framework.py 192.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'load_op_library',
55
    'require_version',
56
    'device_guard',
G
guofei 已提交
57 58
    'set_flags',
    'get_flags',
59
]
Y
Yu Yang 已提交
60

Q
qiaolongfei 已提交
61 62 63 64
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
65 66
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
67
_dygraph_tracer_ = None
68
_global_expected_place_ = None
69
_current_device = None
70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
182

183 184 185 186 187 188 189
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
190 191

    Returns:
192
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
193 194 195 196

    Examples:
        .. code-block:: python

197 198 199 200 201 202 203 204
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
205 206

    """
L
lujun 已提交
207
    return _dygraph_tracer_ is not None
208 209


210 211 212
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
213
        ), "We don't support %s in imperative mode" % func.__name__
214 215 216 217 218 219 220 221
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
222 223 224 225 226 227 228 229 230
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
231
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
232 233 234 235 236
        return func(*args, **kwargs)

    return __impl__


237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


272 273
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
274
static_only = wrap_decorator(_static_only_)
275
fake_interface_only = wrap_decorator(_fake_interface_only_)
276 277


L
lujun 已提交
278 279
def _dygraph_tracer():
    return _dygraph_tracer_
280

W
Wu Yi 已提交
281

M
minqiyang 已提交
282
def _current_expected_place():
283 284 285
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
286 287 288 289 290 291 292 293 294 295 296
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
313 314


L
Leo Chen 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
332
def _cpu_num():
333
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
334 335 336 337 338 339 340 341
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
342
        os.environ['CPU_NUM'] = str(1)
343
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
344 345 346 347 348 349 350 351 352 353
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
354 355


356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
371 372 373 374
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

375
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
376 377 378 379

    Examples:
        .. code-block:: python

380 381
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
382 383 384 385
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
386
def cuda_places(device_ids=None):
L
lujun 已提交
387
    """
388 389 390 391
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
392
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
393 394

    If :code:`device_ids` is None, environment variable of
395
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
396
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
397
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
398
    If :code:`FLAGS_selected_gpus` is not set, all visible
399
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
400 401

    If :code:`device_ids` is not None, it should be the device
402
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
403
    the returned list would be 
C
Chen Weihang 已提交
404
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
405
    
406 407
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
408 409

    Returns:
C
Chen Weihang 已提交
410
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
411 412 413 414

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
415 416 417 418 419 420
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
421 422

    """
S
sneaxiy 已提交
423 424 425
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
426
        device_ids = _cuda_ids()
S
sneaxiy 已提交
427 428 429 430 431 432
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
433
    """
C
Chen Weihang 已提交
434
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
435 436 437
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
438 439
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
440 441
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
442

443 444
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
445 446

    Returns:
C
Chen Weihang 已提交
447
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
448 449 450 451

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
452 453 454 455 456 457
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
458 459
    """

S
sneaxiy 已提交
460 461 462 463 464 465
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
466
    """
467
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
468 469 470

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
471 472 473 474
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
475

476 477
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
478 479

    Returns:
480
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
481 482 483 484

    Examples:
        .. code-block:: python

485
            import paddle.fluid as fluid
L
lujun 已提交
486 487 488 489 490
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
491 492 493
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
494 495
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
496 497


498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
524
@signature_safe_contextmanager
525 526
def name_scope(prefix=None):
    """
527 528
    :api_attr: Static Graph

529
    Generate hierarchical name prefix for the operators in Static Graph.
530

T
Tao Luo 已提交
531 532 533
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
534
        Don't use it in dygraph, since it will cause memory leak.
535 536

    Args:
T
Tao Luo 已提交
537
        prefix(str, optional): prefix. Default is none.
538 539 540

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
541

542 543 544
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
545
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
546
             b = a + 1
547
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
548
                c = b * 1
549
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
550
                d = c / 1
551 552 553
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
554 555 556
                g = f - 1

          # Op are created in the default main program.  
557
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
573 574
    """
    # TODO(panyx0718): Only [0-9a-z].
575
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
576 577 578
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
579
        assert prefix, "namescope prefix can not be empty."
580 581
        global _name_scope
        _name_scope = _name_scope.child(prefix)
582 583 584 585
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
586 587 588 589 590 591 592 593 594 595 596 597


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
598 599 600
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
601 602 603 604


def grad_var_name(var_name):
    """
605 606
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
607 608 609
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
610

611
def convert_np_dtype_to_dtype_(np_dtype):
612 613
    """
    Convert the data type in numpy to the data type in Paddle
614

615
    Args:
616
        np_dtype(np.dtype): the data type in numpy.
617

618 619
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
620 621

    """
622 623
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
624
        return core.VarDesc.VarType.FP32
625
    elif dtype == np.float64:
626
        return core.VarDesc.VarType.FP64
627
    elif dtype == np.float16:
628
        return core.VarDesc.VarType.FP16
629
    elif dtype == np.int32:
630
        return core.VarDesc.VarType.INT32
631
    elif dtype == np.int16:
632
        return core.VarDesc.VarType.INT16
633
    elif dtype == np.int64:
634
        return core.VarDesc.VarType.INT64
635
    elif dtype == np.bool:
636
        return core.VarDesc.VarType.BOOL
637
    elif dtype == np.uint16:
638 639 640
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
641 642
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
643 644
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
645 646 647 648
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
649
    else:
M
minqiyang 已提交
650
        raise ValueError("Not supported numpy dtype %s" % dtype)
651 652 653


def dtype_is_floating(dtype):
654 655 656
    """
    Check the data type is floating or not.
    Args:
657
        dtype(np.dtype|core.VarDesc.VarType): data type.
658 659 660 661 662
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
663
    if not isinstance(dtype, core.VarDesc.VarType):
664 665
        dtype = convert_np_dtype_to_dtype_(dtype)

666 667 668 669
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
670 671


Y
Yang Yang(Tony) 已提交
672
def _debug_string_(proto, throw_on_error=True):
673 674 675 676 677 678 679 680 681 682 683
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
684
    error_fields = list()
Y
Yang Yang(Tony) 已提交
685
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
686 687
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
688 689 690
    return proto.__str__()


691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
748
    target_block = default_main_program().current_block()
749 750 751 752 753 754 755 756 757 758 759

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
760
            })
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
800
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
801
                fill_constant([1], 1, force_cpu=True, out=temp_1)
802
                temp_end = target_block.create_var(dtype=slice_item.dtype)
803
                target_block.append_op(
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
843

844
    # starts
L
Leo Chen 已提交
845
    if contain_var(slice_start):
846 847 848 849 850 851 852 853
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
854 855 856 857
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
858 859 860 861 862 863 864
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
865 866 867
    else:
        attrs['ends'] = slice_end

868 869
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
870
        if contain_var(slice_step):
871 872 873 874 875 876 877
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
878 879
        else:
            attrs['strides'] = slice_step
880 881 882 883 884 885
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
886
        slice_out_var = target_block.create_var(
887 888 889
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

890
        target_block.append_op(
891 892 893 894 895 896 897
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
898
        strided_slice_out_var = target_block.create_var(
899 900 901
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
902
        target_block.append_op(
903 904 905 906 907 908 909 910
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
911
        reverse_out_var = target_block.create_var(
912 913 914
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
915
        target_block.append_op(
916 917 918 919 920 921 922 923 924 925 926
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
927
class Variable(object):
928
    """
J
Jiabin Yang 已提交
929
    **Notes**:
930
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
931

932 933
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
934 935 936
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
937
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
938 939
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
940

941
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
942
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
943

T
tianshuo78520a 已提交
944
    Most of a Variable's member variables can be set to be None. It mean
945
    it is not available or will be specified later.
946

947
    Examples:
948 949
        In Static Graph Mode:

950 951
        .. code-block:: python

952
            import paddle.fluid as fluid
953
            cur_program = fluid.Program()
954 955 956 957
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
958
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
959 960 961 962 963 964 965 966 967

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

968 969
    """

Y
Yu Yang 已提交
970 971
    def __init__(self,
                 block,
Y
Yu Yang 已提交
972
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
973 974 975 976
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
977
                 capacity=None,
Q
QI JUN 已提交
978
                 persistable=None,
F
fengjiayi 已提交
979
                 error_clip=None,
Y
Yu Yang 已提交
980
                 stop_gradient=False,
F
fengjiayi 已提交
981
                 is_data=False,
H
Huihuang Zheng 已提交
982
                 need_check_feed=False,
H
hong 已提交
983
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
984
                 **kwargs):
Y
Yu Yang 已提交
985 986
        self.block = block
        if name is None:
Y
Yu Yang 已提交
987
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
988

Y
Yu Yang 已提交
989
        if dtype is not None:
990
            if not isinstance(dtype, core.VarDesc.VarType):
991
                dtype = convert_np_dtype_to_dtype_(dtype)
992

H
hong 已提交
993 994
        self.belong_to_optimizer = belong_to_optimizer

995 996 997 998 999
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1000

1001 1002 1003
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1004

1005 1006 1007 1008 1009 1010 1011
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1012

1013
        if shape is not None:
1014
            if is_new_var:
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1056

1057 1058
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1059

1060 1061 1062 1063 1064 1065 1066
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1067

1068 1069 1070 1071
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1072

1073
    @fake_interface_only
1074 1075
    def detach(self):
        """
J
Jiabin Yang 已提交
1076
        **Notes**:
T
tianshuo78520a 已提交
1077
            **This API is ONLY available in Dygraph mode**
1078

1079
        Returns a new Variable, detached from the current graph.
1080

1081
        Returns:
J
Jiabin Yang 已提交
1082
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1083

1084

1085 1086 1087 1088 1089
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1090
                from paddle.fluid.dygraph import Linear
1091 1092 1093 1094
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1095
                    linear = Linear(32, 64)
1096
                    data = to_variable(data)
1097
                    x = linear(data)
1098 1099 1100
                    y = x.detach()

        """
1101
        pass
1102

1103
    @fake_interface_only
1104
    def numpy(self):
1105
        """
J
Jiabin Yang 已提交
1106
        **Notes**:
T
tianshuo78520a 已提交
1107
            **This API is ONLY available in Dygraph mode**
1108

J
Jiabin Yang 已提交
1109
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1110 1111 1112 1113 1114

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1115
            ndarray: dtype is same as current Variable
1116 1117 1118 1119 1120 1121

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1122
                from paddle.fluid.dygraph import Linear
1123 1124 1125 1126
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1127
                    linear = Linear(32, 64)
1128
                    data = to_variable(data)
1129
                    x = linear(data)
1130 1131 1132
                    print(x.numpy())

        """
1133
        pass
1134

1135
    @fake_interface_only
1136 1137
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1138
        **Notes**:
T
tianshuo78520a 已提交
1139
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1151
                from paddle.fluid.dygraph import Linear
1152 1153
                import numpy as np

1154
                data = np.ones([3, 1024], dtype='float32')
1155
                with fluid.dygraph.guard():
1156
                    linear = fluid.dygraph.Linear(1024, 4)
1157
                    t = to_variable(data)
1158
                    linear(t)  # call with default weight
1159
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1160 1161
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1162 1163

        """
1164
        pass
1165

1166
    @fake_interface_only
1167
    def backward(self, retain_graph=False):
1168
        """
J
Jiabin Yang 已提交
1169
        **Notes**:
T
tianshuo78520a 已提交
1170
            **This API is ONLY available in Dygraph mode**
1171

1172
        Run backward of current Graph which starts from current Tensor.
1173

J
Jiabin Yang 已提交
1174
        Args:
1175 1176 1177 1178
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1179

J
Jiabin Yang 已提交
1180 1181
        Returns:
            NoneType: None
1182 1183 1184 1185 1186

        Examples:
            .. code-block:: python

                import numpy as np
1187 1188
                import paddle
                paddle.disable_static()
1189 1190

                x = np.ones([2, 2], np.float32)
1191 1192 1193 1194 1195 1196 1197
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1198 1199
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1200
                loss.backward()
1201 1202

        """
1203
        pass
1204

1205
    @fake_interface_only
1206
    def gradient(self):
1207
        """
J
Jiabin Yang 已提交
1208
        **Notes**:
T
tianshuo78520a 已提交
1209
            **This API is ONLY available in Dygraph mode**
1210 1211 1212

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1213
        Returns:
1214
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1215 1216 1217 1218 1219 1220 1221

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1222
                # example1: return ndarray
1223 1224 1225 1226 1227 1228 1229 1230 1231
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1232
                    loss2.backward()
1233 1234
                    print(loss2.gradient())

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1248
        """
1249
        pass
1250

1251
    @fake_interface_only
1252
    def clear_gradient(self):
1253
        """
J
Jiabin Yang 已提交
1254
        **Notes**:
T
tianshuo78520a 已提交
1255
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1256 1257

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1258

J
Jiabin Yang 已提交
1259
        Clear  (set to ``0`` ) the Gradient of Current Variable
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1278
                    loss2.backward()
1279 1280 1281 1282 1283
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1284
        pass
X
Xin Pan 已提交
1285

1286
    def __str__(self):
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1303 1304
                import paddle
                import paddle.static as static
1305

1306 1307 1308
                paddle.enable_static()

                cur_program = static.Program()
1309 1310 1311 1312 1313 1314 1315
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1316
            var_str = "{name} : paddle.{type}.shape{shape}.astype({dtype})".\
1317 1318
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
1319
            var_str = "{name} : paddle.{type})".\
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1334

F
update  
fengjiayi 已提交
1335
    def to_string(self, throw_on_error, with_details=False):
1336 1337 1338
        """
        Get debug string.

J
Jiabin Yang 已提交
1339 1340 1341 1342 1343
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1344

1345 1346
        Returns:
            str: The debug string.
1347 1348 1349 1350 1351

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1352
                import paddle
1353

1354
                paddle.enable_static()
1355 1356 1357 1358 1359
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1360
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1361
                print("=============with detail===============")
1362
                print(new_variable.to_string(True, True))
1363
        """
F
update  
fengjiayi 已提交
1364 1365
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1366
        protostr = self.desc.serialize_to_string()
1367
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1368 1369 1370 1371
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1372 1373 1374
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1375
        return res_str
1376 1377 1378

    __repr__ = __str__

1379
    @property
1380
    def stop_gradient(self):
J
Jiabin Yang 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1396 1397
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1398 1399 1400
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1401 1402
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1403 1404 1405 1406
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1407
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1408 1409
                assert (out1.gradient() == 0).all()
        """
1410
        return self._stop_gradient
1411

1412 1413
    @stop_gradient.setter
    def stop_gradient(self, s):
1414
        self._stop_gradient = s
1415

1416 1417
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1439
        return self.desc.persistable()
1440

Y
Yu Yang 已提交
1441 1442
    @persistable.setter
    def persistable(self, p):
1443
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1444

Y
Yu Yang 已提交
1445 1446
    @property
    def name(self):
J
Jiabin Yang 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1463
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1485 1486
    @name.setter
    def name(self, new_name):
1487
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1488

Y
Yu Yang 已提交
1489 1490
    @property
    def shape(self):
J
Jiabin Yang 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1508
        # convert to tuple, make it as same as numpy API.
1509
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1510 1511

    @property
F
fengjiayi 已提交
1512
    def dtype(self):
J
Jiabin Yang 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1529
        return self.desc.dtype()
Y
Yu Yang 已提交
1530 1531 1532

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1554 1555 1556
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1557
        return self.desc.lod_level()
Y
Yu Yang 已提交
1558

Y
Yu Yang 已提交
1559 1560
    @property
    def type(self):
J
Jiabin Yang 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1577
        return self.desc.type()
Y
Yu Yang 已提交
1578

W
Wu Yi 已提交
1579
    def _set_error_clip(self, error_clip):
1580 1581 1582 1583 1584 1585 1586 1587 1588
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1589 1590
        self.error_clip = error_clip

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1631
            raise ValueError("slice step can not be zero")
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1707
    def _cloneVar(self, copy=False):
1708 1709
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1710 1711
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1712 1713 1714 1715
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1716
        new_var = self._cloneVar()
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1727
        new_var = self._cloneVar()
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1738
                return self._cloneVar(True)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1757
                return self._cloneVar(True)
1758
            index = int(item)
1759
            if (index > 0 and index >= self.shape[axis]) \
1760 1761 1762 1763 1764 1765 1766
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1767
        return _getitem_impl_(self, item)
1768

Y
Yu Yang 已提交
1769

F
fengjiayi 已提交
1770 1771 1772
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1773

1774 1775
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1776 1777 1778 1779
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1780
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1781 1782 1783 1784 1785
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1786 1787 1788 1789
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1799
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1800 1801 1802 1803 1804 1805
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1806 1807 1808 1809 1810 1811 1812 1813
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1814 1815
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1816 1817
        return self.op_proto_map[type]

1818 1819 1820 1821 1822 1823
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1824 1825 1826 1827
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1828
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1829
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1830 1831
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1832 1833
        }

F
fengjiayi 已提交
1834

X
Xin Pan 已提交
1835
class Operator(object):
1836
    """
1837 1838 1839 1840 1841 1842 1843
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1844
        type(str): The type of operator. Default None.
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1865
        Block.append_op or Block._prepend_op instead.
1866 1867 1868 1869

    Examples:
        .. code-block:: python

1870
            import paddle.fluid as fluid
1871
            cur_program = fluid.Program()
1872 1873 1874 1875 1876
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1877
    """
1878
    OP_WITHOUT_KERNEL_SET = {
1879 1880
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1881 1882
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1883
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1884
    }
1885

Y
Yu Yang 已提交
1886 1887
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1888
                 desc,
Y
Yu Yang 已提交
1889 1890 1891
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1892
                 attrs=None):
L
lujun 已提交
1893
        if in_dygraph_mode():
1894 1895
            if type is None:
                raise ValueError(
1896
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1897
            self._type = type
M
minqiyang 已提交
1898
            self.attrs = attrs if attrs else {}
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1913
                )] = self.block.program._op_role
1914 1915 1916

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1917 1918
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1919 1920 1921 1922 1923 1924 1925 1926

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1927
                    "`type` to initialized an Operator can not be None.")
1928 1929
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1930 1931 1932 1933 1934 1935 1936
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1937 1938 1939 1940 1941 1942 1943

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
1975
                        if not isinstance(in_args, (list, tuple)):
1976 1977 1978 1979 1980 1981
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1982
                        for index, arg in enumerate(in_args):
1983 1984 1985 1986
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1987
                            elif isinstance(arg, (Variable, core.VarBase)):
1988
                                in_arg_names.append(cpt.to_text(arg.name))
1989
                            else:
1990 1991 1992 1993
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1994 1995
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2020 2021 2022 2023
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2024
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2025
                        if not in_dygraph_mode():
2026 2027 2028 2029
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2048
    def _has_kernel(self, op_type):
2049 2050
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2051
    def to_string(self, throw_on_error):
2052
        """
2053 2054
        Get debug string.

2055
        Args:
2056 2057
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2058

2059 2060
        Returns:
            str: The debug string.
2061 2062

        """
2063
        protostr = self.desc.serialize_to_string()
2064
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2065 2066
        return _debug_string_(proto, throw_on_error)

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2160
    def __str__(self):
2161
        return self._to_readable_code()
2162 2163 2164

    __repr__ = __str__

F
fengjiayi 已提交
2165 2166
    @property
    def type(self):
2167
        return self.desc.type()
F
fengjiayi 已提交
2168 2169

    def input(self, name):
2170
        r"""
2171
        Get the input arguments according to the input parameter name.
2172

2173 2174
        Args:
            name(str): The input parameter name.
2175

2176 2177 2178
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2179
        """
F
fengjiayi 已提交
2180 2181
        return self.desc.input(name)

W
Wu Yi 已提交
2182
    def _rename_input(self, old_name, new_name):
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2193
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2194

W
Wu Yi 已提交
2195
    def _rename_output(self, old_name, new_name):
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2206
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2207

F
fengjiayi 已提交
2208 2209 2210 2211
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2212 2213 2214 2215 2216 2217 2218 2219
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2220
    def output(self, name):
2221
        r"""
2222
        Get output arguments by the output parameter name.
2223

2224 2225
        Args:
            name(str): The output parameter name.
2226

2227 2228 2229
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2230
        """
F
fengjiayi 已提交
2231 2232 2233 2234 2235 2236
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2237 2238 2239 2240 2241 2242 2243 2244
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2245
    def has_attr(self, name):
2246
        """
2247 2248
        Whether this Operator has the attribute with name or not.

2249
        Args:
2250
            name(str): the attribute name.
2251

2252 2253
        Returns:
            bool: True if has this attribute.
2254 2255

        """
F
fengjiayi 已提交
2256 2257 2258
        return self.desc.has_attr(name)

    def attr_type(self, name):
2259
        """
2260
        Get the type of attribute by attribute's name.
2261

2262 2263
        Args:
            name(str): the attribute name.
2264

2265 2266
        Returns:
            core.AttrType: the attribute type.
2267
        """
F
fengjiayi 已提交
2268 2269
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2270
    def _set_attr(self, name, val):
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2281 2282
        self._update_desc_attr(name, val)

2283 2284 2285
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2297 2298
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2299 2300
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2301
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2302 2303 2304 2305
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2306
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2307

F
fengjiayi 已提交
2308 2309 2310 2311 2312
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2313
        """
2314 2315
        Get the attribute by name.

2316
        Args:
2317
            name(str): the attribute name.
2318

2319 2320
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2321 2322
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2323
        return self.desc.attr(name)
Y
Yu Yang 已提交
2324

W
Wu Yi 已提交
2325
    def _block_attr_id(self, name):
2326
        """
G
gongweibao 已提交
2327
        Get the block attribute's id by name.
2328

2329 2330
        Args:
            name(str): the attribute name.
2331

2332 2333
        Returns:
            int: the block index.
2334
        """
W
Wu Yi 已提交
2335
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2336

W
Wu Yi 已提交
2337
    def _block_attr(self, name):
G
gongweibao 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2348
        id = self._block_attr_id(name)
G
gongweibao 已提交
2349 2350 2351
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2352
    def _blocks_attr(self, name):
G
gongweibao 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2363
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2364 2365 2366 2367 2368
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2369
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2380
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2381

J
JiayiFeng 已提交
2382
    def all_attrs(self):
F
fengjiayi 已提交
2383
        """
2384 2385 2386
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2387
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2388 2389 2390 2391
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2392 2393
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2394
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2395 2396 2397
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2398
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2399 2400 2401 2402
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2403 2404
        return attr_map

2405 2406 2407
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2408 2409 2410 2411

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2412 2413 2414
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2415 2416 2417 2418 2419 2420 2421 2422

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2423 2424
            return False

2425 2426 2427 2428 2429 2430
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2431

Y
Yu Yang 已提交
2432
class Block(object):
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2447
        use `Program._create_block()` to create a block.
2448 2449 2450 2451

    Examples:
        .. code-block:: python

2452 2453 2454
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2455 2456 2457 2458 2459 2460 2461 2462 2463
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2464
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2465
        self.desc = program.desc.block(idx)
2466
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2467
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2468
        self.program = program
2469
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2470

2471
    def __str__(self):
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2518

F
fengjiayi 已提交
2519 2520
    def to_string(self, throw_on_error, with_details=False):
        """
2521 2522
        Get debug string.

F
fengjiayi 已提交
2523 2524
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2525
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2526
            with_details(bool): more details about variables and parameters
2527 2528
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2529

2530 2531
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2532 2533 2534 2535
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2536
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2537 2538
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2539
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2540
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2541
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2542
            for op in self.ops:
F
fengjiayi 已提交
2543 2544
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2545 2546 2547
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2548 2549
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2550 2551
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2552 2553 2554

    __repr__ = __str__

Y
Yu Yang 已提交
2555 2556
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2557
        return self.desc.parent
Y
Yu Yang 已提交
2558

Y
Yu Yang 已提交
2559 2560 2561 2562
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2563
    def _set_forward_block_idx(self, idx):
2564 2565 2566 2567 2568 2569 2570 2571 2572
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2573
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2574

2575 2576 2577 2578 2579 2580 2581 2582
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2583 2584
    @property
    def idx(self):
Y
Yu Yang 已提交
2585
        return self.desc.id
Y
Yu Yang 已提交
2586

Q
Qiao Longfei 已提交
2587
    def var(self, name):
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2601
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2602 2603 2604
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2605 2606
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2607
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2608
        return v
Q
Qiao Longfei 已提交
2609

X
Xin Pan 已提交
2610
    def _find_var_recursive(self, name):
2611 2612 2613 2614 2615 2616 2617
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2618
            Variable: the Variable with the giving name. Or None if not found.
2619
        """
Y
Yu Yang 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2644
        return None
Y
Yu Yang 已提交
2645

X
Xin Pan 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2665

Q
Qiao Longfei 已提交
2666
    def all_parameters(self):
2667
        return list(self.iter_parameters())
2668

2669
    def iter_parameters(self):
M
minqiyang 已提交
2670
        return (item[1] for item in six.iteritems(self.vars)
2671
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2672

Y
Yu Yang 已提交
2673
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2674 2675 2676
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2677 2678 2679
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2680
        return var
Y
Yu Yang 已提交
2681

Q
Qiao Longfei 已提交
2682 2683 2684
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2685
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2686 2687
        """
        Rename variable in vars and ops' inputs and outputs
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2700
        """
M
minqiyang 已提交
2701 2702
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2703

T
typhoonzero 已提交
2704
        if not self.has_var(name):
2705
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2706 2707
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2708
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2709 2710 2711 2712 2713 2714
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2715
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2716 2717 2718 2719
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2720
        orig_var_type = v.type
M
minqiyang 已提交
2721
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2722
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2723
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2724
        if var_type == "Parameter":
L
Leo Chen 已提交
2725 2726
            if in_dygraph_mode():
                var = ParamBase(
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2737 2738
                var = Parameter(
                    self,
2739 2740 2741 2742 2743 2744 2745 2746 2747
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2748
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2749 2750
            var = Variable(
                self,
T
typhoonzero 已提交
2751
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2752 2753 2754 2755
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2756
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2757 2758 2759
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2760
        self._sync_with_cpp()
2761
        return var
T
typhoonzero 已提交
2762

2763 2764 2765
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2766
        self.desc._remove_var(cpt.to_bytes(name))
2767 2768
        del self.vars[name]

Y
Yu Yang 已提交
2769 2770
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2771
        param = None
L
Leo Chen 已提交
2772
        if in_dygraph_mode():
2773
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2774 2775
        else:
            param = Parameter(global_block, *args, **kwargs)
2776 2777 2778 2779 2780 2781
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2782
        if 'initializer' in kwargs:
2783 2784 2785 2786 2787

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2788 2789 2790 2791 2792
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2804
                # TODO already inited, do nothing, should log a warning
2805 2806 2807
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2808
        return param
Y
Yu Yang 已提交
2809

Y
Yu Yang 已提交
2810
    def append_op(self, *args, **kwargs):
2811 2812 2813 2814 2815 2816
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2817
        if in_dygraph_mode():
2818
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2819
            type = kwargs.get("type", None)
2820 2821 2822
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2823
                type=type,
M
minqiyang 已提交
2824 2825
                inputs=None,
                outputs=None,
2826
                attrs=attrs)
2827

M
minqiyang 已提交
2828 2829 2830
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2831
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2832 2833

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2834
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2835 2836
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2837
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2838
        else:
2839 2840 2841 2842 2843 2844 2845 2846 2847
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2848
            self.ops.append(op)
M
minqiyang 已提交
2849

2850 2851
        return op

W
Wu Yi 已提交
2852
    def _insert_op(self, index, *args, **kwargs):
2853 2854 2855 2856 2857 2858 2859 2860 2861
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2862 2863
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2864 2865 2866 2867
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2885 2886 2887 2888 2889 2890 2891 2892 2893
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2894 2895
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2896
        self.desc._remove_op(index, index + 1)
2897 2898
        del self.ops[index]

W
Wu Yi 已提交
2899
    def _slice_ops(self, start, end):
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2910
        return self.ops[start:end]
Y
Yancey1989 已提交
2911

W
Wu Yi 已提交
2912
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2913
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2914 2915
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2916
            op = Operator(
J
Jiabin Yang 已提交
2917
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2918

J
Jiabin Yang 已提交
2919
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2920
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2921 2922
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2923
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2924
        else:
2925 2926 2927 2928 2929 2930 2931 2932
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2933
            self.ops.insert(0, op)
2934

Y
Yu Yang 已提交
2935 2936
        return op

W
Wu Yi 已提交
2937
    def _sync_with_cpp(self):
2938
        """
2939 2940
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2941
        """
Q
Qiao Longfei 已提交
2942 2943 2944 2945 2946
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2947
        # sync variables removed from c++ end
2948
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2949
            if not self.desc.find_var(cpt.to_bytes(var)):
2950 2951
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2952
        # sync operators from cpp
2953 2954 2955 2956
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2973 2974 2975 2976 2977

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2978
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2979 2980 2981 2982 2983 2984 2985

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2999 3000 3001 3002
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3003
    def _copy_param_info_from(self, other):
3004
        """
3005 3006
        Copy the information of parameters from the other block.

3007
        Args:
3008 3009 3010 3011 3012
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3013 3014 3015 3016 3017

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3018 3019
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3020
        for p in other.iter_parameters():
3021 3022 3023
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3024 3025
                # if the Parameter is pruned, v may be None
                continue
3026
            assert isinstance(v, Variable)
3027
            new_p = None
L
Leo Chen 已提交
3028 3029
            if in_dygraph_mode():
                new_p = ParamBase(
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3041 3042
                new_p = Parameter(
                    block=self,
3043 3044 3045
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3046 3047
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3048 3049 3050 3051 3052 3053
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3054 3055
            self.vars[new_p.name] = new_p

3056
    def _clone_variable(self, var, force_persistable=True):
3057 3058
        """
        Clone a variable into current block.
3059

3060 3061
        Args:
            var: the variable to be cloned.
3062 3063 3064
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3065 3066

        Returns:
3067
            Variable: the new  variable cloned from 'var' in current block.
3068 3069
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3070 3071 3072 3073 3074
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3075 3076
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3077
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3078 3079 3080 3081 3082 3083
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3084
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3085 3086
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3087 3088 3089 3090 3091 3092 3093
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3094
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3095 3096
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3097
        return ret_var
3098

Y
Yu Yang 已提交
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3195
    def remove_input_by_id(self, node_id):
3196 3197 3198 3199 3200 3201
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3202
        self.node.remove_input(node_id)
3203

3204
    def remove_input(self, node):
3205 3206 3207 3208
        """
        Remove a node from inputs.

        Args:
3209
            node(IrNode): the node being removed.
3210
        """
3211
        self.node.remove_input(node.node)
3212

3213
    def append_input(self, node):
3214 3215 3216 3217
        """
        Append a node in inputs.

        Args:
3218
            node(IrNode): the node being appended.
3219
        """
3220
        self.node.append_input(node.node)
3221 3222 3223 3224 3225 3226 3227 3228

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3229
    def remove_output_by_id(self, node_id):
3230 3231 3232 3233 3234 3235
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3236
        self.node.remove_output(node_id)
3237

3238
    def remove_output(self, node):
3239 3240 3241 3242
        """
        Remove a node from outputs.

        Args:
3243
            node(IrNode): the node being removed.
3244
        """
3245
        self.node.remove_output(node.node)
3246

3247
    def append_output(self, node):
3248 3249 3250 3251
        """
        Append a node in outputs.

        Args:
3252
            node(IrNode): the node being appended.
3253
        """
3254
        self.node.append_output(node.node)
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3302
            "The node variable description can not be None."
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3313
            "The node variable description can not be None."
3314 3315
        return self.node.var().persistable()

3316 3317 3318 3319 3320 3321 3322 3323
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3324
            "The node variable description can not be None."
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3335
            "The node variable description can not be None."
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3346
            "The node variable description can not be None."
3347 3348
        return self.node.var().shape()

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3396
            "The node operator description can not be None."
3397 3398
        self.node.op()._rename_input(old_input_name, new_input_name)

3399 3400 3401 3402 3403 3404 3405 3406 3407
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3408
            "The node operator description can not be None."
3409 3410
        self.node.op()._rename_output(old_output_name, new_output_name)

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3422
            "The node operator description can not be None."
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3436
            "The node operator description can not be None."
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3447
            "The node operator description can not be None."
3448 3449
        return self.node.op().set_type(new_type)

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3465
            "The node operator description can not be None."
3466 3467 3468 3469
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3470
                all(isinstance(v, Block) for v in val):
3471 3472
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3473
                isinstance(val, core.ProgramDesc):
3474 3475 3476 3477
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3478 3479 3480 3481 3482 3483 3484 3485
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3486
            "The node operator description can not be None."
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3497
            "The node operator description can not be None."
3498 3499
        return self.node.op().output_arg_names()

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3521 3522
class IrGraph(object):
    """
3523
    Python IrGraph. Beneath it is a core.Graph, which is used for
3524
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3525 3526
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3527 3528 3529 3530
    """

    def __init__(self, graph, for_test=False):
        """
3531 3532
        Construct an IrGraph using core.Graph.

3533 3534 3535 3536 3537 3538 3539 3540 3541
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3542 3543 3544 3545
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3546 3547 3548
        Warns:
            The method only clones the graph structure, not its attributes.

3549 3550 3551
        Returns:
            IrGraph: A new and duplicated graph.
        """
3552
        g = self.graph.clone()
3553 3554
        return IrGraph(g, self._for_test)

3555
    def is_test(self):
3556 3557 3558
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3559 3560
        return self._for_test

W
WangZhen 已提交
3561
    def all_nodes(self):
3562 3563 3564
        """
        Return all nodes included in the graph as a set.
        """
3565
        return {IrNode(node) for node in self.graph.nodes()}
3566

3567
    def all_var_nodes(self):
3568 3569 3570
        """
        Return all variable nodes included in the graph as a set.
        """
3571
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3572

3573
    def all_persistable_nodes(self):
3574 3575 3576
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3577 3578 3579 3580 3581
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3582
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3583

3584
    def all_op_nodes(self):
3585 3586 3587
        """
        Return all operator nodes included in the graph as a set.
        """
3588
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3589

3590
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3602
            IrVarNode: the created persistable variable node.
3603
        """
3604 3605 3606 3607 3608
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3609
        return IrVarNode(self.graph.create_var_node(var_desc))
3610 3611

    def create_var_node(self, name, var_type, shape, var_dtype):
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3623
            IrVarNode: the created variable node.
3624 3625
        """

3626 3627 3628 3629
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3630
        return IrVarNode(self.graph.create_var_node(var_desc))
3631

3632 3633 3634 3635 3636 3637
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3638
    def create_var_node_from_desc(self, var_desc):
3639 3640 3641 3642 3643 3644 3645 3646
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3647
            IrVarNode: the created variable node.
3648
        """
3649
        return IrVarNode(self.graph.create_var_node(var_desc))
3650 3651

    def create_op_node(self, op_type, attrs, inputs, outputs):
3652 3653 3654 3655 3656 3657 3658
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3659
            outputs(dict): the outputs of the operator node.
3660 3661

        Returns:
3662
            IrOpNode: the created operator node.
3663
        """
3664 3665
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3666
        for attr, value in six.iteritems(attrs):
3667
            self._update_desc_attr(op_desc, attr, value)
3668
        for input_name, var_nodes in six.iteritems(inputs):
3669 3670 3671 3672
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3673
        for output_name, var_nodes in six.iteritems(outputs):
3674 3675 3676 3677
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3678
        return IrOpNode(self.graph.create_op_node(op_desc))
3679 3680

    def create_op_node_from_desc(self, op_desc):
3681 3682 3683 3684 3685 3686 3687
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3688
            IrOpNode: the created operator node.
3689
        """
3690
        return IrOpNode(self.graph.create_op_node(op_desc))
3691 3692

    def update_input_link(self, old_input_node, new_input_node, op_node):
3693 3694 3695 3696
        """
        Update the input's link of a operator node.

        Args:
3697 3698 3699
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3700
        """
3701
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3702 3703
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3704 3705 3706 3707
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3708
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3720 3721
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3722 3723 3724 3725 3726 3727
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3728
    def link_to(self, node_in, node_out):
3729 3730 3731 3732
        """
        Connect two nodes.

        Args:
3733 3734
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3735
        """
3736
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3737
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3738 3739
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3740 3741

    def safe_remove_nodes(self, remove_nodes):
3742 3743 3744 3745 3746 3747 3748
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3749
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3750 3751 3752 3753
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3754 3755
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3756

Z
Zhen Wang 已提交
3757 3758 3759 3760 3761 3762 3763 3764
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3765
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3766 3767 3768 3769
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3770
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3771 3772 3773
                        ]
                    else:
                        var_nodes[each_var_name].append(
3774 3775
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3776 3777
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3778
    def has_circle(self):
3779 3780 3781 3782 3783 3784
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3785 3786 3787
        return core.has_circle(self.graph)

    def graph_num(self):
3788 3789 3790 3791 3792 3793
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3794 3795 3796
        return core.graph_num(self.graph)

    def topology_sort(self):
3797 3798 3799
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3800
        Notes: the `graph` can not contain a circle.
3801 3802

        Returns:
Z
Zhen Wang 已提交
3803
            list(IrNode): nodes in topology order.
3804
        """
3805
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3806
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3807 3808

    def build_adjacency_list(self):
3809 3810 3811 3812
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3813
            dict{IrNode: set(IrNode)}: the adjacency list.
3814
        """
3815 3816 3817 3818 3819
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3820

3821 3822 3823 3824 3825 3826 3827 3828
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3829
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3830 3831 3832 3833 3834
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3835 3836 3837
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3838
                                          + ' -o ' + pdf_save_path, shell=True)
3839 3840 3841 3842 3843
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3844
        remove_ctr_vars = set()
3845
        if remove_ctr_var:
3846
            for node in self.all_var_nodes():
3847 3848 3849
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3850 3851
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3852 3853
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3854 3855 3856 3857 3858 3859
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3860 3861 3862 3863
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3864 3865
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3866 3867 3868 3869 3870 3871 3872
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3873 3874 3875
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3876
        WARN: When the graph includes backward operator nodes, the
3877 3878 3879 3880 3881 3882
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3883
        convert_pass = core.get_pass('graph_to_program_pass')
3884 3885
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3886 3887 3888 3889
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3917
class Program(object):
D
dzhwinter 已提交
3918
    """
3919
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3920
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3921
    it will contain nested block.
3922

J
Jiabin Yang 已提交
3923 3924 3925
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3926

J
Jiabin Yang 已提交
3927
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3928
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3929 3930 3931 3932 3933 3934 3935
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3936
    **Notes**:
3937 3938 3939
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3940 3941

    Returns:
J
Jiabin Yang 已提交
3942
        Program: An empty Program.
D
dzhwinter 已提交
3943 3944

    Examples:
3945 3946
        .. code-block:: python

3947 3948 3949 3950
            import paddle
            import paddle.static as static

            paddle.enable_static()
3951

3952 3953 3954 3955 3956
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
3957
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
3958 3959 3960

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3961 3962 3963

    """

3964 3965
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3966 3967
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3968 3969
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3970
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3971
        self.__op_role_var = []
T
tangwei12 已提交
3972

3973 3974
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3975
        self._is_distributed = False
3976
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3977
        self._is_chief = False
3978 3979 3980
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3981
        self._endpoints = []
3982 3983 3984
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3985
        self._trainers_endpoints = []
3986
        # the distributed lookup table names
T
tangwei12 已提交
3987
        self._distributed_lookup_table = None
3988 3989 3990

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3991 3992
        self._use_lamb = False

3993 3994 3995
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3996

3997 3998 3999
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4000
        self._program_config = None
4001

H
hutuxian 已提交
4002 4003 4004
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4005 4006 4007
        # appending gradients times
        self._appending_grad_times = 0

4008 4009 4010 4011
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4012 4013 4014
        # compiled program, i.e. Graph
        self._graph = None

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4025 4026
                import paddle
                import paddle.static as static
4027

4028 4029 4030
                paddle.enable_static()

                prog = static.default_main_program()
4031 4032 4033 4034 4035
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4036
                prog1 = static.default_main_program()
4037 4038 4039 4040 4041 4042 4043 4044
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4045
    @property
4046
    def _op_role(self):
Y
yuyang18 已提交
4047 4048 4049 4050 4051 4052 4053 4054
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4055
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4056 4057 4058 4059
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4060 4061
        return self._current_role

4062 4063
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4064 4065 4066
        self._current_role = role

    @property
4067
    def _op_role_var(self):
Y
yuyang18 已提交
4068
        """
4069
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4070

4071
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4072 4073 4074

        Notes: This is a very low-level API. Users should not use it directly.
        """
4075
        return self.__op_role_var
Y
yuyang18 已提交
4076

4077
    @signature_safe_contextmanager
4078 4079 4080 4081 4082
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4083 4084 4085 4086
        try:
            yield
        finally:
            self._current_role = tmp_role
4087

S
rename  
sneaxiy 已提交
4088
    @signature_safe_contextmanager
W
Wu Yi 已提交
4089
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4090 4091 4092 4093 4094 4095 4096
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4097
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4098 4099 4100

        Examples:

4101
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4102
            >>> p, g = backward(...)
W
Wu Yi 已提交
4103
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4104 4105
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4106
        tmp_role = self._current_role
4107
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4108

Y
yuyang18 已提交
4109 4110
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4111
        self.__op_role_var = [
4112 4113 4114
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4115 4116 4117 4118 4119
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4120

S
rename  
sneaxiy 已提交
4121
    @signature_safe_contextmanager
X
Xin Pan 已提交
4122
    def _lr_schedule_guard(self, is_with_opt=False):
4123 4124 4125 4126 4127 4128 4129
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4130 4131 4132 4133
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4134 4135 4136

        Examples:

4137
            >>> import paddle.fluid as fluid
4138 4139 4140 4141
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4142 4143

        tmp_role = self._current_role
4144
        tmp_var = self.__op_role_var
4145

4146 4147
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4148 4149
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4150
        # TODO(typhoonzero): how to set target learning rate var
4151
        self.__op_role_var = []
4152 4153 4154 4155 4156
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4157

4158
    def __str__(self):
Y
yuyang18 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4188 4189
            import paddle
            import paddle.static as static
4190

4191 4192 4193
            paddle.enable_static()

            cur_program = static.Program()
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4210
            program_str += '\n'
4211
        return program_str
Y
Yang Yang(Tony) 已提交
4212

F
fengjiayi 已提交
4213 4214 4215
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4216

J
Jiabin Yang 已提交
4217 4218 4219
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4220

J
Jiabin Yang 已提交
4221
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4222

H
haowang101779990 已提交
4223
        Returns:
J
Jiabin Yang 已提交
4224
            str: The debug string describe current Program.
Y
yuyang18 已提交
4225 4226

        Raises:
J
Jiabin Yang 已提交
4227
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4228

4229 4230 4231
        Examples:
            .. code-block:: python

4232 4233 4234 4235
                import paddle
                import paddle.static as static

                paddle.enable_static()
4236

4237 4238 4239
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4240
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4241
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4242
                print("program string without detail: {}".format(prog_string))
4243
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4244
        """
4245 4246 4247 4248 4249 4250 4251 4252 4253
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4254 4255 4256 4257 4258 4259
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4260 4261
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4262 4263
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4264

W
Wu Yi 已提交
4265
    def _get_desc(self):
Y
yuyang18 已提交
4266 4267 4268 4269 4270 4271 4272
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4273 4274
        return self.desc

X
version  
Xin Pan 已提交
4275 4276 4277
    def _version(self):
        return self.desc._version()

4278
    def clone(self, for_test=False):
Y
yuyang18 已提交
4279
        """
4280 4281 4282 4283
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4284

4285
        Create a new Program with forward content of original one when ``for_test=True``.
4286
        Create a new Program as same as the original one when ``for_test=False``.
4287

4288
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4289 4290 4291
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4292

4293 4294
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4295 4296
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4297
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4298

J
Jiabin Yang 已提交
4299
        For Example:
4300
          ::
L
Luo Tao 已提交
4301

4302 4303 4304 4305 4306 4307
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4308
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4309
            loss = paddle.mean(pred)
4310
            # Here we use clone before Momentum
4311 4312
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4313
            optimizer.minimize(loss)
4314

J
Jiabin Yang 已提交
4315
        Args:
4316

4317 4318
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4319

J
Jiabin Yang 已提交
4320
        Returns:
4321
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4322

Y
yuyang18 已提交
4323 4324 4325

        Examples:

4326 4327 4328 4329 4330 4331 4332
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4349
            1. To clone a test program, the sample code is:
4350 4351 4352
                .. code-block:: python

                    import six
4353 4354 4355 4356 4357 4358
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4371 4372
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4373 4374 4375

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4376 4377 4378
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4379
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4380 4381
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4382
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4383 4384
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4385
                            test_program = train_program.clone(for_test=True)
4386
                    print_prog(test_program)
J
Jiabin Yang 已提交
4387 4388 4389 4390

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4391
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4392 4393 4394 4395
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4396 4397 4398
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4399 4400 4401
                            sgd.minimize(avg_loss)


4402
            2. The clone method can be avoid if you create program for training and program for testing individually.
4403 4404 4405
                .. code-block:: python

                    import six
4406 4407 4408 4409 4410 4411
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4423

4424
                    def network():
4425
                        img = static.data(name='image', shape=[None, 784])
4426
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4427 4428
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4429
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4430 4431
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4432 4433
                        return avg_loss

4434 4435 4436 4437 4438
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4439
                            avg_loss = network()
4440
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4441
                            sgd.minimize(avg_loss)
4442
                    # the test startup program is not used.
4443 4444
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4445 4446
                            avg_loss = network()
                    print_prog(test_program_2)
4447

4448
            The two code snippets above will generate and print same programs.
4449
        """
4450 4451 4452 4453 4454

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4455
        pruned_origin_block_id_map = None
4456
        if for_test:
4457 4458 4459 4460 4461 4462 4463 4464 4465
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4466
        else:
4467
            p = Program()
G
gongweibao 已提交
4468 4469
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4470
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4471 4472 4473
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4474 4475

            p._current_role = self._current_role
4476
            p.__op_role_var = self.__op_role_var
4477
            p._appending_grad_times = self._appending_grad_times
4478 4479
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4480

4481 4482
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4483
            p._sync_with_cpp()
4484

W
Wu Yi 已提交
4485
        p._copy_param_info_from(self)
4486
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4487
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4488
        return p
4489

4490
    def _prune(self, targets):
Y
yuyang18 已提交
4491 4492 4493 4494 4495 4496 4497 4498
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4499
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4500 4501 4502 4503
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4504
        """
4505
        return self._prune_with_input([], targets)
4506 4507

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4508
        """
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4519
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4520 4521 4522 4523 4524 4525
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4526 4527 4528 4529
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4530 4531
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4532 4533
        if not isinstance(targets, list):
            targets = [targets]
4534 4535 4536

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4537 4538 4539
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4540

4541 4542 4543 4544
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4545 4546 4547
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4548
                else:
4549 4550 4551
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4552 4553 4554 4555 4556 4557 4558 4559

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4576 4577 4578 4579 4580 4581 4582 4583
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4584

4585
        res = Program()
4586 4587 4588
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4589 4590 4591
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4592
        res._sync_with_cpp()
4593 4594 4595 4596 4597

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4598 4599
        return res

X
Xin Pan 已提交
4600
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4601
        """
F
fengjiayi 已提交
4602 4603 4604 4605 4606
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4607
        3. change the :code:`is_test`
Y
yuyang18 已提交
4608 4609 4610
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4611
        Args:
X
Xin Pan 已提交
4612 4613
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4614

Y
yuyang18 已提交
4615 4616 4617 4618 4619 4620
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4621
        res = Program()
4622
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4623 4624 4625 4626

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4627
        if prune_read_op:
4628 4629 4630 4631 4632 4633 4634 4635 4636
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4637
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4638 4639

        # change all `is_test` attributes to True
M
minqiyang 已提交
4640
        for i in six.moves.range(res.desc.num_blocks()):
4641
            block = res.desc.block(i)
M
minqiyang 已提交
4642
            for j in six.moves.range(block.op_size()):
4643 4644
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4645
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4646 4647 4648
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4649
        res._sync_with_cpp()
4650 4651
        return res

4652 4653
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4654
        """
4655 4656 4657
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4658

4659 4660
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4661

J
Jiabin Yang 已提交
4662
        Args:
Y
yuyang18 已提交
4663

J
Jiabin Yang 已提交
4664
            binary_str_type (str): the binary prootbuf string.
4665

J
Jiabin Yang 已提交
4666 4667
        Returns:
            Program: A deserialized Program.
4668 4669 4670 4671

        Examples:
            .. code-block:: python

4672 4673 4674 4675
                import paddle
                import paddle.static as static

                paddle.enable_static()
4676

4677 4678 4679 4680
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4681

4682
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4683

4684
                    z = paddle.matmul(x=x, y=y)
4685

4686 4687
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4688

4689
                    print(static.default_main_program())
4690
                    print(prog_restored)
Y
yuyang18 已提交
4691
        """
4692 4693
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4694
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4695
        p._sync_with_cpp()
4696
        return p
Y
Yu Yang 已提交
4697

4698
    @staticmethod
4699
    def _construct_from_desc(desc):
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4715 4716
    @property
    def random_seed(self):
Y
yuyang18 已提交
4717
        """
J
Jiabin Yang 已提交
4718
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4719 4720
        the random seed from random device.

4721 4722
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4723 4724 4725

        Returns:
            int64: Random seed in current Program
4726

4727 4728 4729 4730

        Examples:
            .. code-block:: python

4731 4732 4733
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4734

4735 4736 4737
                paddle.enable_static()

                prog = static.default_main_program()
4738
                random_seed = prog.random_seed
4739
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4740 4741 4742
                print(random_seed)
                ## 0
                ## the default random seed is 0
4743

4744
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4745
                prog.random_seed = 1
4746
                z_var = F.dropout(x_var, 0.7)
4747

4748
                print(prog.random_seed)
4749 4750
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4751
        """
D
dzhwinter 已提交
4752 4753
        return self._seed

Q
qiaolongfei 已提交
4754 4755
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4756
        """
4757 4758
        The number of :ref:`api_guide_Block_en`  in this Program.

4759 4760
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4761 4762 4763

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4764

4765 4766 4767 4768

        Examples:
            .. code-block:: python

4769 4770 4771 4772
                import paddle
                import paddle.static as static

                paddle.enable_static()
4773

4774
                prog = static.default_main_program()
4775 4776
                num_blocks = prog.num_blocks
                print(num_blocks)
4777

4778 4779
                # print result:
                # 1
Y
yuyang18 已提交
4780
        """
Q
qiaolongfei 已提交
4781 4782
        return self.desc.num_blocks()

D
dzhwinter 已提交
4783 4784 4785
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4786 4787 4788
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4789 4790
        self._seed = seed

Y
Yu Yang 已提交
4791
    def __repr__(self):
4792
        return self.__str__()
4793

Y
Yu Yang 已提交
4794
    def global_block(self):
Y
yuyang18 已提交
4795
        """
4796 4797
        .. note::
            This API has no effect in Dygraph mode.
4798 4799 4800

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4801 4802
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4803

4804 4805 4806 4807

        Examples:
            .. code-block:: python

4808 4809 4810 4811
                import paddle
                import paddle.static as static

                paddle.enable_static()
4812

4813
                prog = static.default_main_program()
4814 4815
                gb_block = prog.global_block()
                print(gb_block)
4816

Y
yuyang18 已提交
4817
        """
Y
Yu Yang 已提交
4818 4819
        return self.blocks[0]

Q
Qiao Longfei 已提交
4820
    def block(self, index):
Y
yuyang18 已提交
4821
        """
4822 4823
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4824

4825 4826
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4827 4828
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4829

J
Jiabin Yang 已提交
4830 4831
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4832 4833 4834 4835

        Examples:
            .. code-block:: python

4836 4837 4838 4839
                import paddle
                import paddle.static as static

                paddle.enable_static()
4840

4841
                prog = static.default_main_program()
4842 4843
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4844
        """
Q
Qiao Longfei 已提交
4845 4846
        return self.blocks[index]

Y
Yu Yang 已提交
4847
    def current_block(self):
Y
yuyang18 已提交
4848
        """
4849 4850
        .. note::
            This API has no effect in Dygraph mode.
4851

J
Jiabin Yang 已提交
4852 4853
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4854

J
Jiabin Yang 已提交
4855 4856
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4857

4858 4859 4860
        Examples:
            .. code-block:: python

4861 4862 4863 4864
                import paddle
                import paddle.static as static

                paddle.enable_static()
4865

4866
                prog = static.default_main_program()
4867 4868
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4869
        """
Y
Yu Yang 已提交
4870 4871
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4872
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4873 4874 4875 4876 4877
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4878

Y
yuyang18 已提交
4879 4880 4881 4882 4883
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4884
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4885 4886 4887
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4888 4889 4890 4891
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4892
    def _rollback(self):
Y
yuyang18 已提交
4893 4894 4895 4896 4897
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4898 4899
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4900
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4911 4912 4913
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4914
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4915

W
Wu Yi 已提交
4916
    def _copy_param_info_from(self, other):
4917
        """
4918
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4919

Y
yuyang18 已提交
4920 4921 4922
        Notes: This is a very low level API. Users should not invoke it
        directly.

4923 4924 4925 4926 4927 4928 4929
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4930 4931 4932
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4933

W
Wu Yi 已提交
4934
        self.global_block()._copy_param_info_from(other.global_block())
4935

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4947 4948 4949
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4950 4951
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4952
        self._parameters_on_pservers = other._parameters_on_pservers
4953
        self._endpoints = other._endpoints
4954
        self._ps_endpoint = other._ps_endpoint
4955 4956
        self._distributed_lookup_table = other._distributed_lookup_table

4957
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4958 4959
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4960

Y
yuyang18 已提交
4961 4962 4963
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4964 4965
        Args:
            other(Program): Other program
4966 4967 4968 4969
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4970 4971 4972 4973 4974

        Returns:
            None
        """
        if not isinstance(other, Program):
4975 4976 4977
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4978

4979 4980 4981 4982 4983
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4984 4985 4986

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4987 4988
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4989
            for var in list(block.vars.values()):
4990 4991 4992 4993 4994 4995 4996
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4997

4998
    def list_vars(self):
Y
yuyang18 已提交
4999
        """
5000
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5001

J
Jiabin Yang 已提交
5002
        Returns:
5003
            iterable Tensors: The Generator will yield every Tensor in this program.
5004 5005 5006 5007

        Examples:
            .. code-block:: python

5008 5009
                import paddle
                import paddle.static as static
5010

5011 5012 5013 5014 5015
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5016 5017
                for var in prog.list_vars():
                    print(var)
5018
                
5019 5020
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5021
        """
5022
        for each_block in self.blocks:
5023
            for each_var in list(each_block.vars.values()):
5024 5025
                yield each_var

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5036 5037 5038 5039
                import paddle
                import paddle.static as static

                paddle.enable_static()
5040

5041 5042
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5043
                hidden = static.nn.fc(x=data, size=10)
5044 5045
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5046 5047 5048 5049 5050 5051 5052

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5053 5054
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5065

5066
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5067
class Parameter(Variable):
5068
    """
5069
    Parameter is derived from Variable. A parameter is a persistable
5070
    Variable, and will be updated by optimizers after each iteration.
5071
    The training of a neural network is essentially the updating of
5072 5073
    its parameters.

5074
    Relative to a general Variable, a Parameter has several its own
5075 5076
    member variables:

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5087 5088
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5089 5090
    """

5091 5092 5093 5094 5095 5096
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5097 5098 5099 5100 5101
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5102
        if len(shape) == 0:
5103 5104
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5105 5106 5107

        for each in shape:
            if each < 0:
5108 5109 5110
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5111 5112

        Variable.__init__(
5113 5114 5115 5116 5117 5118 5119
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5120 5121 5122 5123
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5124 5125
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5126
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5127

5128 5129
        self.need_clip = kwargs.get('need_clip', True)

5130 5131
        self.is_distributed = False

F
fengjiayi 已提交
5132
    def __str__(self):
5133
        return self._to_readable_code()
F
fengjiayi 已提交
5134

F
update  
fengjiayi 已提交
5135 5136 5137
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5138

F
update  
fengjiayi 已提交
5139 5140 5141 5142 5143 5144 5145 5146
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5147 5148 5149 5150 5151 5152 5153 5154 5155
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5156 5157 5158 5159 5160 5161
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5162
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5163
            for attr_name in additional_attr:
5164 5165
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5166 5167
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5168 5169 5170 5171
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5172

5173 5174
class ParamBase(core.VarBase):
    """
5175 5176 5177
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5178 5179 5180
    The training of a neural network is essentially the updating of
    its ParamBase.

5181
    Relative to a general Tensor, a ParamBase has several its own
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5194 5195
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5226 5227
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5228 5229 5230 5231 5232 5233 5234

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5235 5236
        self.need_clip = kwargs.get('need_clip', True)

5237
        self.is_distributed = False
5238
        # self.block = default_main_program().global_block()
5239

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5253
    def __str__(self):
5254
        """
5255
        Convert a ParamBase object to a readable string.
5256

5257
        Returns(str): A readable string.
5258 5259 5260 5261

        Examples:
            .. code-block:: python

5262
                import paddle
5263 5264 5265 5266 5267 5268 5269
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5270
        """
5271 5272
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5273 5274 5275 5276

    __repr__ = __str__


Y
Yu Yang 已提交
5277
# program is a global instance.
Y
Yu Yang 已提交
5278 5279
_main_program_ = Program()
_startup_program_ = Program()
5280

5281

5282
def default_startup_program():
Y
Yu Yang 已提交
5283
    """
Y
yuyang18 已提交
5284 5285
    Get default/global startup program.

5286 5287 5288 5289 5290
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5291

5292 5293
    Returns:
        Program: current default startup program.
5294

5295
    Returns type: 
5296 5297 5298 5299

    Examples:
        .. code-block:: python

5300
            import paddle
5301

5302
            paddle.enable_static()
5303 5304 5305 5306
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5307
    """
Y
Yu Yang 已提交
5308
    return _startup_program_
5309

5310

5311
def default_main_program():
Y
Yu Yang 已提交
5312
    """
5313
    This API can be used to get ``default main program`` which store the 
5314
    descriptions of Ops and tensors.
5315
    
5316
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5317
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5318

5319 5320
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5321
    :code:`default_main_program` when the program is not specified.
5322

5323
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5324
    
Y
Yu Yang 已提交
5325
    Returns:
5326
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5327 5328 5329 5330

    Examples:
        ..  code-block:: python

5331
            import paddle
5332

5333
            paddle.enable_static()
5334
            # Sample Network:
5335 5336 5337
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5338

5339 5340 5341
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5342
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5343
    """
Y
Yu Yang 已提交
5344
    return _main_program_
Y
Yu Yang 已提交
5345 5346 5347 5348 5349


def switch_main_program(program):
    """
    Switch the main program to a new program.
5350

Y
Yu Yang 已提交
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5365
    Switch the startup program to a new program
Y
Yu Yang 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5378
@signature_safe_contextmanager
Y
Yu Yang 已提交
5379 5380
def program_guard(main_program, startup_program=None):
    """
5381 5382
    :api_attr: Static Graph

5383 5384 5385
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5386

G
guofei 已提交
5387
    Args:
5388 5389
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5390 5391 5392 5393
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5394
    Examples:
5395 5396
       .. code-block:: python
       
5397
          import paddle
Y
yuyang18 已提交
5398

5399 5400 5401 5402 5403
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5404
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5405 5406 5407

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5408

Y
Yu Yang 已提交
5409
    Examples:
5410
       .. code-block:: python
Y
yuyang18 已提交
5411

5412
          import paddle
5413

5414 5415 5416 5417 5418
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5419
    
Y
Yu Yang 已提交
5420
    """
5421
    from .data_feeder import check_type
5422 5423
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5424 5425
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5426
        check_type(startup_program, 'startup_program', Program,
5427
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5428
        startup_program = switch_startup_program(startup_program)
5429 5430 5431 5432 5433 5434
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5435 5436


W
Wu Yi 已提交
5437
def _get_var(name, program=None):
X
xuwei06 已提交
5438
    """
Y
yuyang18 已提交
5439
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5440

X
xuwei06 已提交
5441 5442 5443
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5444
        If None, default_global_program() will be used.
X
xuwei06 已提交
5445 5446 5447 5448 5449 5450 5451

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5452
    assert isinstance(program, Program)
X
xuwei06 已提交
5453 5454

    return program.global_block().var(name)
5455 5456


S
rename  
sneaxiy 已提交
5457
@signature_safe_contextmanager
L
lujun 已提交
5458 5459 5460 5461
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5462
    core._switch_tracer(tracer)
M
minqiyang 已提交
5463

5464 5465 5466 5467 5468
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5469 5470


S
rename  
sneaxiy 已提交
5471
@signature_safe_contextmanager
L
lujun 已提交
5472
def _dygraph_place_guard(place):
5473 5474 5475
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5476

5477 5478 5479
    try:
        yield
    finally:
5480
        _global_expected_place_ = tmp_place
5481 5482 5483 5484


def load_op_library(lib_filename):
    """
5485 5486
    :api_attr: Static Graph
    
5487 5488 5489
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5490
    Please note, the type of custom operators can't have the same type
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5557 5558 5559 5560 5561
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5562 5563 5564 5565
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5566 5567
    if index:
        device = ":".join([device, index])
5568
    pre_device = switch_device(device)
5569 5570 5571 5572
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value