148 1149
                    y = x.detach()

        """
1150
        pass
1151

1152
    @fake_interface_only
1153
    def numpy(self):
1154
        """
J
Jiabin Yang 已提交
1155
        **Notes**:
T
tianshuo78520a 已提交
1156
            **This API is ONLY available in Dygraph mode**
1157

J
Jiabin Yang 已提交
1158
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1159 1160 1161 1162 1163

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1164
            ndarray: dtype is same as current Variable
1165 1166 1167 1168 1169 1170

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1171
                from paddle.fluid.dygraph import Linear
1172 1173 1174 1175
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1176
                    linear = Linear(32, 64)
1177
                    data = to_variable(data)
1178
                    x = linear(data)
1179 1180 1181
                    print(x.numpy())

        """
1182
        pass
1183

1184
    @fake_interface_only
1185 1186
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1187
        **Notes**:
T
tianshuo78520a 已提交
1188
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1200
                from paddle.fluid.dygraph import Linear
1201 1202
                import numpy as np

1203
                data = np.ones([3, 1024], dtype='float32')
1204
                with fluid.dygraph.guard():
1205
                    linear = fluid.dygraph.Linear(1024, 4)
1206
                    t = to_variable(data)
1207
                    linear(t)  # call with default weight
1208
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1209 1210
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1211 1212

        """
1213
        pass
1214

1215
    @fake_interface_only
1216
    def backward(self, retain_graph=False):
1217
        """
J
Jiabin Yang 已提交
1218
        **Notes**:
T
tianshuo78520a 已提交
1219
            **This API is ONLY available in Dygraph mode**
1220

1221
        Run backward of current Graph which starts from current Tensor.
1222

J
Jiabin Yang 已提交
1223
        Args:
1224 1225 1226 1227
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1228

J
Jiabin Yang 已提交
1229 1230
        Returns:
            NoneType: None
1231 1232 1233 1234 1235

        Examples:
            .. code-block:: python

                import numpy as np
1236 1237
                import paddle
                paddle.disable_static()
1238 1239

                x = np.ones([2, 2], np.float32)
1240 1241 1242 1243 1244 1245 1246
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1247 1248
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1249
                loss.backward()
1250 1251

        """
1252
        pass
1253

1254
    @fake_interface_only
1255
    def gradient(self):
1256
        """
J
Jiabin Yang 已提交
1257
        **Notes**:
T
tianshuo78520a 已提交
1258
            **This API is ONLY available in Dygraph mode**
1259 1260 1261

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1262
        Returns:
1263
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1264 1265 1266 1267 1268 1269 1270

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1271
                # example1: return ndarray
1272 1273 1274 1275 1276 1277 1278 1279 1280
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1281
                    loss2.backward()
1282 1283
                    print(loss2.gradient())

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1297
        """
1298
        pass
1299

1300
    @fake_interface_only
1301
    def clear_gradient(self):
1302
        """
J
Jiabin Yang 已提交
1303
        **Notes**:
T
tianshuo78520a 已提交
1304
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1305 1306

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1307

J
Jiabin Yang 已提交
1308
        Clear  (set to ``0`` ) the Gradient of Current Variable
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1327
                    loss2.backward()
1328 1329 1330 1331 1332
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1333
        pass
X
Xin Pan 已提交
1334

1335
    def __str__(self):
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1352 1353
                import paddle
                import paddle.static as static
1354

1355 1356 1357
                paddle.enable_static()

                cur_program = static.Program()
1358 1359 1360 1361 1362 1363 1364
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
T
tangwei12 已提交
1365
            var_str = "{name} : paddle.{type}.shape{shape}.astype({dtype})". \
1366 1367
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
1368
            var_str = "{name} : paddle.{type})".\
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1383

F
update  
fengjiayi 已提交
1384
    def to_string(self, throw_on_error, with_details=False):
1385 1386 1387
        """
        Get debug string.

J
Jiabin Yang 已提交
1388 1389 1390 1391 1392
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1393

1394 1395
        Returns:
            str: The debug string.
1396 1397 1398 1399 1400

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1401
                import paddle
1402

1403
                paddle.enable_static()
1404 1405 1406 1407 1408
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1409
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1410
                print("=============with detail===============")
1411
                print(new_variable.to_string(True, True))
1412
        """
F
update  
fengjiayi 已提交
1413 1414
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1415
        protostr = self.desc.serialize_to_string()
1416
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1417 1418 1419 1420
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1421 1422 1423
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1424
        return res_str
1425 1426 1427

    __repr__ = __str__

1428
    @property
1429
    def stop_gradient(self):
J
Jiabin Yang 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1445 1446
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1447 1448 1449
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1450 1451
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1452 1453 1454 1455
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1456
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1457 1458
                assert (out1.gradient() == 0).all()
        """
1459
        return self._stop_gradient
1460

1461 1462
    @stop_gradient.setter
    def stop_gradient(self, s):
1463
        self._stop_gradient = s
1464

1465 1466
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1488
        return self.desc.persistable()
1489

Y
Yu Yang 已提交
1490 1491
    @persistable.setter
    def persistable(self, p):
1492
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1493

Y
Yu Yang 已提交
1494 1495
    @property
    def name(self):
J
Jiabin Yang 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1512
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1513

1514 1515 1516 1517 1518 1519 1520 1521
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1534 1535
    @name.setter
    def name(self, new_name):
1536
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1537

Y
Yu Yang 已提交
1538 1539
    @property
    def shape(self):
J
Jiabin Yang 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1557
        # convert to tuple, make it as same as numpy API.
1558
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1559 1560

    @property
F
fengjiayi 已提交
1561
    def dtype(self):
J
Jiabin Yang 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1578
        return self.desc.dtype()
Y
Yu Yang 已提交
1579 1580 1581

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1603 1604 1605
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1606
        return self.desc.lod_level()
Y
Yu Yang 已提交
1607

Y
Yu Yang 已提交
1608 1609
    @property
    def type(self):
J
Jiabin Yang 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1626
        return self.desc.type()
Y
Yu Yang 已提交
1627

W
Wu Yi 已提交
1628
    def _set_error_clip(self, error_clip):
1629 1630 1631 1632 1633 1634 1635 1636 1637
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1638 1639
        self.error_clip = error_clip

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1680
            raise ValueError("slice step can not be zero")
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1756
    def _cloneVar(self, copy=False):
1757 1758
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1759 1760
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1761 1762 1763 1764
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1765
        new_var = self._cloneVar()
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1776
        new_var = self._cloneVar()
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1787
                return self._cloneVar(True)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1806
                return self._cloneVar(True)
1807
            index = int(item)
1808
            if (index > 0 and index >= self.shape[axis]) \
1809 1810 1811 1812 1813 1814 1815
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1816
        return _getitem_impl_(self, item)
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

        axes = []
        starts = []
        ends = []
        max_integer = sys.maxsize
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                start = 0 if start is None else start
                step = 1 if step is None else step

                # TODO: support cases when step != 1
                if step != 1:
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, only support step is 1, "
                        "but received step is {}.".format(step))
                end = max_integer if end is None else end
            else:
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
            axes.append(dim)
            starts.append(start)
            ends.append(end)

        attrs = {'axes': axes, 'starts': starts, 'ends': ends}

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
            value = np.array([value])

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                from .data_feeder import convert_dtype
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

        self.block.append_op(
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
        return self

Y
Yu Yang 已提交
1900

F
fengjiayi 已提交
1901 1902 1903
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1904

1905 1906
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1907 1908 1909 1910
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1911
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1912 1913 1914 1915 1916
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1917 1918 1919 1920
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1930
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1931 1932 1933 1934 1935 1936
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1937 1938 1939 1940 1941 1942 1943 1944
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1945 1946
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1947 1948
        return self.op_proto_map[type]

1949 1950 1951 1952 1953 1954
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1955 1956 1957 1958
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1959
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1960
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1961 1962
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1963 1964
        }

F
fengjiayi 已提交
1965

X
Xin Pan 已提交
1966
class Operator(object):
1967
    """
1968 1969 1970 1971 1972 1973 1974
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1975
        type(str): The type of operator. Default None.
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1996
        Block.append_op or Block._prepend_op instead.
1997 1998 1999 2000

    Examples:
        .. code-block:: python

2001
            import paddle.fluid as fluid
2002
            cur_program = fluid.Program()
2003 2004 2005 2006 2007
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2008
    """
2009
    OP_WITHOUT_KERNEL_SET = {
2010 2011
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2012 2013
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
T
tangwei12 已提交
2014 2015
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue',
        'heter_listen_and_serv'
2016
    }
2017

Y
Yu Yang 已提交
2018 2019
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2020
                 desc,
Y
Yu Yang 已提交
2021 2022 2023
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2024
                 attrs=None):
L
lujun 已提交
2025
        if in_dygraph_mode():
2026 2027
            if type is None:
                raise ValueError(
2028
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2029
            self._type = type
M
minqiyang 已提交
2030
            self.attrs = attrs if attrs else {}
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2045
                )] = self.block.program._op_role
2046 2047 2048

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2049 2050
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2051 2052 2053 2054 2055 2056 2057 2058

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2059
                    "`type` to initialized an Operator can not be None.")
2060 2061
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2062 2063 2064 2065 2066 2067 2068
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2069 2070 2071 2072 2073 2074 2075

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2107
                        if not isinstance(in_args, (list, tuple)):
2108 2109 2110 2111 2112 2113
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2114
                        for index, arg in enumerate(in_args):
2115 2116 2117 2118
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2119
                            elif isinstance(arg, (Variable, core.VarBase)):
2120
                                in_arg_names.append(cpt.to_text(arg.name))
2121
                            else:
2122 2123 2124 2125
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2126 2127
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2152 2153 2154 2155
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2156
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2157
                        if not in_dygraph_mode():
2158 2159 2160 2161
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2180
    def _has_kernel(self, op_type):
2181 2182
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2183
    def to_string(self, throw_on_error):
2184
        """
2185 2186
        Get debug string.

2187
        Args:
2188 2189
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2190

2191 2192
        Returns:
            str: The debug string.
2193 2194

        """
2195
        protostr = self.desc.serialize_to_string()
2196
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2197 2198
        return _debug_string_(proto, throw_on_error)

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2286 2287
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2288 2289 2290 2291 2292
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2293
    def __str__(self):
2294
        return self._to_readable_code()
2295 2296 2297

    __repr__ = __str__

F
fengjiayi 已提交
2298 2299
    @property
    def type(self):
2300
        return self.desc.type()
F
fengjiayi 已提交
2301 2302

    def input(self, name):
2303
        r"""
2304
        Get the input arguments according to the input parameter name.
2305

2306 2307
        Args:
            name(str): The input parameter name.
2308

2309 2310 2311
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2312
        """
F
fengjiayi 已提交
2313 2314
        return self.desc.input(name)

W
Wu Yi 已提交
2315
    def _rename_input(self, old_name, new_name):
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2326
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2327

W
Wu Yi 已提交
2328
    def _rename_output(self, old_name, new_name):
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2339
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2340

F
fengjiayi 已提交
2341 2342 2343 2344
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2345 2346 2347 2348 2349 2350 2351 2352
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2353
    def output(self, name):
2354
        r"""
2355
        Get output arguments by the output parameter name.
2356

2357 2358
        Args:
            name(str): The output parameter name.
2359

2360 2361 2362
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2363
        """
F
fengjiayi 已提交
2364 2365 2366 2367 2368 2369
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2370 2371 2372 2373 2374 2375 2376 2377
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2378
    def has_attr(self, name):
2379
        """
2380 2381
        Whether this Operator has the attribute with name or not.

2382
        Args:
2383
            name(str): the attribute name.
2384

2385 2386
        Returns:
            bool: True if has this attribute.
2387 2388

        """
F
fengjiayi 已提交
2389 2390 2391
        return self.desc.has_attr(name)

    def attr_type(self, name):
2392
        """
2393
        Get the type of attribute by attribute's name.
2394

2395 2396
        Args:
            name(str): the attribute name.
2397

2398 2399
        Returns:
            core.AttrType: the attribute type.
2400
        """
F
fengjiayi 已提交
2401 2402
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2403
    def _set_attr(self, name, val):
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2414 2415
        self._update_desc_attr(name, val)

2416 2417 2418
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2430 2431
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2432 2433
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2434
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2435 2436 2437 2438
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2439
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2440

F
fengjiayi 已提交
2441 2442 2443 2444 2445
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2446
        """
2447 2448
        Get the attribute by name.

2449
        Args:
2450
            name(str): the attribute name.
2451

2452 2453
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2454 2455
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2456
        return self.desc.attr(name)
Y
Yu Yang 已提交
2457

W
Wu Yi 已提交
2458
    def _block_attr_id(self, name):
2459
        """
G
gongweibao 已提交
2460
        Get the block attribute's id by name.
2461

2462 2463
        Args:
            name(str): the attribute name.
2464

2465 2466
        Returns:
            int: the block index.
2467
        """
W
Wu Yi 已提交
2468
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2469

W
Wu Yi 已提交
2470
    def _block_attr(self, name):
G
gongweibao 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2481
        id = self._block_attr_id(name)
G
gongweibao 已提交
2482 2483 2484
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2485
    def _blocks_attr(self, name):
G
gongweibao 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2496
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2497 2498 2499 2500 2501
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2502
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2513
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2514

J
JiayiFeng 已提交
2515
    def all_attrs(self):
F
fengjiayi 已提交
2516
        """
2517 2518 2519
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2520
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2521 2522 2523 2524
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2525 2526
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2527
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2528 2529 2530
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2531
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2532 2533 2534 2535
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2536 2537
        return attr_map

2538 2539 2540
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2541 2542 2543 2544

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2545 2546 2547
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2548 2549 2550 2551 2552 2553 2554 2555

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2556 2557
            return False

2558 2559 2560 2561 2562 2563
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2564

Y
Yu Yang 已提交
2565
class Block(object):
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2580
        use `Program._create_block()` to create a block.
2581 2582 2583 2584

    Examples:
        .. code-block:: python

2585 2586 2587
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2588 2589 2590 2591 2592 2593 2594 2595 2596
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2597
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2598
        self.desc = program.desc.block(idx)
2599
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2600
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2601
        self.program = program
2602
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2603

2604
    def __str__(self):
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2651

F
fengjiayi 已提交
2652 2653
    def to_string(self, throw_on_error, with_details=False):
        """
2654 2655
        Get debug string.

F
fengjiayi 已提交
2656 2657
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2658
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2659
            with_details(bool): more details about variables and parameters
2660 2661
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2662

2663 2664
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2665 2666 2667 2668
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2669
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2670 2671
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2672
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2673
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2674
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2675
            for op in self.ops:
F
fengjiayi 已提交
2676 2677
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2678 2679 2680
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2681 2682
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2683 2684
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2685 2686 2687

    __repr__ = __str__

Y
Yu Yang 已提交
2688 2689
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2690
        return self.desc.parent
Y
Yu Yang 已提交
2691

Y
Yu Yang 已提交
2692 2693 2694 2695
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2696
    def _set_forward_block_idx(self, idx):
2697 2698 2699 2700 2701 2702 2703 2704 2705
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2706
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2707

2708 2709 2710 2711 2712 2713 2714 2715
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2716 2717
    @property
    def idx(self):
Y
Yu Yang 已提交
2718
        return self.desc.id
Y
Yu Yang 已提交
2719

Q
Qiao Longfei 已提交
2720
    def var(self, name):
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2734
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2735 2736 2737
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2738 2739
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2740
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2741
        return v
Q
Qiao Longfei 已提交
2742

X
Xin Pan 已提交
2743
    def _find_var_recursive(self, name):
2744 2745 2746 2747 2748 2749 2750
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2751
            Variable: the Variable with the giving name. Or None if not found.
2752
        """
Y
Yu Yang 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2777
        return None
Y
Yu Yang 已提交
2778

X
Xin Pan 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2798

Q
Qiao Longfei 已提交
2799
    def all_parameters(self):
2800
        return list(self.iter_parameters())
2801

2802
    def iter_parameters(self):
M
minqiyang 已提交
2803
        return (item[1] for item in six.iteritems(self.vars)
2804
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2805

Y
Yu Yang 已提交
2806
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2807 2808 2809
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2810 2811 2812
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2813
        return var
Y
Yu Yang 已提交
2814

Q
Qiao Longfei 已提交
2815 2816 2817
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2818
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2819 2820
        """
        Rename variable in vars and ops' inputs and outputs
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2833
        """
M
minqiyang 已提交
2834 2835
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2836

T
typhoonzero 已提交
2837
        if not self.has_var(name):
2838
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2839 2840
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2841
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2842 2843 2844 2845 2846 2847
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2848
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2849 2850 2851 2852
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2853
        orig_var_type = v.type
M
minqiyang 已提交
2854
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2855
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2856
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2857
        if var_type == "Parameter":
L
Leo Chen 已提交
2858 2859
            if in_dygraph_mode():
                var = ParamBase(
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2870 2871
                var = Parameter(
                    self,
2872 2873 2874 2875 2876 2877 2878 2879 2880
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2881
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2882 2883
            var = Variable(
                self,
T
typhoonzero 已提交
2884
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2885 2886 2887 2888
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2889
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2890 2891 2892
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2893
        self._sync_with_cpp()
2894
        return var
T
typhoonzero 已提交
2895

2896 2897 2898
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2899
        self.desc._remove_var(cpt.to_bytes(name))
2900 2901
        del self.vars[name]

Y
Yu Yang 已提交
2902 2903
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2904
        param = None
L
Leo Chen 已提交
2905
        if in_dygraph_mode():
2906
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2907 2908
        else:
            param = Parameter(global_block, *args, **kwargs)
2909 2910 2911 2912 2913 2914
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2915
        if 'initializer' in kwargs:
2916 2917 2918 2919 2920

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2921
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2922
                        # are treated as initialization ops that cause error.
2923 2924 2925
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2937
                # TODO already inited, do nothing, should log a warning
2938 2939 2940
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2941
        return param
Y
Yu Yang 已提交
2942

Y
Yu Yang 已提交
2943
    def append_op(self, *args, **kwargs):
2944 2945 2946 2947 2948 2949
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2950
        if in_dygraph_mode():
2951
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2952
            type = kwargs.get("type", None)
2953 2954 2955
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2956
                type=type,
M
minqiyang 已提交
2957 2958
                inputs=None,
                outputs=None,
2959
                attrs=attrs)
2960

M
minqiyang 已提交
2961 2962 2963
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2964
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2965 2966

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2967
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2968 2969
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2970
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2971
        else:
2972 2973 2974 2975 2976 2977 2978 2979 2980
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2981
            self.ops.append(op)
M
minqiyang 已提交
2982

2983 2984
        return op

W
Wu Yi 已提交
2985
    def _insert_op(self, index, *args, **kwargs):
2986 2987 2988 2989 2990 2991 2992 2993 2994
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2995 2996
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2997 2998 2999 3000
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3018 3019 3020 3021 3022 3023 3024 3025 3026
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3027 3028
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3029
        self.desc._remove_op(index, index + 1)
3030 3031
        del self.ops[index]

W
Wu Yi 已提交
3032
    def _slice_ops(self, start, end):
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3043
        return self.ops[start:end]
Y
Yancey1989 已提交
3044

W
Wu Yi 已提交
3045
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3046
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3047 3048
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3049
            op = Operator(
J
Jiabin Yang 已提交
3050
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3051

J
Jiabin Yang 已提交
3052
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3053
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3054 3055
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3056
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3057
        else:
3058 3059 3060 3061 3062 3063 3064 3065
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3066
            self.ops.insert(0, op)
3067

Y
Yu Yang 已提交
3068 3069
        return op

W
Wu Yi 已提交
3070
    def _sync_with_cpp(self):
3071
        """
3072 3073
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3074
        """
Q
Qiao Longfei 已提交
3075 3076 3077 3078 3079
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3080
        # sync variables removed from c++ end
3081
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3082
            if not self.desc.find_var(cpt.to_bytes(var)):
3083 3084
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3085
        # sync operators from cpp
3086 3087 3088 3089
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3106 3107 3108 3109 3110

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3111
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3112 3113 3114 3115 3116 3117 3118

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3132 3133 3134 3135
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3136
    def _copy_param_info_from(self, other):
3137
        """
3138 3139
        Copy the information of parameters from the other block.

3140
        Args:
3141 3142 3143 3144 3145
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3146 3147 3148 3149 3150

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3151 3152
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3153
        for p in other.iter_parameters():
3154 3155 3156
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3157 3158
                # if the Parameter is pruned, v may be None
                continue
3159
            assert isinstance(v, Variable)
3160
            new_p = None
L
Leo Chen 已提交
3161 3162
            if in_dygraph_mode():
                new_p = ParamBase(
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3174 3175
                new_p = Parameter(
                    block=self,
3176 3177 3178
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3179 3180
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3181 3182 3183 3184 3185 3186
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3187 3188
            self.vars[new_p.name] = new_p

3189
    def _clone_variable(self, var, force_persistable=True):
3190 3191
        """
        Clone a variable into current block.
3192

3193 3194
        Args:
            var: the variable to be cloned.
3195 3196 3197
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3198 3199

        Returns:
3200
            Variable: the new  variable cloned from 'var' in current block.
3201 3202
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3203 3204 3205 3206 3207
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3208 3209
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3210
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3211 3212 3213 3214 3215 3216
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3217
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3218 3219
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3220 3221 3222 3223 3224 3225 3226
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3227
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3228 3229
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3230
        return ret_var
3231

Y
Yu Yang 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3328
    def remove_input_by_id(self, node_id):
3329 3330 3331 3332 3333 3334
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3335
        self.node.remove_input(node_id)
3336

3337
    def remove_input(self, node):
3338 3339 3340 3341
        """
        Remove a node from inputs.

        Args:
3342
            node(IrNode): the node being removed.
3343
        """
3344
        self.node.remove_input(node.node)
3345

3346
    def append_input(self, node):
3347 3348 3349 3350
        """
        Append a node in inputs.

        Args:
3351
            node(IrNode): the node being appended.
3352
        """
3353
        self.node.append_input(node.node)
3354 3355 3356 3357 3358 3359 3360 3361

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3362
    def remove_output_by_id(self, node_id):
3363 3364 3365 3366 3367 3368
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3369
        self.node.remove_output(node_id)
3370

3371
    def remove_output(self, node):
3372 3373 3374 3375
        """
        Remove a node from outputs.

        Args:
3376
            node(IrNode): the node being removed.
3377
        """
3378
        self.node.remove_output(node.node)
3379

3380
    def append_output(self, node):
3381 3382 3383 3384
        """
        Append a node in outputs.

        Args:
3385
            node(IrNode): the node being appended.
3386
        """
3387
        self.node.append_output(node.node)
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3435
            "The node variable description can not be None."
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3446
            "The node variable description can not be None."
3447 3448
        return self.node.var().persistable()

3449 3450 3451 3452 3453 3454 3455 3456
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3457
            "The node variable description can not be None."
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3468
            "The node variable description can not be None."
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3479
            "The node variable description can not be None."
3480 3481
        return self.node.var().shape()

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3529
            "The node operator description can not be None."
3530 3531
        self.node.op()._rename_input(old_input_name, new_input_name)

3532 3533 3534 3535 3536 3537 3538 3539 3540
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3541
            "The node operator description can not be None."
3542 3543
        self.node.op()._rename_output(old_output_name, new_output_name)

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3555
            "The node operator description can not be None."
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3569
            "The node operator description can not be None."
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3580
            "The node operator description can not be None."
3581 3582
        return self.node.op().set_type(new_type)

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3598
            "The node operator description can not be None."
3599 3600 3601 3602
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3603
                all(isinstance(v, Block) for v in val):
3604 3605
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3606
                isinstance(val, core.ProgramDesc):
3607 3608 3609 3610
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3611 3612 3613 3614 3615 3616 3617 3618
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3619
            "The node operator description can not be None."
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3630
            "The node operator description can not be None."
3631 3632
        return self.node.op().output_arg_names()

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3654 3655
class IrGraph(object):
    """
3656
    Python IrGraph. Beneath it is a core.Graph, which is used for
3657
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3658 3659
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3660 3661 3662 3663
    """

    def __init__(self, graph, for_test=False):
        """
3664 3665
        Construct an IrGraph using core.Graph.

3666 3667 3668 3669 3670 3671 3672 3673 3674
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3675 3676 3677 3678
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3679 3680 3681
        Warns:
            The method only clones the graph structure, not its attributes.

3682 3683 3684
        Returns:
            IrGraph: A new and duplicated graph.
        """
3685
        g = self.graph.clone()
3686 3687
        return IrGraph(g, self._for_test)

3688
    def is_test(self):
3689 3690 3691
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3692 3693
        return self._for_test

W
WangZhen 已提交
3694
    def all_nodes(self):
3695 3696 3697
        """
        Return all nodes included in the graph as a set.
        """
3698
        return {IrNode(node) for node in self.graph.nodes()}
3699

3700
    def all_var_nodes(self):
3701 3702 3703
        """
        Return all variable nodes included in the graph as a set.
        """
3704
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3705

3706
    def all_persistable_nodes(self):
3707 3708 3709
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3710 3711 3712 3713 3714
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3715
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3716

3717
    def all_op_nodes(self):
3718 3719 3720
        """
        Return all operator nodes included in the graph as a set.
        """
3721
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3722

3723
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3735
            IrVarNode: the created persistable variable node.
3736
        """
3737 3738 3739 3740 3741
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3742
        return IrVarNode(self.graph.create_var_node(var_desc))
3743 3744

    def create_var_node(self, name, var_type, shape, var_dtype):
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3756
            IrVarNode: the created variable node.
3757 3758
        """

3759 3760 3761 3762
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3763
        return IrVarNode(self.graph.create_var_node(var_desc))
3764

3765 3766 3767 3768 3769 3770
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3771
    def create_var_node_from_desc(self, var_desc):
3772 3773 3774 3775 3776 3777 3778 3779
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3780
            IrVarNode: the created variable node.
3781
        """
3782
        return IrVarNode(self.graph.create_var_node(var_desc))
3783 3784

    def create_op_node(self, op_type, attrs, inputs, outputs):
3785 3786 3787 3788 3789 3790 3791
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3792
            outputs(dict): the outputs of the operator node.
3793 3794

        Returns:
3795
            IrOpNode: the created operator node.
3796
        """
3797 3798
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3799
        for attr, value in six.iteritems(attrs):
3800
            self._update_desc_attr(op_desc, attr, value)
3801
        for input_name, var_nodes in six.iteritems(inputs):
3802 3803 3804 3805
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3806
        for output_name, var_nodes in six.iteritems(outputs):
3807 3808 3809 3810
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3811
        return IrOpNode(self.graph.create_op_node(op_desc))
3812 3813

    def create_op_node_from_desc(self, op_desc):
3814 3815 3816 3817 3818 3819 3820
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3821
            IrOpNode: the created operator node.
3822
        """
3823
        return IrOpNode(self.graph.create_op_node(op_desc))
3824 3825

    def update_input_link(self, old_input_node, new_input_node, op_node):
3826 3827 3828 3829
        """
        Update the input's link of a operator node.

        Args:
3830 3831 3832
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3833
        """
3834
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3835
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3836
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3837 3838 3839 3840
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3841
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3853
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3854
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3855 3856 3857 3858 3859 3860
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3861
    def link_to(self, node_in, node_out):
3862 3863 3864 3865
        """
        Connect two nodes.

        Args:
3866 3867
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3868
        """
3869
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3870
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3871 3872
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3873 3874

    def safe_remove_nodes(self, remove_nodes):
3875 3876 3877 3878 3879 3880 3881
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3882
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3883 3884 3885 3886
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3887 3888
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3889

Z
Zhen Wang 已提交
3890 3891 3892 3893 3894 3895 3896 3897
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3898
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3899 3900 3901 3902
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3903
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3904 3905 3906
                        ]
                    else:
                        var_nodes[each_var_name].append(
3907 3908
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3909 3910
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3911
    def has_circle(self):
3912 3913 3914 3915 3916 3917
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3918 3919 3920
        return core.has_circle(self.graph)

    def graph_num(self):
3921 3922 3923 3924 3925 3926
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3927 3928 3929
        return core.graph_num(self.graph)

    def topology_sort(self):
3930 3931 3932
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3933
        Notes: the `graph` can not contain a circle.
3934 3935

        Returns:
Z
Zhen Wang 已提交
3936
            list(IrNode): nodes in topology order.
3937
        """
3938
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3939
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3940 3941

    def build_adjacency_list(self):
3942 3943 3944 3945
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3946
            dict{IrNode: set(IrNode)}: the adjacency list.
3947
        """
3948 3949 3950 3951 3952
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3953

3954 3955 3956 3957 3958 3959 3960 3961
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3962
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3963 3964 3965 3966 3967
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3968 3969
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3970 3971 3972
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3973 3974 3975 3976 3977
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3978
        remove_ctr_vars = set()
3979
        if remove_ctr_var:
3980
            for node in self.all_var_nodes():
3981 3982 3983
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3984 3985
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3986 3987
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3988 3989 3990 3991 3992 3993
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3994 3995 3996 3997
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3998 3999
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4000 4001 4002 4003 4004 4005 4006
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4007 4008 4009
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4010
        WARN: When the graph includes backward operator nodes, the
4011 4012 4013 4014 4015 4016
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4017
        convert_pass = core.get_pass('graph_to_program_pass')
4018 4019
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4020 4021 4022 4023
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4051
class Program(object):
D
dzhwinter 已提交
4052
    """
4053
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4054
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4055
    it will contain nested block.
4056

J
Jiabin Yang 已提交
4057 4058 4059
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4060

J
Jiabin Yang 已提交
4061
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4062
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4063 4064 4065 4066 4067 4068 4069
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4070
    **Notes**:
4071 4072 4073
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4074 4075

    Returns:
J
Jiabin Yang 已提交
4076
        Program: An empty Program.
D
dzhwinter 已提交
4077 4078

    Examples:
4079 4080
        .. code-block:: python

4081 4082 4083 4084
            import paddle
            import paddle.static as static

            paddle.enable_static()
4085

4086 4087 4088 4089 4090
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4091
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4092 4093 4094

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4095 4096 4097

    """

4098 4099
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4100 4101
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4102 4103
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4104
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4105
        self.__op_role_var = []
T
tangwei12 已提交
4106

4107 4108
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4109
        self._is_distributed = False
4110
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4111
        self._is_chief = False
4112 4113 4114
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4115
        self._endpoints = []
4116 4117 4118
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4119
        self._trainers_endpoints = []
4120
        # the distributed lookup table names
T
tangwei12 已提交
4121
        self._distributed_lookup_table = None
4122 4123 4124

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4125 4126
        self._use_lamb = False

4127 4128 4129
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4130

4131 4132 4133
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4134
        self._program_config = None
4135

H
hutuxian 已提交
4136 4137 4138
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4139 4140 4141
        # appending gradients times
        self._appending_grad_times = 0

4142 4143 4144 4145
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4146 4147 4148
        # compiled program, i.e. Graph
        self._graph = None

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4159 4160
                import paddle
                import paddle.static as static
4161

4162 4163 4164
                paddle.enable_static()

                prog = static.default_main_program()
4165 4166 4167 4168 4169
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4170
                prog1 = static.default_main_program()
4171 4172 4173 4174 4175 4176 4177 4178
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4179
    @property
4180
    def _op_role(self):
Y
yuyang18 已提交
4181 4182 4183 4184 4185 4186 4187 4188
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4189
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4190 4191 4192 4193
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4194 4195
        return self._current_role

4196 4197
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4198 4199 4200
        self._current_role = role

    @property
4201
    def _op_role_var(self):
Y
yuyang18 已提交
4202
        """
4203
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4204

4205
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4206 4207 4208

        Notes: This is a very low-level API. Users should not use it directly.
        """
4209
        return self.__op_role_var
Y
yuyang18 已提交
4210

4211
    @signature_safe_contextmanager
4212 4213 4214 4215 4216
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4217 4218 4219 4220
        try:
            yield
        finally:
            self._current_role = tmp_role
4221

S
rename  
sneaxiy 已提交
4222
    @signature_safe_contextmanager
W
Wu Yi 已提交
4223
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4224 4225 4226 4227 4228 4229 4230
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4231
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4232 4233 4234

        Examples:

4235
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4236
            >>> p, g = backward(...)
W
Wu Yi 已提交
4237
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4238 4239
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4240
        tmp_role = self._current_role
4241
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4242

Y
yuyang18 已提交
4243 4244
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4245
        self.__op_role_var = [
4246 4247 4248
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4249 4250 4251 4252 4253
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4254

S
rename  
sneaxiy 已提交
4255
    @signature_safe_contextmanager
X
Xin Pan 已提交
4256
    def _lr_schedule_guard(self, is_with_opt=False):
4257 4258 4259 4260 4261 4262 4263
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4264 4265 4266 4267
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4268 4269 4270

        Examples:

4271
            >>> import paddle.fluid as fluid
4272 4273 4274 4275
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4276 4277

        tmp_role = self._current_role
4278
        tmp_var = self.__op_role_var
4279

4280 4281
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4282 4283
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4284
        # TODO(typhoonzero): how to set target learning rate var
4285
        self.__op_role_var = []
4286 4287 4288 4289 4290
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4291

4292
    def __str__(self):
Y
yuyang18 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4322 4323
            import paddle
            import paddle.static as static
4324

4325 4326 4327
            paddle.enable_static()

            cur_program = static.Program()
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4344
            program_str += '\n'
4345
        return program_str
Y
Yang Yang(Tony) 已提交
4346

F
fengjiayi 已提交
4347 4348 4349
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4350

J
Jiabin Yang 已提交
4351 4352 4353
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4354

J
Jiabin Yang 已提交
4355
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4356

H
haowang101779990 已提交
4357
        Returns:
J
Jiabin Yang 已提交
4358
            str: The debug string describe current Program.
Y
yuyang18 已提交
4359 4360

        Raises:
J
Jiabin Yang 已提交
4361
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4362

4363 4364 4365
        Examples:
            .. code-block:: python

4366 4367 4368 4369
                import paddle
                import paddle.static as static

                paddle.enable_static()
4370

4371 4372 4373
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4374
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4375
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4376
                print("program string without detail: {}".format(prog_string))
4377
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4378
        """
4379 4380 4381 4382 4383 4384 4385 4386 4387
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4388 4389 4390 4391 4392 4393
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4394 4395
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4396 4397
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4398

W
Wu Yi 已提交
4399
    def _get_desc(self):
Y
yuyang18 已提交
4400 4401 4402 4403 4404 4405 4406
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4407 4408
        return self.desc

X
version  
Xin Pan 已提交
4409 4410 4411
    def _version(self):
        return self.desc._version()

4412
    def clone(self, for_test=False):
Y
yuyang18 已提交
4413
        """
4414 4415 4416 4417
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4418

4419
        Create a new Program with forward content of original one when ``for_test=True``.
4420
        Create a new Program as same as the original one when ``for_test=False``.
4421

4422
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4423 4424 4425
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4426

4427 4428
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4429 4430
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4431
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4432

J
Jiabin Yang 已提交
4433
        For Example:
4434
          ::
L
Luo Tao 已提交
4435

4436 4437 4438 4439 4440 4441
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4442
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4443
            loss = paddle.mean(pred)
4444
            # Here we use clone before Momentum
4445 4446
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4447
            optimizer.minimize(loss)
4448

J
Jiabin Yang 已提交
4449
        Args:
4450

4451 4452
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4453

J
Jiabin Yang 已提交
4454
        Returns:
4455
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4456

Y
yuyang18 已提交
4457 4458 4459

        Examples:

4460 4461 4462 4463 4464 4465 4466
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4483
            1. To clone a test program, the sample code is:
4484 4485 4486
                .. code-block:: python

                    import six
4487 4488 4489 4490 4491 4492
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4505 4506
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4507 4508 4509

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4510 4511 4512
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4513
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4514 4515
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4516
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4517 4518
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4519
                            test_program = train_program.clone(for_test=True)
4520
                    print_prog(test_program)
J
Jiabin Yang 已提交
4521 4522 4523 4524

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4525
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4526 4527 4528 4529
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4530 4531 4532
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4533 4534 4535
                            sgd.minimize(avg_loss)


4536
            2. The clone method can be avoid if you create program for training and program for testing individually.
4537 4538 4539
                .. code-block:: python

                    import six
4540 4541 4542 4543 4544 4545
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4557

4558
                    def network():
4559
                        img = static.data(name='image', shape=[None, 784])
4560
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4561 4562
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4563
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4564 4565
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4566 4567
                        return avg_loss

4568 4569 4570 4571 4572
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4573
                            avg_loss = network()
4574
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4575
                            sgd.minimize(avg_loss)
4576
                    # the test startup program is not used.
4577 4578
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4579 4580
                            avg_loss = network()
                    print_prog(test_program_2)
4581

4582
            The two code snippets above will generate and print same programs.
4583
        """
4584

T
tangwei12 已提交
4585
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4586 4587 4588
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4589
        pruned_origin_block_id_map = None
4590
        if for_test:
4591 4592 4593 4594 4595 4596 4597 4598 4599
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4600
        else:
4601
            p = Program()
G
gongweibao 已提交
4602 4603
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4604
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4605 4606 4607
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4608 4609

            p._current_role = self._current_role
4610
            p.__op_role_var = self.__op_role_var
4611
            p._appending_grad_times = self._appending_grad_times
4612 4613
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4614

T
tangwei12 已提交
4615
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4616
            # its desc.
W
Wu Yi 已提交
4617
            p._sync_with_cpp()
4618

W
Wu Yi 已提交
4619
        p._copy_param_info_from(self)
4620
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4621
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4622
        return p
4623

4624
    def _prune(self, targets):
Y
yuyang18 已提交
4625 4626 4627 4628 4629 4630 4631 4632
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4633
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4634 4635 4636 4637
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4638
        """
4639
        return self._prune_with_input([], targets)
4640 4641

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4642
        """
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4653
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4654 4655 4656 4657 4658 4659
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4660
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4661 4662 4663
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4664 4665
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4666 4667
        if not isinstance(targets, list):
            targets = [targets]
4668 4669 4670

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4671 4672 4673
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4674

4675 4676 4677 4678
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4679 4680 4681
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4682
                else:
4683 4684 4685
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4686 4687 4688 4689 4690 4691 4692 4693

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4694 4695 4696 4697 4698 4699 4700 4701 4702
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4703
                        # Skip optimize op except for optimize op in targets,
4704 4705 4706 4707 4708 4709
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4710 4711 4712 4713 4714 4715 4716 4717
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4718

4719
        res = Program()
4720 4721 4722
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4723 4724 4725
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4726
        res._sync_with_cpp()
4727 4728 4729 4730 4731

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4732 4733
        return res

X
Xin Pan 已提交
4734
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4735
        """
F
fengjiayi 已提交
4736 4737 4738 4739 4740
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4741
        3. change the :code:`is_test`
Y
yuyang18 已提交
4742 4743 4744
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4745
        Args:
X
Xin Pan 已提交
4746 4747
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4748

Y
yuyang18 已提交
4749 4750 4751 4752 4753 4754
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4755
        res = Program()
4756
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4757 4758 4759 4760

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4761
        if prune_read_op:
4762 4763 4764 4765 4766 4767 4768 4769 4770
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4771
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4772 4773

        # change all `is_test` attributes to True
M
minqiyang 已提交
4774
        for i in six.moves.range(res.desc.num_blocks()):
4775
            block = res.desc.block(i)
M
minqiyang 已提交
4776
            for j in six.moves.range(block.op_size()):
4777 4778
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4779
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4780 4781 4782
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4783
        res._sync_with_cpp()
4784 4785
        return res

4786 4787
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4788
        """
4789 4790 4791
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4792

4793 4794
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4795

J
Jiabin Yang 已提交
4796
        Args:
Y
yuyang18 已提交
4797

J
Jiabin Yang 已提交
4798
            binary_str_type (str): the binary prootbuf string.
4799

J
Jiabin Yang 已提交
4800 4801
        Returns:
            Program: A deserialized Program.
4802 4803 4804 4805

        Examples:
            .. code-block:: python

4806 4807 4808 4809
                import paddle
                import paddle.static as static

                paddle.enable_static()
4810

4811 4812 4813 4814
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4815

4816
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4817

4818
                    z = paddle.matmul(x=x, y=y)
4819

4820 4821
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4822

4823
                    print(static.default_main_program())
4824
                    print(prog_restored)
Y
yuyang18 已提交
4825
        """
4826 4827
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4828
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4829
        p._sync_with_cpp()
4830
        return p
Y
Yu Yang 已提交
4831

4832
    @staticmethod
4833
    def _construct_from_desc(desc):
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4849 4850
    @property
    def random_seed(self):
Y
yuyang18 已提交
4851
        """
J
Jiabin Yang 已提交
4852
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4853 4854
        the random seed from random device.

4855 4856
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4857 4858 4859

        Returns:
            int64: Random seed in current Program
4860

4861 4862 4863 4864

        Examples:
            .. code-block:: python

4865 4866 4867
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4868

4869 4870 4871
                paddle.enable_static()

                prog = static.default_main_program()
4872
                random_seed = prog.random_seed
4873
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4874 4875 4876
                print(random_seed)
                ## 0
                ## the default random seed is 0
4877

4878
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4879
                prog.random_seed = 1
4880
                z_var = F.dropout(x_var, 0.7)
4881

4882
                print(prog.random_seed)
4883 4884
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4885
        """
D
dzhwinter 已提交
4886 4887
        return self._seed

Q
qiaolongfei 已提交
4888 4889
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4890
        """
4891 4892
        The number of :ref:`api_guide_Block_en`  in this Program.

4893 4894
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4895 4896 4897

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4898

4899 4900 4901 4902

        Examples:
            .. code-block:: python

4903 4904 4905 4906
                import paddle
                import paddle.static as static

                paddle.enable_static()
4907

4908
                prog = static.default_main_program()
4909 4910
                num_blocks = prog.num_blocks
                print(num_blocks)
4911

4912 4913
                # print result:
                # 1
Y
yuyang18 已提交
4914
        """
Q
qiaolongfei 已提交
4915 4916
        return self.desc.num_blocks()

D
dzhwinter 已提交
4917 4918 4919
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4920 4921 4922
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4923 4924
        self._seed = seed

Y
Yu Yang 已提交
4925
    def __repr__(self):
4926
        return self.__str__()
4927

Y
Yu Yang 已提交
4928
    def global_block(self):
Y
yuyang18 已提交
4929
        """
4930 4931
        .. note::
            This API has no effect in Dygraph mode.
4932 4933 4934

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4935 4936
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4937

4938 4939 4940 4941

        Examples:
            .. code-block:: python

4942 4943 4944 4945
                import paddle
                import paddle.static as static

                paddle.enable_static()
4946

4947
                prog = static.default_main_program()
4948 4949
                gb_block = prog.global_block()
                print(gb_block)
4950

Y
yuyang18 已提交
4951
        """
Y
Yu Yang 已提交
4952 4953
        return self.blocks[0]

Q
Qiao Longfei 已提交
4954
    def block(self, index):
Y
yuyang18 已提交
4955
        """
4956 4957
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4958

4959 4960
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4961 4962
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4963

J
Jiabin Yang 已提交
4964 4965
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4966 4967 4968 4969

        Examples:
            .. code-block:: python

4970 4971 4972 4973
                import paddle
                import paddle.static as static

                paddle.enable_static()
4974

4975
                prog = static.default_main_program()
4976 4977
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4978
        """
Q
Qiao Longfei 已提交
4979 4980
        return self.blocks[index]

Y
Yu Yang 已提交
4981
    def current_block(self):
Y
yuyang18 已提交
4982
        """
4983 4984
        .. note::
            This API has no effect in Dygraph mode.
4985

J
Jiabin Yang 已提交
4986 4987
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4988

J
Jiabin Yang 已提交
4989 4990
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4991

4992 4993 4994
        Examples:
            .. code-block:: python

4995 4996 4997 4998
                import paddle
                import paddle.static as static

                paddle.enable_static()
4999

5000
                prog = static.default_main_program()
5001 5002
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5003
        """
Y
Yu Yang 已提交
5004 5005
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5006
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5007 5008 5009 5010 5011
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5012

Y
yuyang18 已提交
5013 5014 5015 5016 5017
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5018
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5019 5020 5021
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5022 5023 5024 5025
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5026
    def _rollback(self):
Y
yuyang18 已提交
5027 5028 5029 5030 5031
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5032 5033
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5034
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5045 5046 5047
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5048
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5049

W
Wu Yi 已提交
5050
    def _copy_param_info_from(self, other):
5051
        """
5052
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5053

Y
yuyang18 已提交
5054 5055 5056
        Notes: This is a very low level API. Users should not invoke it
        directly.

5057 5058 5059 5060 5061 5062 5063
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5064 5065 5066
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5067

W
Wu Yi 已提交
5068
        self.global_block()._copy_param_info_from(other.global_block())
5069

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5081 5082 5083
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5084 5085
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5086
        self._parameters_on_pservers = other._parameters_on_pservers
5087
        self._endpoints = other._endpoints
5088
        self._ps_endpoint = other._ps_endpoint
5089 5090
        self._distributed_lookup_table = other._distributed_lookup_table

5091
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5092 5093
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5094

Y
yuyang18 已提交
5095 5096 5097
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5098 5099
        Args:
            other(Program): Other program
5100 5101 5102 5103
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5104 5105 5106 5107 5108

        Returns:
            None
        """
        if not isinstance(other, Program):
5109 5110 5111
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5112

5113 5114 5115 5116 5117
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5118 5119 5120

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5121 5122
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5123
            for var in list(block.vars.values()):
5124 5125 5126 5127 5128 5129 5130
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5131

5132
    def list_vars(self):
Y
yuyang18 已提交
5133
        """
5134
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5135

J
Jiabin Yang 已提交
5136
        Returns:
5137
            iterable Tensors: The Generator will yield every Tensor in this program.
5138 5139 5140 5141

        Examples:
            .. code-block:: python

5142 5143
                import paddle
                import paddle.static as static
5144

5145 5146 5147 5148 5149
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5150 5151
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5152

5153 5154
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5155
        """
5156
        for each_block in self.blocks:
5157
            for each_var in list(each_block.vars.values()):
5158 5159
                yield each_var

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5170 5171 5172 5173
                import paddle
                import paddle.static as static

                paddle.enable_static()
5174

5175 5176
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5177
                hidden = static.nn.fc(x=data, size=10)
5178 5179
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5180 5181 5182 5183 5184 5185 5186

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5187 5188
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5199

5200
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5201
class Parameter(Variable):
5202
    """
5203
    Parameter is derived from Variable. A parameter is a persistable
5204
    Variable, and will be updated by optimizers after each iteration.
5205
    The training of a neural network is essentially the updating of
5206 5207
    its parameters.

5208
    Relative to a general Variable, a Parameter has several its own
5209 5210
    member variables:

5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5221 5222
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5223 5224
    """

5225 5226 5227 5228 5229 5230
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5231 5232 5233 5234 5235
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5236
        if len(shape) == 0:
5237 5238
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5239 5240 5241

        for each in shape:
            if each < 0:
5242 5243 5244
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5245 5246

        Variable.__init__(
5247 5248 5249 5250 5251 5252 5253
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5254 5255 5256 5257
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5258 5259
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5260
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5261

5262 5263
        self.need_clip = kwargs.get('need_clip', True)

5264 5265
        self.is_distributed = False

F
fengjiayi 已提交
5266
    def __str__(self):
5267
        return self._to_readable_code()
F
fengjiayi 已提交
5268

F
update  
fengjiayi 已提交
5269 5270 5271
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5272

F
update  
fengjiayi 已提交
5273 5274 5275 5276 5277 5278 5279 5280
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5281 5282 5283 5284 5285 5286 5287 5288 5289
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5290 5291 5292 5293 5294 5295
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5296
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5297
            for attr_name in additional_attr:
5298 5299
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5300 5301
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5302 5303 5304 5305
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5306

5307 5308
class ParamBase(core.VarBase):
    """
5309 5310 5311
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5312 5313 5314
    The training of a neural network is essentially the updating of
    its ParamBase.

5315
    Relative to a general Tensor, a ParamBase has several its own
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5328 5329
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5360 5361
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5362 5363 5364 5365 5366 5367 5368

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5369 5370
        self.need_clip = kwargs.get('need_clip', True)

5371
        self.is_distributed = False
5372
        # self.block = default_main_program().global_block()
5373

5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5387
    def __str__(self):
5388
        """
5389
        Convert a ParamBase object to a readable string.
5390

5391
        Returns(str): A readable string.
5392 5393 5394 5395

        Examples:
            .. code-block:: python

5396
                import paddle
5397 5398 5399 5400 5401 5402 5403
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5404
        """
5405 5406
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5407

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
                
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5438 5439 5440
    __repr__ = __str__


Y
Yu Yang 已提交
5441
# program is a global instance.
Y
Yu Yang 已提交
5442 5443
_main_program_ = Program()
_startup_program_ = Program()
5444

5445

5446
def default_startup_program():
Y
Yu Yang 已提交
5447
    """
Y
yuyang18 已提交
5448 5449
    Get default/global startup program.

5450 5451
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5452

5453 5454
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5455

5456 5457
    Returns:
        Program: current default startup program.
5458

5459
    Returns type: 
5460 5461 5462 5463

    Examples:
        .. code-block:: python

5464
            import paddle
5465

5466
            paddle.enable_static()
5467 5468 5469 5470
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5471
    """
Y
Yu Yang 已提交
5472
    return _startup_program_
5473

5474

5475
def default_main_program():
Y
Yu Yang 已提交
5476
    """
5477
    This API can be used to get ``default main program`` which store the 
5478
    descriptions of Ops and tensors.
T
tangwei12 已提交
5479

5480
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5481
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5482

5483 5484
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5485
    :code:`default_main_program` when the program is not specified.
5486

5487
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5488

Y
Yu Yang 已提交
5489
    Returns:
5490
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5491 5492 5493 5494

    Examples:
        ..  code-block:: python

5495
            import paddle
5496

5497
            paddle.enable_static()
5498
            # Sample Network:
5499 5500 5501
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5502

5503 5504 5505
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5506
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5507
    """
Y
Yu Yang 已提交
5508
    return _main_program_
Y
Yu Yang 已提交
5509 5510 5511 5512 5513


def switch_main_program(program):
    """
    Switch the main program to a new program.
5514

Y
Yu Yang 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5529
    Switch the startup program to a new program
Y
Yu Yang 已提交
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5542
@signature_safe_contextmanager
Y
Yu Yang 已提交
5543 5544
def program_guard(main_program, startup_program=None):
    """
5545 5546
    :api_attr: Static Graph

5547 5548 5549
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5550

G
guofei 已提交
5551
    Args:
5552 5553
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5554 5555 5556 5557
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5558
    Examples:
5559
       .. code-block:: python
T
tangwei12 已提交
5560

5561
          import paddle
Y
yuyang18 已提交
5562

5563 5564 5565 5566 5567
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5568
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5569 5570 5571

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5572

Y
Yu Yang 已提交
5573
    Examples:
5574
       .. code-block:: python
Y
yuyang18 已提交
5575

5576
          import paddle
5577

5578 5579 5580 5581 5582
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5583

Y
Yu Yang 已提交
5584
    """
5585
    from .data_feeder import check_type
5586 5587
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5588 5589
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5590
        check_type(startup_program, 'startup_program', Program,
5591
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5592
        startup_program = switch_startup_program(startup_program)
5593 5594 5595 5596 5597 5598
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5599 5600


W
Wu Yi 已提交
5601
def _get_var(name, program=None):
X
xuwei06 已提交
5602
    """
Y
yuyang18 已提交
5603
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5604

X
xuwei06 已提交
5605 5606 5607
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5608
        If None, default_global_program() will be used.
X
xuwei06 已提交
5609 5610 5611 5612 5613 5614 5615

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5616
    assert isinstance(program, Program)
X
xuwei06 已提交
5617 5618

    return program.global_block().var(name)
5619 5620


S
rename  
sneaxiy 已提交
5621
@signature_safe_contextmanager
L
lujun 已提交
5622 5623 5624 5625
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5626
    core._switch_tracer(tracer)
M
minqiyang 已提交
5627

5628 5629 5630 5631 5632
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5633 5634


S
rename  
sneaxiy 已提交
5635
@signature_safe_contextmanager
L
lujun 已提交
5636
def _dygraph_place_guard(place):
5637 5638 5639
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5640

5641 5642 5643
    try:
        yield
    finally:
5644
        _global_expected_place_ = tmp_place
5645 5646 5647 5648


def load_op_library(lib_filename):
    """
5649
    :api_attr: Static Graph
T
tangwei12 已提交
5650

5651 5652 5653
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5654
    Please note, the type of custom operators can't have the same type
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5721 5722 5723 5724 5725
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5726 5727 5728 5729
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5730 5731
    if index:
        device = ":".join([device, index])
5732
    pre_device = switch_device(device)
5733 5734 5735 5736
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
                          core.CUDAPinnedPlace, core.CUDAPlace)):
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
    if (place == "device"):
        return core.Place()

    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
    raise ValueError(
        "paddle support CPUPlace, CUDAPlace,CUDAPinnedPlace and XPUPlace, Please check your Place Input"
    )


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret