nn.py 368.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
shippingwang 已提交
182
    'shuffle_channel',
S
sneaxiy 已提交
183
    'py_func',
184
    'psroi_pool',
H
heqiaozhi 已提交
185
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
186
    'huber_loss',
Z
zhaozhehao 已提交
187
    'tree_conv',
Y
Yu Yang 已提交
188 189
]

J
jerrywgz 已提交
190 191
kIgnoreIndex = -100

Y
Yu Yang 已提交
192 193 194 195 196 197 198

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
199
       is_test=False,
200
       name=None):
Y
Yu Yang 已提交
201
    """
202
    **Fully Connected Layer**
Y
Yu Yang 已提交
203

204 205 206 207 208 209 210 211
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
212
    to the output as well.
C
caoying03 已提交
213

C
caoying03 已提交
214
    This process can be formulated as follows:
215 216 217

    .. math::

218
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
219 220 221

    In the above equation:

C
caoying03 已提交
222 223 224 225
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
226
    * :math:`Act`: The activation function.
C
caoying03 已提交
227
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
228 229

    Args:
R
ranqiu 已提交
230 231 232 233 234 235 236 237 238 239
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
240
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
241 242 243 244
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
245 246
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
247
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
248
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
249
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
250

251
    Returns:
F
fengjiayi 已提交
252
        Variable: The transformation result.
253 254

    Raises:
C
caoying03 已提交
255
        ValueError: If rank of the input tensor is less than 2.
256 257 258 259

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
260
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
261
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
262
    """
C
caoying03 已提交
263

C
caoying03 已提交
264
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
265 266 267 268

    dtype = helper.input_dtype()

    mul_results = []
269 270
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
271 272 273
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
274

Y
Yu Yang 已提交
275
        w = helper.create_parameter(
276
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
277
        tmp = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
282
            outputs={"Out": tmp},
M
mozga-intel 已提交
283 284
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
285 286 287 288
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
289
    else:
X
Xin Pan 已提交
290
        pre_bias = helper.create_variable_for_type_inference(dtype)
291
        helper.append_op(
292 293 294
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
295
            attrs={"use_mkldnn": False})
296 297 298 299
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
300 301


302 303 304
def embedding(input,
              size,
              is_sparse=False,
305
              is_distributed=False,
306 307 308
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
309
    """
310 311
    **Embedding Layer**

312
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
313 314
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
315 316 317

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
318 319

    Args:
320 321 322 323 324
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
325
        is_distributed(bool): Whether to run lookup table from remote parameter server.
326 327
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
328
            with zeros whenever lookup encounters it in :attr:`input`. If
329
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
330 331
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
332
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
333

334 335 336
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
337

338 339
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
340

C
chengduoZH 已提交
341
          dict_size = len(dataset.ids)
342
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
343
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
344 345 346
    """

    helper = LayerHelper('embedding', **locals())
347
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
348 349
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
350 351
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
352
    tmp = helper.create_variable_for_type_inference(dtype)
353 354
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
355 356 357 358 359
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
360 361 362
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
363
            'remote_prefetch': remote_prefetch,
364 365
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
366 367 368
    return tmp


W
wopeizl 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
385

W
wopeizl 已提交
386 387 388 389 390 391 392 393 394 395 396
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
397

W
wopeizl 已提交
398 399 400 401
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
402

W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
489 490


P
phlrain 已提交
491 492 493 494 495 496
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
497
         dropout_prob=0.0,
P
phlrain 已提交
498 499 500 501 502
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
503
    """
P
phlrain 已提交
504
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
505 506

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
507
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
508 509
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
510
    .. math::
M
minqiyang 已提交
511 512 513 514 515 516 517

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
518
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
519 520 521 522

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
523 524

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
525 526 527 528 529 530
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
531 532 533
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
534
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
535

M
minqiyang 已提交
536
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
537 538 539 540 541
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
542
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
543 544 545 546 547
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
548
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
549 550
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
551 552
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
553 554 555 556 557 558
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
559
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
560

L
liuhongyu 已提交
561 562

    Returns:
M
minqiyang 已提交
563 564
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
565
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
566

H
haowang101779990 已提交
567 568 569 570
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
571
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
572 573
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
590
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
591 592 593 594 595 596
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
597 598 599
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
659 660 661
def dynamic_lstmp(input,
                  size,
                  proj_size,
662 663
                  h_0=None,
                  c_0=None,
Y
Yibing Liu 已提交
664 665 666
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
667 668
                  cell_clip=None,
                  proj_clip=None,
Y
Yibing Liu 已提交
669 670 671 672
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
673
                  proj_activation='identity',
674 675
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
676 677 678
    """
    **Dynamic LSTMP Layer**

679 680 681 682 683 684
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
685 686 687 688 689

    The formula is as follows:

    .. math::

690
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
691

692
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
693

694
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
695

696
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
697

698
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
699

700
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
701

702
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
703

Y
Yibing Liu 已提交
704 705 706 707 708 709
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
710
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
711
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
712
          bias vector).
Y
Yibing Liu 已提交
713 714 715
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
716
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
717
    * :math:`h`: The hidden state.
718
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
719 720
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
721
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
722
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
723
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
724 725
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
726 727 728 729

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
730

Y
Yibing Liu 已提交
731 732 733 734 735 736 737 738 739 740 741 742
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
743 744 745 746 747 748
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
749
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
750 751
                               hidden-hidden weight and projection weight.

752 753
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
754 755
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
756 757
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
758
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
759 760 761 762 763

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
764
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
765 766 767 768 769 770
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
771
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
772 773 774
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
775
                                - The shape is (1 x 7D).
C
chengduo 已提交
776 777 778 779 780

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
781 782
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
783 784 785 786 787
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
788 789 790 791 792 793 794
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
795
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
796 797
                              default "tanh".
        proj_activation(str): The activation for projection output.
798
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
799
                              default "identity".
Y
Yibing Liu 已提交
800
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
801 802
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
803 804

    Returns:
805 806 807 808
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
809 810

    Examples:
811

Y
Yibing Liu 已提交
812 813
        .. code-block:: python

814 815 816 817
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
818
            hidden_dim, proj_dim = 512, 256
819
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
820
                                     act=None, bias_attr=None)
821 822 823
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
824 825 826 827
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
828
    """
829

C
chengduo 已提交
830
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
831
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
832
    size = size // 4
Y
Yibing Liu 已提交
833 834 835 836 837 838 839 840 841 842
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
843 844 845 846 847 848
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
864 865 866

    helper.append_op(
        type='lstmp',
867
        inputs=inputs,
Y
Yibing Liu 已提交
868 869 870 871 872 873 874 875 876
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
877 878
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
879 880 881 882 883 884 885 886 887
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
888 889 890 891 892 893 894
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
895 896
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
897
    """
898
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
899

900 901 902
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
903

G
guosheng 已提交
904 905 906 907 908 909 910 911 912
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
913

G
guosheng 已提交
914
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
915

Q
Qiao Longfei 已提交
916 917 918

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
919 920 921 922 923 924 925 926 927 928 929 930
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
931
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
932 933
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
934 935 936 937
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
938
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
939 940

    Args:
941 942
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
943
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
944
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
945 946
            is the hidden size.
        size(int): The dimension of the gru cell.
947
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
948 949
            hidden-hidden weight matrix. Note:

950
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
951
              :math:`D` is the hidden size.
952
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
953
              The first part are weights of the update gate and reset gate with
954
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
955
              candidate hidden state with shape :math:`(D \\times D)`.
956 957 958 959 960

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
961
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
962
            the bias in the update gate, reset gate and candidate calculations.
963 964 965
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
966 967
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
968
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
969 970 971
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
972
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
973
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
974 975 976 977
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
978 979

    Returns:
G
guosheng 已提交
980
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
981
            and sequence length is the same with the input.
982

G
guosheng 已提交
983
    Examples:
984

G
guosheng 已提交
985 986
        .. code-block:: python

987 988 989 990
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
991
            hidden_dim = 512
992
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
993
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
994 995 996 997 998 999 1000 1001 1002
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1003
    batch_size = input.shape[0]
G
guosheng 已提交
1004
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1005
    if h_0:
G
guosheng 已提交
1006
        assert h_0.shape == (
Y
Yancey 已提交
1007 1008 1009
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1010

X
Xin Pan 已提交
1011 1012 1013 1014
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1028 1029
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1030 1031 1032 1033
        })
    return hidden


Y
Yu Yang 已提交
1034 1035 1036
def gru_unit(input,
             hidden,
             size,
1037 1038
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1039
             activation='tanh',
Q
Qiao Longfei 已提交
1040 1041
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1042
    """
1043 1044 1045
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1046
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1047
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1048

1049 1050
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1051

1052
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1053

1054
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1071 1072

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1073 1074 1075
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1076 1077
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1078 1079
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1080 1081 1082
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1083 1084 1085

    Args:
        input (Variable): The fc transformed input value of current step.
1086
        hidden (Variable): The hidden value of gru unit from previous step.
1087
        size (integer): The input dimension value.
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1102
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1103
            the bias in the update gate, reset gate and candidate calculations.
1104 1105 1106
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1107 1108
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1109 1110 1111 1112
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1113

1114 1115 1116 1117 1118 1119
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1120

1121
             # assuming we have x_t_data and prev_hidden of size=10
1122
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1123 1124
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1137
    size = size // 3
Y
Yu Yang 已提交
1138 1139

    # create weight
1140 1141
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1142

X
Xin Pan 已提交
1143 1144 1145
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1146
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1147
    # create bias
1148
    if helper.bias_attr:
Y
Yu Yang 已提交
1149 1150 1151
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1152
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1153 1154 1155

    helper.append_op(
        type='gru_unit',
1156
        inputs=inputs,
Y
Yu Yang 已提交
1157 1158 1159 1160 1161 1162
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1163 1164
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1165 1166 1167 1168 1169
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1170
@templatedoc()
1171
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1172 1173 1174 1175 1176 1177 1178
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1179
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1180 1181 1182 1183
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1184 1185 1186
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1187 1188

    """
Y
Yu Yang 已提交
1189 1190 1191 1192 1193 1194
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1195 1196 1197 1198 1199 1200 1201 1202
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1218 1219 1220 1221
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1222

W
wopeizl 已提交
1223 1224
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1225

W
wopeizl 已提交
1226
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1227

W
wopeizl 已提交
1228
        label(${label_type}): ${label_comment}
1229

W
wopeizl 已提交
1230 1231
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1232

W
wopeizl 已提交
1233 1234
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1235

W
wopeizl 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1246
                "Transition": transition,
W
wopeizl 已提交
1247 1248
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1249

W
wopeizl 已提交
1250
    return viterbi_path
Y
Yu Yang 已提交
1251 1252


Y
yi.wu 已提交
1253
@templatedoc()
F
fengjiayi 已提交
1254
def cos_sim(X, Y):
Y
Yu Yang 已提交
1255
    """
Y
yi.wu 已提交
1256 1257 1258
    ${comment}

    Args:
1259 1260
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1261

Y
yi.wu 已提交
1262
    Returns:
1263
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1264
    """
F
fengjiayi 已提交
1265
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1266 1267 1268
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1279 1280 1281 1282 1283
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1284
            dropout_implementation="downgrade_in_infer"):
1285 1286 1287 1288 1289
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1290
    training. The dropout operator randomly sets (according to the given dropout
1291 1292 1293
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1294 1295
    dropout op can be removed from the program to make the program more efficient.

1296
    Args:
1297 1298
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1299 1300 1301 1302 1303 1304 1305
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1306 1307
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1308
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1309 1310 1311 1312 1313 1314

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1315
                                        2. upscale_in_train, upscale the outcome at training time
1316

H
haowang101779990 已提交
1317 1318
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1319

H
haowang101779990 已提交
1320 1321
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1322

M
minqiyang 已提交
1323

1324
    Returns:
1325
        Variable: A tensor variable is the shape with `x`.
1326 1327

    Examples:
1328

1329 1330
        .. code-block:: python

1331 1332
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1333 1334
    """

F
fengjiayi 已提交
1335
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1336 1337 1338
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1339 1340 1341 1342

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1343 1344 1345 1346 1347
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1348 1349 1350 1351
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1352 1353
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1354
        })
1355 1356 1357
    return out


J
jerrywgz 已提交
1358
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1359
    """
Y
Yibing Liu 已提交
1360 1361
    **Cross Entropy Layer**

1362 1363 1364
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1365 1366

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1367
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1368

Y
Yibing Liu 已提交
1369
        .. math::
Y
yangyaming 已提交
1370

Y
Yibing Liu 已提交
1371 1372 1373
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1374 1375
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1376 1377 1378 1379 1380

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1381
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1382 1383 1384
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1385 1386
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1387
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1388

Y
Yibing Liu 已提交
1389
    Args:
Y
yangyaming 已提交
1390
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1391 1392 1393 1394
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1395
        label (Variable|list): the ground truth which is a 2-D tensor. When
1396 1397 1398 1399
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1400
        soft_label (bool): a flag indicating whether to
1401
                                           interpretate the given labels as soft
1402
                                           labels. Default: `False`.
M
minqiyang 已提交
1403 1404
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1405
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1406 1407 1408 1409 1410

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1411 1412 1413
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1414

H
haowang101779990 已提交
1415 1416
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1417

H
haowang101779990 已提交
1418 1419
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1420 1421 1422 1423 1424 1425

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1426
    """
F
fengjiayi 已提交
1427
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1428
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1429 1430 1431 1432 1433
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1434 1435
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1436 1437 1438
    return out


F
frankwhzhang 已提交
1439
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1440 1441 1442
    """
    Bayesian Personalized Ranking Loss Operator.

1443
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1444 1445 1446 1447 1448 1449
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1450 1451 1452 1453 1454 1455
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1456 1457
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1458 1459 1460
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1461 1462 1463
    Examples:
        .. code-block:: python

1464
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1465
    """
1466 1467 1468 1469 1470 1471

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1472
                'Label': [label]},
1473 1474 1475 1476
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1477
def square_error_cost(input, label):
Y
Yu Yang 已提交
1478
    """
1479 1480
    **Square error cost layer**

1481 1482
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1497 1498
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1499 1500

    Returns:
G
guosheng 已提交
1501
        Variable: The tensor variable storing the element-wise squared error \
1502
                  difference of input and label.
1503 1504 1505 1506 1507 1508 1509 1510

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1511
    """
F
fengjiayi 已提交
1512
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1513
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1514 1515 1516 1517 1518 1519
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1520
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1521
    helper.append_op(
F
fengjiayi 已提交
1522 1523
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1524 1525 1526
    return square_out


Y
yi.wu 已提交
1527
@templatedoc()
Y
Yu Yang 已提交
1528 1529 1530 1531
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1532
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1533
    """
Y
yi.wu 已提交
1534
    **Chunk Evaluator**
Y
yi.wu 已提交
1535

Y
yangyaming 已提交
1536
    This function computes and outputs the precision, recall and
1537
    F1-score of chunk detection.
Y
yi.wu 已提交
1538

M
minqiyang 已提交
1539
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1540
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1541 1542 1543 1544 1545 1546

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1547

Y
yi.wu 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1573

Y
yi.wu 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1598
    Args:
1599 1600 1601 1602 1603
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1604

Y
yi.wu 已提交
1605
    Returns:
Y
update  
yi.wu 已提交
1606 1607 1608
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1609

Y
yi.wu 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1622
    """
F
fengjiayi 已提交
1623
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1624 1625

    # prepare output
X
Xin Pan 已提交
1626 1627 1628 1629 1630 1631 1632
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1633 1634 1635 1636 1637 1638 1639 1640

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1641 1642 1643 1644
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1645 1646 1647
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1648 1649
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1650
        })
1651 1652
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1653 1654


1655
@templatedoc()
Y
Yu Yang 已提交
1656 1657 1658 1659 1660 1661 1662
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1663 1664
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1665 1666 1667 1668
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1669 1670 1671 1672 1673 1674 1675

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1689

1690 1691
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1692 1693 1694 1695 1696 1697 1698
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1699
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1710
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1711 1712 1713 1714 1715 1716
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1717
def sequence_softmax(input, use_cudnn=False, name=None):
1718 1719 1720
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1721
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1738 1739 1740
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1741

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1753 1754
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1755
    softmax_out = helper.create_variable_for_type_inference(dtype)
1756 1757 1758 1759 1760 1761 1762 1763
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1764
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1765
    """
1766
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1767
    has the same shape as the input.
Q
qiaolongfei 已提交
1768

1769 1770 1771 1772 1773 1774
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1775
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1776 1777 1778 1779 1780 1781 1782

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1783
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1784 1785 1786 1787 1788 1789 1790 1791

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1792 1793 1794
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1807 1808
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1809
    softmax_out = helper.create_variable_for_type_inference(dtype)
1810 1811 1812 1813 1814 1815 1816 1817
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1818 1819 1820
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1821 1822
           stride=1,
           padding=0,
1823
           dilation=1,
Y
Yu Yang 已提交
1824 1825 1826
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1827
           use_cudnn=True,
1828 1829
           act=None,
           name=None):
Y
Yu Yang 已提交
1830
    """
C
chengduoZH 已提交
1831
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1832 1833
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1834
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1835 1836 1837 1838 1839 1840 1841
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1842 1843 1844
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1845

1846
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1847

C
chengduoZH 已提交
1848 1849
    .. math::

C
refine  
chengduoZH 已提交
1850
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1851

T
tensor-tang 已提交
1852
    Where:
C
chengduoZH 已提交
1853

1854 1855 1856 1857 1858
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1859
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1860 1861 1862

    Example:

1863 1864
        - Input:

W
weixing02 已提交
1865
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1866

W
weixing02 已提交
1867
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1868

1869
        - Output:
T
tensor-tang 已提交
1870

W
weixing02 已提交
1871
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1872

C
chengduoZH 已提交
1873
        Where
1874 1875

        .. math::
C
chengduoZH 已提交
1876

W
weixing02 已提交
1877 1878
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1879 1880

    Args:
1881
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1882
        num_filters(int): The number of filter. It is as same as the output
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1900 1901 1902 1903 1904
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1905
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1906 1907 1908 1909 1910
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1911 1912
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1913 1914
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1915
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1916
            will be named automatically. Default: None
C
chengduoZH 已提交
1917 1918

    Returns:
G
guosheng 已提交
1919
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1920 1921
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1922
    Raises:
1923 1924
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1925

C
chengduoZH 已提交
1926 1927 1928
    Examples:
        .. code-block:: python

1929 1930
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1931 1932 1933
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1934
    assert param_attr is not False, "param_attr should not be False here."
1935
    l_type = 'conv2d'
X
xzl 已提交
1936 1937
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1938
        l_type = 'depthwise_conv2d'
1939 1940 1941 1942

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1943 1944 1945 1946 1947
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1948
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1949

C
chengduoZH 已提交
1950 1951 1952
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1953
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1954

C
chengduoZH 已提交
1955 1956
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1957 1958

    input_shape = input.shape
M
minqiyang 已提交
1959
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1960 1961

    def _get_default_param_initializer():
C
chengduo 已提交
1962 1963
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1964 1965 1966 1967 1968 1969 1970 1971
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1972
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1988
    helper.append_op(
1989
        type=l_type,
Y
Yu Yang 已提交
1990 1991 1992 1993 1994
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1995 1996 1997
        attrs={
            'strides': stride,
            'paddings': padding,
1998
            'dilations': dilation,
C
chengduoZH 已提交
1999
            'groups': groups,
2000
            'use_cudnn': use_cudnn,
2001
            'use_mkldnn': False,
2002
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2003
        })
Y
Yu Yang 已提交
2004 2005 2006 2007 2008 2009

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2027 2028 2029 2030 2031 2032
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2042 2043
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2044 2045 2046
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2047
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2073
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2074 2075
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2076
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2077 2078
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2079
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2080 2081
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2082
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2083 2084 2085 2086 2087 2088
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2099 2100
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2101 2102
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2103
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2104
            will be named automatically. Default: None.
C
chengduoZH 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2117 2118
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2119 2120 2121
    """

    l_type = 'conv3d'
C
chengduo 已提交
2122
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2133
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2147 2148 2149
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2150 2151 2152 2153 2154 2155 2156 2157
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2158
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2173
            'use_mkldnn': False
C
chengduoZH 已提交
2174 2175
        })

2176
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2177 2178 2179 2180

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2181
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2182
    """
Y
yangyaming 已提交
2183 2184 2185
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2197
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2198 2199 2200 2201 2202
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2203
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2204 2205 2206 2207 2208 2209 2210

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2211 2212
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2213

L
Luo Tao 已提交
2214 2215
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2216
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2217
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2218
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2219 2220 2221 2222 2223 2224 2225

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2226

Y
yangyaming 已提交
2227
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2228 2229 2230 2231 2232
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2233 2234
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2235
    """
F
fengjiayi 已提交
2236
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2237
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2238 2239
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2240 2241 2242 2243 2244 2245

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2246 2247
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2248

Y
yangyaming 已提交
2249 2250 2251 2252 2253
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2254 2255 2256
    return pool_out


C
add doc  
chengduoZH 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2276
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2277 2278 2279 2280 2281
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2282
def sequence_first_step(input):
L
Luo Tao 已提交
2283
    """
L
Luo Tao 已提交
2284
    This function gets the first step of sequence.
L
Luo Tao 已提交
2285 2286 2287 2288

    .. code-block:: text

       x is a 1-level LoDTensor:
2289
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2290 2291 2292 2293 2294
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2295
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2296
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2297

L
Luo Tao 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2307

Y
yangyaming 已提交
2308
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2309 2310 2311
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2312 2313 2314
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2315
def sequence_last_step(input):
L
Luo Tao 已提交
2316
    """
L
Luo Tao 已提交
2317
    This function gets the last step of sequence.
L
Luo Tao 已提交
2318 2319 2320 2321

    .. code-block:: text

       x is a 1-level LoDTensor:
2322
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2323 2324 2325 2326 2327
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2328
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2329
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2330

L
Luo Tao 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2340

Y
yangyaming 已提交
2341
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2342 2343 2344
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2345 2346 2347
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2348 2349 2350 2351
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2352
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2353 2354 2355 2356 2357
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2358

H
haowang101779990 已提交
2359
              - Case:
Y
Yibing Liu 已提交
2360

2361
            Given the input Variable **input**:
2362

2363 2364 2365
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2366

2367
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2368

2369
            the output Variable will be
2370

2371 2372 2373
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2374

M
minqiyang 已提交
2375
    Note:
H
haowang101779990 已提交
2376
          The first dimension size of **input**, **offset** and **length**
2377
          should be equal. The **offset** should start from 0.
2378

Y
Yibing Liu 已提交
2379
    Args:
2380
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2381
                         sequences.
Y
Yibing Liu 已提交
2382 2383 2384 2385 2386 2387
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2388
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2399
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2400 2401 2402 2403
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2404
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2419
@templatedoc()
Y
Yu Yang 已提交
2420
def pool2d(input,
C
chengduoZH 已提交
2421 2422
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2423 2424
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2425
           global_pooling=False,
C
chengduoZH 已提交
2426
           use_cudnn=True,
2427
           ceil_mode=False,
2428 2429
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2430
    """
F
fengjiayi 已提交
2431
    ${comment}
2432 2433

    Args:
2434 2435 2436
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2437
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2438
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2439 2440
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2441
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2442 2443 2444 2445 2446 2447
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2448 2449 2450
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2451
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2452
                        layer will be named automatically.
2453
        exclusive (bool): Whether to exclude padding points in average pooling
2454
                          mode, default is true
F
fengjiayi 已提交
2455

2456
    Returns:
F
fengjiayi 已提交
2457
        Variable: The pooling result.
F
fengjiayi 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2471 2472 2473 2474
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2475
                            global_pooling=False)
Y
Yu Yang 已提交
2476 2477 2478 2479 2480
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2481

C
chengduoZH 已提交
2482 2483 2484 2485 2486
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2487 2488 2489 2490
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2491 2492
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2493

C
Add doc  
chengduoZH 已提交
2494
    l_type = 'pool2d'
2495 2496

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2497
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2498
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2499 2500

    helper.append_op(
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2512 2513
            "use_mkldnn": False,
            "exclusive": exclusive,
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2527 2528
           name=None,
           exclusive=True):
2529 2530
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2531
    pooling configurations mentioned in input parameters.
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2544
        exclusive (bool): Whether to exclude padding points in average pooling
2545
                          mode, default is true
2546

2547
    Returns:
2548
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2549 2550 2551 2552 2553
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2554

C
chengduoZH 已提交
2555 2556 2557 2558 2559
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2560 2561 2562
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2563

C
chengduoZH 已提交
2564 2565
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2566

2567 2568
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2569
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2570
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2571 2572

    helper.append_op(
2573
        type=l_type,
Y
Yu Yang 已提交
2574 2575 2576 2577 2578 2579 2580
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2581
            "paddings": pool_padding,
2582
            "use_cudnn": use_cudnn,
2583
            "ceil_mode": ceil_mode,
2584 2585
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2586 2587 2588 2589 2590
        })

    return pool_out


2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2624
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2625
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2626
          # of input data into m * n grids averagely and performs poolings in each
2627 2628
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2629
          #
2630 2631 2632 2633 2634 2635 2636 2637
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2638 2639
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2640
          pool_out = fluid.layers.adaptive_pool2d(
2641 2642
                            input=data,
                            pool_size=[3, 3],
2643
                            pool_type='avg')
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2654
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2680
    return (pool_out, mask) if require_index else pool_out
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2716 2717
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2718
          # of input data into l * m * n grids averagely and performs poolings in each
2719 2720
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2721
          #
2722 2723 2724 2725 2726 2727 2728 2729 2730
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2731
          #                 output[:, :, i, j, k] =
2732 2733
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2734 2735
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2736
          pool_out, mask = fluid.layers.adaptive_pool3d(
2737 2738
                            input=data,
                            pool_size=[3, 3],
2739
                            pool_type='avg')
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2750
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2776
    return (pool_out, mask) if require_index else pool_out
2777 2778


Y
Yu Yang 已提交
2779 2780 2781 2782 2783 2784 2785
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2786
               data_layout='NCHW',
Y
Yang Yang 已提交
2787
               in_place=False,
2788 2789
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2790
               moving_variance_name=None,
2791
               do_model_average_for_mean_and_var=False,
2792 2793
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2794
    """
Q
qiaolongfei 已提交
2795 2796 2797 2798
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2799

Q
qiaolongfei 已提交
2800
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2801

Q
qiaolongfei 已提交
2802 2803
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2804 2805 2806
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2819

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2833
    Args:
Q
qiaolongfei 已提交
2834
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2835 2836 2837 2838
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2839 2840 2841 2842 2843 2844 2845 2846
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2847
        data_layout(string, default NCHW): NCHW|NHWC
2848
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2849 2850 2851 2852
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2853
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2854
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2855 2856 2857 2858 2859
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2860 2861

    Returns:
Q
qiaolongfei 已提交
2862
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2863 2864 2865 2866 2867 2868 2869

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2870
    """
C
chengduo 已提交
2871
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2872 2873 2874
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2875 2876 2877 2878
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2896 2897 2898
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2899 2900

    bias = helper.create_parameter(
2901
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2902 2903
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2904
        bias.stop_gradient = True
Y
Yu Yang 已提交
2905

2906 2907
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2908 2909 2910
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2911
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2912
        shape=param_shape,
W
Wu Yi 已提交
2913
        dtype=dtype)
2914 2915 2916 2917 2918 2919
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2920
            trainable=False,
W
wanghaoshuang 已提交
2921
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2922
        shape=param_shape,
W
Wu Yi 已提交
2923
        dtype=dtype)
2924
    variance.stop_gradient = True
Y
Yu Yang 已提交
2925 2926 2927 2928 2929 2930

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2931 2932 2933 2934
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2935

X
Xin Pan 已提交
2936 2937
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2955 2956 2957 2958
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2959
            "use_mkldnn": False,
2960 2961
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2962
        })
Y
Yu Yang 已提交
2963 2964 2965 2966

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3094
@templatedoc()
G
guosheng 已提交
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3105
    ${comment}
G
guosheng 已提交
3106 3107 3108

    The formula is as follows:

Y
yuyang18 已提交
3109
    ..  math::
G
guosheng 已提交
3110 3111 3112 3113 3114 3115 3116

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3117 3118 3119 3120 3121 3122 3123 3124
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3125

G
guosheng 已提交
3126 3127
    Args:
        input(Variable): The input tensor variable.
3128
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3129
            normalization. Default True.
3130
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3131 3132
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3133
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3134
            Default 1.
3135
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3136
            division by zero. Default 1e-05.
G
guosheng 已提交
3137
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3138 3139
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3140 3141
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3142
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3143 3144
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3145
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3146
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3147
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3148 3149 3150
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3151 3152

    Returns:
Y
yuyang18 已提交
3153
        ${y_comment}
G
guosheng 已提交
3154 3155 3156

    Examples:

Y
yuyang18 已提交
3157 3158 3159
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3175
    if shift:
G
guosheng 已提交
3176 3177 3178 3179 3180 3181
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3182 3183 3184 3185 3186
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3214
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3262 3263 3264
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3280 3281 3282 3283
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3284 3285 3286
                     padding=0,
                     stride=1,
                     dilation=1,
3287
                     groups=None,
C
caoying03 已提交
3288
                     param_attr=None,
3289
                     bias_attr=None,
C
chengduoZH 已提交
3290
                     use_cudnn=True,
3291
                     act=None,
C
caoying03 已提交
3292
                     name=None):
Y
Yu Yang 已提交
3293
    """
3294 3295 3296 3297 3298 3299 3300 3301
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3302 3303
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3304 3305 3306
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3307 3308 3309 3310 3311

    For each input :math:`X`, the equation is:

    .. math::

3312
        Out = \sigma (W \\ast X + b)
3313

3314
    Where:
3315 3316 3317

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3318 3319 3320 3321
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3322

3323 3324 3325 3326
    Example:

        - Input:

3327
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3328

3329
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3330 3331 3332

        - Output:

3333
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3334 3335

        Where
Y
Yu Yang 已提交
3336

3337 3338
        .. math::

3339 3340
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3341 3342
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3343 3344

    Args:
3345 3346 3347 3348
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3349 3350 3351 3352
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3381
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3382 3383 3384
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3385
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3386
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3387 3388

    Returns:
3389
        Variable: The tensor variable storing the convolution transpose result.
3390 3391

    Raises:
3392 3393
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3394 3395 3396 3397

    Examples:
       .. code-block:: python

3398 3399
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3400
    """
C
chengduo 已提交
3401
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3402 3403 3404 3405 3406 3407 3408 3409
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3410 3411 3412
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3413 3414 3415
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3416

C
chengduoZH 已提交
3417 3418
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3419

Y
Yu Yang 已提交
3420 3421 3422 3423 3424
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3425

Y
Yu Yang 已提交
3426 3427
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3428

C
chengduoZH 已提交
3429
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3430
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3431
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3432
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3433
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3434 3435 3436
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3437

3438 3439 3440 3441 3442 3443 3444
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3445
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3446
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3447

Y
Yu Yang 已提交
3448 3449 3450
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3451
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3452
    helper.append_op(
3453
        type=op_type,
Y
Yu Yang 已提交
3454 3455
        inputs={'Input': [input],
                'Filter': [img_filter]},
3456
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3457
        attrs={
3458
            'output_size': output_size,
3459 3460 3461 3462 3463
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3464 3465
        })

3466 3467 3468
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3469 3470


3471
def conv3d_transpose(input,
Y
Yu Yang 已提交
3472 3473 3474
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3475 3476 3477
                     padding=0,
                     stride=1,
                     dilation=1,
3478
                     groups=None,
C
caoying03 已提交
3479
                     param_attr=None,
3480
                     bias_attr=None,
C
chengduoZH 已提交
3481
                     use_cudnn=True,
3482
                     act=None,
C
caoying03 已提交
3483
                     name=None):
Y
Yu Yang 已提交
3484
    """
3485
    **Convlution3D transpose layer**
3486

3487
    The convolution3D transpose layer calculates the output based on the input,
3488
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3489 3490 3491 3492 3493 3494
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3495 3496 3497
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3498 3499 3500 3501 3502

    For each input :math:`X`, the equation is:

    .. math::

3503
        Out = \sigma (W \\ast X + b)
3504 3505 3506

    In the above equation:

3507 3508
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3509 3510 3511 3512
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3513

3514 3515 3516 3517
    Example:

        - Input:

3518
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3519

3520
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3521 3522 3523

        - Output:

3524
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3525 3526

        Where
Y
Yu Yang 已提交
3527

3528 3529
        .. math::

3530 3531 3532
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3533 3534

    Args:
3535
        input(Variable): The input image with [N, C, D, H, W] format.
3536 3537 3538
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3539
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3540 3541
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3542
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3543 3544 3545
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3546 3547
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3548
        stride(int|tuple): The stride size. If stride is a tuple, it must
3549 3550
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3551
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3552 3553 3554
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3555 3556 3557 3558 3559
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3569 3570
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3571 3572
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3573 3574
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3575 3576

    Returns:
3577
        Variable: The tensor variable storing the convolution transpose result.
3578 3579

    Raises:
3580 3581
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3582 3583 3584 3585

    Examples:
       .. code-block:: python

3586 3587
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3588
    """
C
chengduo 已提交
3589
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3590 3591
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3592
    if not isinstance(input, Variable):
3593
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3594 3595
    input_channel = input.shape[1]

3596 3597 3598
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3599

C
chengduoZH 已提交
3600 3601 3602
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3603 3604 3605 3606 3607 3608
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3609 3610 3611
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3612

3613
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3614
                         padding[0] - 1) // dilation[0] + 1
3615
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3616
                         padding[1] - 1) // dilation[1] + 1
3617
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3618
                         padding[2] - 1) // dilation[2] + 1
3619
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3620
    else:
3621 3622
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3623

3624
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3625
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3626 3627 3628
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3629
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3630
    helper.append_op(
3631
        type=l_type,
Y
Yu Yang 已提交
3632 3633
        inputs={'Input': [input],
                'Filter': [img_filter]},
3634
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3635 3636 3637 3638
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3639
            'groups': groups,
C
chengduoZH 已提交
3640 3641
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3642

3643 3644
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3645
    return out
Y
yangyaming 已提交
3646 3647


Y
yangyaming 已提交
3648
def sequence_expand(x, y, ref_level=-1, name=None):
3649
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3650 3651 3652 3653
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3654 3655 3656 3657 3658

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3659
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3660
                x.data = [[a], [b], [c], [d]]
3661 3662 3663
                x.dims = [4, 1]

            y is a LoDTensor:
3664 3665
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3666

Y
yangyaming 已提交
3667
            ref_level: 0
3668

Y
yangyaming 已提交
3669
            then output is a 1-level LoDTensor:
3670
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3671
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3672 3673 3674 3675
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3676
                x.data = [[a], [b], [c]]
3677 3678 3679
                x.dims = [3, 1]

            y is a LoDTensor:
3680
                y.lod = [[2, 0, 3]]
3681

Y
yangyaming 已提交
3682
            ref_level: -1
3683

Y
yangyaming 已提交
3684 3685 3686
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3687 3688 3689
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3690 3691
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3692
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3693
                        will be named automatically.
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3704
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3705
    """
Y
yangyaming 已提交
3706
    helper = LayerHelper('sequence_expand', input=x, **locals())
3707
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3708
    tmp = helper.create_variable_for_type_inference(dtype)
3709
    helper.append_op(
Y
yangyaming 已提交
3710 3711 3712 3713 3714
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3715
    return tmp
3716 3717


C
chengduo 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3774
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3775 3776 3777 3778 3779 3780 3781 3782
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3783
@templatedoc()
3784
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3785 3786 3787 3788 3789
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3790 3791 3792
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3793
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3794 3795 3796 3797
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3798 3799 3800
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3801

F
fengjiayi 已提交
3802
    Returns:
M
minqiyang 已提交
3803
        Variable: The padded sequence batch and the original lengths before
3804
                  padding. All sequences has the same length.
M
minqiyang 已提交
3805

F
fengjiayi 已提交
3806 3807 3808 3809 3810 3811 3812
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3813
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3814
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3815 3816 3817 3818 3819
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3820 3821
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3822 3823 3824 3825

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3826 3827 3828 3829 3830 3831
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3832 3833
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3834
        attrs={'padded_length': maxlen})
3835
    return out, length
F
fengjiayi 已提交
3836 3837


3838
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3839
    """
3840
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3841

3842 3843
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3853 3854 3855
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3856
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3857 3858 3859 3860 3861 3862

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3863
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3864 3865 3866 3867 3868 3869

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3870 3871
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3886
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3898 3899 3900 3901 3902 3903 3904
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3905
                is_accumulated=True,
3906 3907
                name=None,
                return_parent_idx=False):
3908
    """
3909 3910
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3911 3912 3913

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3914 3915

    This layer does the search in beams for one time step. Specifically, it
3916 3917 3918
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3930 3931 3932 3933

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3934

3935
    Args:
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
3959 3960
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
3961 3962
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
3963 3964 3965 3966
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
3967

3968
    Returns:
3969 3970 3971 3972
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
3973 3974 3975 3976

    Examples:
        .. code-block:: python

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3994
    helper = LayerHelper('beam_search', **locals())
3995 3996 3997 3998 3999 4000
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4001

X
Xin Pan 已提交
4002 4003 4004
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4005 4006 4007 4008 4009
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4010 4011 4012

    helper.append_op(
        type='beam_search',
4013
        inputs=inputs,
Q
Qiao Longfei 已提交
4014 4015 4016
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4017
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4018 4019 4020 4021 4022 4023
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4024
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4025
        })
4026 4027 4028 4029
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4030 4031


4032 4033 4034 4035 4036 4037 4038
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4039

4040 4041 4042 4043 4044 4045 4046 4047 4048
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4049

4050 4051 4052 4053 4054 4055
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4056

4057 4058
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4059

4060 4061 4062 4063 4064 4065
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4066 4067
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4083 4084 4085 4086
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4087
              param_attr=None,
C
caoying03 已提交
4088 4089
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4090 4091 4092 4093
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4094
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4095

4096
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4097

4098
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4099

4100
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4101 4102 4103

            h_t & = o_t tanh(c_t)

4104 4105 4106 4107 4108 4109
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4110 4111 4112

        .. math::

4113
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4114 4115 4116 4117 4118 4119 4120 4121

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4122
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4123 4124

    Args:
Y
yangyaming 已提交
4125 4126 4127 4128 4129 4130
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4131
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4144 4145
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4146 4147

    Returns:
Y
yangyaming 已提交
4148
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4149 4150

    Raises:
4151 4152 4153 4154
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4155 4156 4157 4158 4159 4160

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4161
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4162
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4163
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4180
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4181 4182 4183 4184
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4185 4186
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4187 4188 4189
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4190
    size = cell_t_prev.shape[1]
4191
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4192 4193
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4194
                param_attr=param_attr,
4195
                bias_attr=bias_attr)
Y
yangyaming 已提交
4196
    dtype = x_t.dtype
X
Xin Pan 已提交
4197 4198
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4208
    return h, c
G
guosheng 已提交
4209 4210


C
caoying03 已提交
4211
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4212
    """
Y
yangyaming 已提交
4213
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4214 4215 4216

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4217
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4218 4219
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4220 4221
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4222
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4223
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4224
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4225 4226
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4227 4228 4229

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4230

G
guosheng 已提交
4231 4232 4233 4234 4235 4236
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4237
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4238 4239 4240 4241
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4242 4243 4244 4245

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4246
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4247 4248 4249
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4250 4251
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4252
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4253 4254
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4255 4256 4257 4258 4259
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4260
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4261 4262 4263 4264
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4265 4266


C
caoying03 已提交
4267
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4268
    """
Y
Yibing Liu 已提交
4269
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4270 4271 4272

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4273 4274 4275
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4276
            must be in the range :math:`[-rank(input), rank(input))`. If
4277
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4278
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4279 4280
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4281
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4282
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4283
                       will be named automatically.
G
guosheng 已提交
4284 4285

    Returns:
Y
Yibing Liu 已提交
4286
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4287

G
guosheng 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4298 4299
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4300 4301 4302 4303 4304 4305 4306

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4307 4308
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4309
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4310 4311
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4312 4313 4314 4315 4316
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4317
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4318 4319 4320 4321
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4322 4323


C
caoying03 已提交
4324
def reduce_max(input, dim=None, keep_dim=False, name=None):
4325
    """
Y
yangyaming 已提交
4326
    Computes the maximum of tensor elements over the given dimension.
4327 4328 4329

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4330
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4331 4332 4333
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4334
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4335 4336
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4337
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4338 4339
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4340 4341 4342

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4343

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4355 4356 4357 4358 4359 4360 4361

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4362 4363
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4364
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4365 4366
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4367 4368 4369 4370 4371
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4372
            'dim': dim if dim != None else [0],
4373 4374 4375 4376 4377 4378
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4379
def reduce_min(input, dim=None, keep_dim=False, name=None):
4380
    """
Y
yangyaming 已提交
4381
    Computes the minimum of tensor elements over the given dimension.
4382 4383 4384

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4385
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4386 4387 4388
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4389
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4390 4391
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4392
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4393 4394
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4395 4396 4397

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4398

4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4410 4411 4412 4413 4414 4415 4416

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4417 4418
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4419
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4420 4421
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4422 4423 4424 4425 4426
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4427
            'dim': dim if dim != None else [0],
4428 4429 4430 4431
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4432 4433


4434 4435 4436 4437 4438 4439
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4440
        dim (list|int|None): The dimensions along which the product is performed. If
4441 4442
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4443 4444
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4445 4446 4447
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4448
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4449
            layer will be named automatically.
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4464
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4465
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4466 4467 4468 4469 4470 4471 4472

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4473 4474
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4475
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4476 4477
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4478 4479 4480 4481 4482
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4483
            'dim': dim if dim != None else [0],
4484 4485 4486 4487 4488 4489
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4490
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4491
    """
C
caoying03 已提交
4492
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4493 4494 4495

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4496 4497 4498 4499 4500
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4501
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4502
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4503
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4504 4505
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4506 4507

    Returns:
D
dzhwinter 已提交
4508
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4518 4519
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4535
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4558
    .. math::
4559 4560

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4561 4562 4563 4564 4565

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4566
        x(Variable|list): The input tensor to l2_normalize layer.
4567
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4568 4569
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4570
        epsilon(float): The epsilon value is used to avoid division by zero, \
4571
            the defalut value is 1e-10.
4572
        name(str|None): A name for this layer(optional). If set None, the layer \
4573
            will be named automatically.
C
caoying03 已提交
4574 4575

    Returns:
4576
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4577 4578

    Examples:
4579

C
caoying03 已提交
4580 4581
        .. code-block:: python

4582 4583 4584 4585
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4586 4587
    """

F
fengjiayi 已提交
4588 4589
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4590 4591
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4592 4593
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4594
    helper.append_op(
4595 4596 4597 4598
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4599
        attrs={
4600 4601
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4602 4603
        })
    return out
4604 4605


S
sneaxiy 已提交
4606
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4607
    """
Y
ying 已提交
4608 4609 4610 4611
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4612

C
chengduoZH 已提交
4613
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4614
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4615

4616 4617 4618 4619 4620
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4621
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4622

C
chengduoZH 已提交
4623
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4624
      performs in the following way.
G
guosheng 已提交
4625

4626
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4627
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4628
        last two dimensions and a batched matrix multiply supporting broadcast
4629
        applies on the two tensors.
G
guosheng 已提交
4630

Y
ying 已提交
4631 4632
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4633
    removed after matrix multiplication.
G
guosheng 已提交
4634 4635 4636

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4637 4638 4639
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4640
        alpha (float): The scale of output. Default 1.0.
4641
        name(str|None): A name for this layer(optional). If set None, the layer
4642
            will be named automatically.
G
guosheng 已提交
4643 4644

    Returns:
4645
        Variable: The product Tensor variable.
G
guosheng 已提交
4646

G
guosheng 已提交
4647 4648 4649
    Examples:
        .. code-block:: python

4650
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4651 4652
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4653

4654 4655
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4656

4657 4658
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4659

4660 4661
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4662 4663 4664 4665

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4666 4667
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4668

Y
ying 已提交
4669
            # x: [M], y: [N]
4670
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4671
    """
Y
ying 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4684
            y_shape = y_shape + [1]
Y
ying 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4701
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4702
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4703
    helper.append_op(
4704 4705 4706 4707
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4708 4709 4710
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4711
            'alpha': float(alpha),
S
sneaxiy 已提交
4712
        })
4713
    return out
4714 4715


4716
def topk(input, k, name=None):
Q
qingqing01 已提交
4717 4718 4719 4720
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4721
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4722 4723 4724 4725 4726 4727
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4749 4750 4751
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4752
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4753
                 of input.
4754
        name(str|None): A name for this layer(optional). If set None, the layer
4755
                       will be named automatically.
F
fengjiayi 已提交
4756
                       Default: None
Q
qingqing01 已提交
4757 4758

    Returns:
4759 4760 4761
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4762
        within the last dimension of input.
Q
qingqing01 已提交
4763

F
fengjiayi 已提交
4764 4765
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4766 4767 4768 4769 4770 4771 4772

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4773 4774
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4775 4776 4777 4778 4779 4780
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4781 4782
    helper.append_op(
        type="top_k",
W
whs 已提交
4783
        inputs=inputs,
Q
qingqing01 已提交
4784 4785
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4786
        attrs=attrs)
Q
qingqing01 已提交
4787 4788 4789 4790 4791
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4792
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4793
    """
Y
ying 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4803

Y
ying 已提交
4804
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4805

4806
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4807 4808
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4809
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4810

4811
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4812 4813
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4814

4815 4816 4817
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4818
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4819
                          the length of reference string.
4820
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4821
                                     calculating edit distance.
4822
        name (str): The name of this layer. It is optional.
4823

W
wanghaoshuang 已提交
4824
    Returns:
W
wanghaoshuang 已提交
4825
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4826 4827 4828 4829

    Examples:
        .. code-block:: python

T
tink2123 已提交
4830 4831
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4832
            cost = fluid.layers.edit_distance(input=x,label=y)
4833
    """
4834
    helper = LayerHelper("edit_distance", **locals())
4835

4836
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4837
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4838 4839
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4840 4841 4842 4843 4844

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4845
            attrs={"tokens": ignored_tokens})
4846 4847 4848 4849 4850
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4851
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4852
            attrs={"tokens": ignored_tokens})
4853 4854
        label = erased_label

4855
    # edit distance op
X
Xin Pan 已提交
4856 4857
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4858 4859 4860 4861
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4862 4863
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4864 4865
        attrs={"normalized": normalized})

4866
    return edit_distance_out, sequence_num
4867 4868 4869 4870 4871


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4872

Y
ying 已提交
4873 4874 4875 4876
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4894
        input.lod = [[4, 4]]
M
minqiyang 已提交
4895

W
whs 已提交
4896
        Computation:
4897

W
whs 已提交
4898 4899 4900 4901 4902 4903
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4904 4905 4906 4907 4908

        output.data = [[2],
                       [1],
                       [3]]

4909
        output.lod = [[2, 1]]
4910

W
whs 已提交
4911

4912 4913
    Args:

Y
ying 已提交
4914 4915 4916 4917 4918 4919 4920 4921 4922
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4923
        name (str): The name of this layer. It is optional.
4924 4925

    Returns:
H
haowang101779990 已提交
4926 4927 4928
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4929
                  LoD [[]] and dims [1, 1].
4930 4931 4932 4933 4934

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4935

4936
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4937
    """
4938
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4939
    _, topk_indices = topk(input, k=1)
4940 4941

    # ctc align op
X
Xin Pan 已提交
4942
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4943 4944 4945
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4946
        outputs={"Output": [ctc_out]},
4947 4948
        attrs={"merge_repeated": True,
               "blank": blank})
4949
    return ctc_out
4950 4951


W
Wu Yi 已提交
4952
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4953
    """
4954 4955
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4956
    to compute Connectionist Temporal Classification (CTC) loss.
4957 4958
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4959 4960 4961
    input tensor.

    Args:
4962
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4963 4964 4965 4966
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4967
       label (Variable): The ground truth of variable-length sequence,
4968 4969 4970
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4971 4972
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4973 4974 4975
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4976
         follewed by a mean_op.
W
Wu Yi 已提交
4977
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4978 4979

    Returns:
4980 4981
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4982 4983

    Examples:
4984

W
wanghaoshuang 已提交
4985
        .. code-block:: python
4986

4987 4988 4989
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4990 4991

    """
F
fengjiayi 已提交
4992
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4993 4994
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4995 4996 4997 4998 4999 5000
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5001 5002 5003 5004 5005
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5006
    return loss_out
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5022 5023 5024
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5025 5026 5027 5028 5029
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5030

5031
            out.lod  = [[0, 1, 3]]
5032 5033 5034 5035

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5036 5037 5038 5039 5040 5041 5042
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5043 5044 5045

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5046 5047

    Returns:
5048

5049 5050 5051 5052 5053
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5054
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5055
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5056 5057
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5058
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5059 5060 5061 5062 5063 5064
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5065 5066


5067 5068 5069 5070
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5071 5072 5073 5074 5075 5076
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5077
        num_neg_samples=None,
5078 5079 5080
        name=None,
        sampler="uniform",
        custom_dist=None,
5081 5082
        seed=0,
        is_sparse=False):
5083 5084 5085 5086 5087 5088 5089
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5090 5091
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5092
            sample is 1.0.
C
chengduo 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5102
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5103 5104
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5105 5106 5107
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5108
        custom_dist (float[]): A float[] with size=num_total_classes.
5109 5110 5111 5112
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5113
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5114

5115
    Returns:
Y
Yibing Liu 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5143 5144 5145 5146 5147 5148 5149 5150 5151

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5152

5153
    """
Y
Yang Yu 已提交
5154 5155 5156
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5157 5158

    dim = input.shape[1]
Y
Yang Yu 已提交
5159 5160 5161 5162 5163 5164
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5165
    inputs = {}
C
chengduo 已提交
5166 5167 5168 5169 5170 5171 5172
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5173 5174 5175
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5176

5177 5178 5179 5180
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5181 5182 5183 5184 5185 5186 5187

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5188 5189 5190 5191 5192 5193 5194 5195 5196
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5197
            if normal_prob - 1.0 > 0:
5198
                bigs.append((i, normal_prob))
5199
            elif 1.0 - normal_prob > 0:
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5215
            if big_left - 1.0 > 0:
5216
                bigs.append((big_idx, big_left))
5217
            elif 1.0 - big_left > 0:
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5247 5248 5249 5250
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5251 5252 5253 5254 5255
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5256 5257 5258 5259
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5260

Y
Yang Yu 已提交
5261 5262
    attrs = {
        'num_total_classes': int(num_total_classes),
5263 5264
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5265
        'sampler': sampler,
5266 5267
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5268
    }
Y
Yang Yu 已提交
5269 5270 5271

    helper.append_op(
        type='nce',
C
chengduo 已提交
5272
        inputs=inputs,
Y
Yang Yu 已提交
5273 5274 5275 5276 5277 5278
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5279
    return cost / (num_neg_samples + 1)
5280 5281


C
chengduo 已提交
5282 5283
def hsigmoid(input,
             label,
5284
             num_classes,
C
chengduo 已提交
5285 5286
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5287
             name=None,
5288 5289 5290
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5291
             is_sparse=False):
W
weixing02 已提交
5292 5293
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5294
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5295
    complete binary tree, or you can use is_custom to pass your own tree to
5296
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5297 5298 5299 5300 5301 5302
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5303
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5304
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5305

5306 5307
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5308 5309 5310 5311
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5312
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5313
       related to the same batch of inputs.
5314

W
weixing02 已提交
5315
    Args:
M
minqiyang 已提交
5316
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5317 5318 5319 5320
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5321 5322
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5323
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5335
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5336
            it should be in leaf -> root order
M
minqiyang 已提交
5337 5338 5339
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5340
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5341
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5342
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5343
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5344
             of W and input will be sparse.
W
weixing02 已提交
5345 5346

    Returns:
J
JiabinYang 已提交
5347
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5348 5349 5350 5351 5352

    Examples:

        .. code-block:: python

G
guosheng 已提交
5353 5354 5355
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5356 5357 5358 5359
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5360 5361
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5362
    dim = input.shape[1]
5363
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5364 5365 5366
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5367 5368 5369 5370
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5371 5372
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5373 5374 5375
    else:
        pass

J
JiabinYang 已提交
5376
    weights = None
5377 5378 5379 5380
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5381
    if not is_custom:
J
JiabinYang 已提交
5382 5383 5384 5385 5386 5387 5388 5389
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5390
            shape=[num_classes, dim],
J
JiabinYang 已提交
5391 5392
            is_bias=False,
            dtype=input.dtype)
5393 5394 5395
    inputs = {
        "X": input,
        "W": weights,
5396
        "PathTable": path_table,
5397
        "PathCode": path_code,
5398 5399
        "Label": label
    }
W
weixing02 已提交
5400
    if helper.bias_attr:
5401
        if not is_custom:
J
JiabinYang 已提交
5402 5403
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5404
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5405 5406 5407 5408 5409 5410
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5411
                shape=[num_classes, 1],
J
JiabinYang 已提交
5412 5413 5414
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5415 5416
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5417
        inputs=inputs,
W
weixing02 已提交
5418
        outputs={"Out": out,
5419 5420 5421 5422 5423 5424 5425
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5426 5427 5428
    return out


Y
fix ci.  
ying 已提交
5429
def transpose(x, perm, name=None):
Y
ying 已提交
5430 5431 5432 5433 5434 5435 5436
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5437 5438 5439
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5440 5441 5442 5443 5444 5445 5446

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5447
            # use append_batch_size=False to avoid prepending extra
5448
            # batch size in shape
5449
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5450
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5451
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5452 5453
    """

Y
fix ci.  
ying 已提交
5454
    if len(perm) != len(x.shape):
Y
ying 已提交
5455 5456 5457
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5458 5459 5460 5461 5462 5463
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5464 5465

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5466 5467
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5468
    helper.append_op(
5469
        type='transpose2',
Y
fix ci.  
ying 已提交
5470
        inputs={'X': [x]},
5471 5472
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5473 5474
        attrs={'axis': perm})
    return out
5475 5476


5477 5478 5479 5480 5481 5482 5483
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5484
    """
5485 5486 5487 5488 5489 5490 5491
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5520 5521 5522 5523 5524 5525 5526 5527 5528
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5529 5530 5531
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5532 5533 5534 5535 5536
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5564 5565 5566
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5579
            output.dims = {8, 8}
5580

5581
            output.lod = [[4, 4]]
5582

T
Tink_Y 已提交
5583
    Examples:
5584 5585 5586

        .. code-block:: python

5587 5588
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5589 5590

    """
W
wanghaoshuang 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5601 5602 5603 5604 5605 5606 5607
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5608
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5609
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5610
    helper.append_op(
5611
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5612
    return out
5613 5614


Y
yuyang18 已提交
5615
@templatedoc()
5616
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5617 5618
    """
    ${comment}
5619 5620

    Args:
Y
yuyang18 已提交
5621
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5622 5623
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5624 5625 5626 5627 5628
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5629
        ${out_comment}.
5630 5631

    Examples:
Y
yuyang18 已提交
5632 5633 5634 5635
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5636 5637 5638 5639 5640 5641
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5642
    out = helper.create_variable_for_type_inference(dtype)
5643 5644 5645 5646 5647
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5648
    return helper.append_activation(out)
5649 5650


Y
yuyang18 已提交
5651
@templatedoc()
5652 5653
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5654 5655 5656 5657 5658 5659 5660
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5661 5662

    Args:
Y
yuyang18 已提交
5663 5664
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5665 5666

    Returns:
Y
yuyang18 已提交
5667
        ${out_comment}.
5668 5669
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5670 5671 5672 5673 5674

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5675
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5676 5677 5678 5679 5680 5681
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5682 5683


5684 5685 5686
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5687
                               ignore_index=kIgnoreIndex,
5688 5689
                               numeric_stable_mode=False,
                               return_softmax=False):
5690 5691
    """
    **Softmax With Cross Entropy Operator.**
5692

5693 5694 5695 5696
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5697

5698 5699 5700
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5701

5702 5703 5704
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5705

5706
    The equation is as follows:
5707

5708
    1) Hard label (one-hot label, so every sample has exactly one class)
5709

5710 5711 5712 5713
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5714

5715 5716 5717
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5718

5719 5720 5721 5722
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5723 5724 5725
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5726

H
haowang101779990 已提交
5727
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5728

H
haowang101779990 已提交
5729
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5730

H
haowang101779990 已提交
5731
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5732 5733 5734

    and then cross entropy loss is calculated by softmax and label.

5735 5736 5737 5738 5739 5740 5741 5742
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5743 5744
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5745
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5746 5747 5748
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5749 5750 5751
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5752
                                    stable algorithm. Default: False
5753
        return_softmax (bool): A flag indicating whether to return the softmax
5754
                               along with the cross entropy loss. Default: False
5755

5756
    Returns:
H
haowang101779990 已提交
5757 5758 5759 5760 5761
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5762 5763 5764 5765 5766 5767 5768

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5769 5770
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5771 5772
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5773 5774
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5775 5776 5777 5778 5779 5780
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5781 5782 5783 5784 5785
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5786 5787 5788 5789

    if return_softmax:
        return loss, softmax

5790 5791 5792 5793 5794
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5795 5796
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5797
    For each instance, it computes the smooth L1 loss element by element first
5798
    and then sums all the losses. So the shape of ouput Variable is
5799
    [batch_size, 1].
5800

5801 5802
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5803
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5804
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5805
            L1 loss op with same shape as :attr:`x`.
5806
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5807 5808
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5809
            by this tensor element by element.
5810
        outside_weight (Variable|None): A tensor with rank at least 2. This
5811 5812
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5813
            element by element.
5814
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5815 5816
           scalar with default value 1.0.

5817
    Returns:
5818
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5819 5820 5821 5822 5823

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5824 5825
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5826
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5827
            out = fluid.layers.smooth_l1(x=fc, y=label)
5828
    """
5829

5830
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5831 5832
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5845 5846 5847 5848


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5849
    This layer creates the one-hot representations for input indices.
5850 5851

    Args:
Y
Yibing Liu 已提交
5852 5853
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5854 5855

    Returns:
Y
Yibing Liu 已提交
5856
        Variable: The one-hot representations of input.
5857 5858

    Examples:
C
caoying03 已提交
5859
        .. code-block:: python
5860

Y
Yibing Liu 已提交
5861 5862
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5863 5864
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5865
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5866 5867 5868 5869 5870 5871
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5872 5873


Y
Yu Yang 已提交
5874
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5875
    """
Y
yi.wu 已提交
5876 5877 5878
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5879 5880 5881 5882 5883 5884

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5885 5886
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5887 5888 5889 5890 5891 5892

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5893 5894
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5895 5896
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5897 5898 5899 5900 5901
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5902
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5903
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5904 5905
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5906
            outputs={'Out': [counter]},
M
minqiyang 已提交
5907 5908
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5909 5910 5911
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5912 5913


5914
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5915
    """
C
caoying03 已提交
5916 5917
    Gives a new shape to the input Tensor without changing its data.

5918 5919 5920 5921 5922
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5923

5924
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5925

5926 5927 5928 5929
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5930
    2. 0 means the actual dimension value is going to be copied from the
5931 5932 5933 5934
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5935 5936

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5937
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5938
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5939

5940
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5941 5942
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5943 5944
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5945
    dimensions.
C
caoying03 已提交
5946

5947
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5948 5949 5950 5951
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5952 5953

    Args:
5954
        x(variable): The input tensor.
C
caoying03 已提交
5955 5956
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5957 5958 5959 5960 5961
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5962 5963
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5964
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
5965 5966 5967 5968 5969 5970
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5971
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5972

5973
    Returns:
G
guosheng 已提交
5974 5975 5976 5977
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5978

X
Xin Pan 已提交
5979 5980 5981
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5982 5983
    Examples:
        .. code-block:: python
G
guosheng 已提交
5984

5985
            data = fluid.layers.data(
5986
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5987
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5988
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5989 5990 5991
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5992
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5993 5994 5995 5996 5997
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5998

5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6014
    helper = LayerHelper("reshape2", **locals())
6015 6016
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6017
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6018
    helper.append_op(
6019
        type="reshape2",
X
Xin Pan 已提交
6020
        inputs=inputs,
D
dzhwinter 已提交
6021
        attrs={"shape": shape},
6022 6023
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6024

D
dzhwinter 已提交
6025
    return helper.append_activation(out)
6026

6027

6028
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6029
    """
M
minqiyang 已提交
6030 6031 6032
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6033
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6034

H
haowang101779990 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6056

Y
Yibing Liu 已提交
6057
    Args:
6058
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6059
        axes (list): List of integers, indicating the dimensions to be squeezed.
6060
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6061 6062 6063 6064 6065 6066 6067 6068

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6069
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6070 6071
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6072 6073
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6074
    helper.append_op(
6075
        type="squeeze2",
6076
        inputs={"X": input},
Y
Yibing Liu 已提交
6077
        attrs={"axes": axes},
6078 6079
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6080

6081 6082 6083
    return out


6084
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6085
    """
M
minqiyang 已提交
6086 6087 6088
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6089

M
minqiyang 已提交
6090
    For example:
H
haowang101779990 已提交
6091 6092 6093

    .. code-block:: text

M
minqiyang 已提交
6094
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6095
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6096

Y
Yibing Liu 已提交
6097
    Args:
6098
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6099
        axes (list): List of integers, indicating the dimensions to be inserted.
6100
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6101 6102 6103 6104 6105 6106 6107 6108

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6109
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6110 6111
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6112 6113
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6114
    helper.append_op(
6115
        type="unsqueeze2",
6116
        inputs={"X": input},
Y
Yibing Liu 已提交
6117
        attrs={"axes": axes},
6118 6119
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6120

6121 6122
    return out

6123

Y
yangyaming 已提交
6124
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6125
    """
Y
Yibing Liu 已提交
6126
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6127 6128 6129 6130
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6131
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6132 6133 6134 6135 6136 6137

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6138
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6139 6140 6141
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6142
            target_lod: [4, 2]
Y
yangyaming 已提交
6143 6144

            then we get a 1-level LoDTensor:
6145
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6146 6147 6148 6149 6150 6151
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6152
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6153 6154 6155 6156
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6157
                y.data = [[2, 4]]
Y
yangyaming 已提交
6158 6159 6160
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6161
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6162 6163 6164 6165 6166 6167
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6168
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6169 6170 6171 6172
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6173
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6174 6175 6176 6177
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6178
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6179 6180 6181 6182 6183
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6184
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6185
                           from :attr:`y`.
Y
yangyaming 已提交
6186
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6187
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6188 6189

    Returns:
Y
Yibing Liu 已提交
6190
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6191 6192

    Raises:
Y
Yibing Liu 已提交
6193
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6194 6195 6196 6197 6198 6199 6200 6201 6202

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6203
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6229
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6258 6259
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6272 6273 6274
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6288 6289 6290 6291


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6292
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6293
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6294

G
guosheng 已提交
6295 6296 6297 6298
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6321
                         The length of :attr:paddings must be
G
guosheng 已提交
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6332

G
guosheng 已提交
6333 6334 6335 6336 6337 6338
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6339
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6340 6341 6342 6343 6344 6345 6346
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6347 6348


C
chengduo 已提交
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6380 6381
		And
            pad_value = -1,
C
chengduo 已提交
6382

T
Tink_Y 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6418
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6419 6420 6421 6422 6423 6424 6425 6426 6427
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6428 6429 6430 6431 6432 6433 6434
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6435 6436
    called label-smoothing regularization (LSR).

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6460
                              be :math:`(1, class\_num)`.
6461 6462
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6463
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6483
    smooth_label = helper.create_variable_for_type_inference(dtype)
6484 6485 6486 6487 6488 6489 6490
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6491 6492


W
wopeizl 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6529 6530


J
jerrywgz 已提交
6531 6532 6533 6534 6535 6536
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6537 6538
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6555 6556 6557
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6558 6559 6560 6561 6562 6563
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6564
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6605 6606
        .. code-block:: python

W
whs 已提交
6607 6608 6609 6610
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6611
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6612 6613 6614 6615 6616 6617
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6618 6619


6620 6621 6622 6623
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6624
                 resample='BILINEAR',
6625 6626
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6627
                 align_mode=1):
6628
    """
Q
qiaolongfei 已提交
6629
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6630

6631
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6632 6633 6634
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6635

6636
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6637

6638
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6639

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6650
    Align_corners and align_mode are optinal parameters,the calculation method 
6651 6652 6653 6654
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6655
      For scale:
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6668
      if:
6669 6670 6671 6672 6673 6674 6675 6676
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6677
      else:
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6688
      if:
6689 6690 6691 6692 6693 6694 6695 6696 6697
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6698
      else:
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6714
    Args:
6715
        input (Variable): The input tensor of image resize layer,
6716 6717
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6718
        out_shape(list|tuple|Variable|None): Output shape of image resize
6719 6720
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6721
        scale(float|None): The multiplier for the input height or width.
6722 6723 6724
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6725 6726
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6727
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6728
                       currently.
6729
                       Default: 'BILINEAR'
6730 6731 6732
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6733
                                :attr:`out_shape` and :attr:`scale` specifying
6734 6735 6736 6737 6738 6739 6740
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6741 6742
                                constructing stage.
                                Default: None
6743 6744 6745 6746
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6747
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6748 6749
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6750 6751

    Returns:
Q
update  
qiaolongfei 已提交
6752 6753
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6754

6755 6756 6757
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6758
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6759 6760 6761
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6762 6763
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6764

6765 6766 6767
    Examples:
        .. code-block:: python

6768
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6769
    """
6770 6771 6772 6773
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6774 6775
    if resample not in resample_methods:
        raise ValueError(
6776
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6777
        )
6778
    resample_type = resample_methods[resample]
6779 6780 6781 6782 6783 6784

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6785
    if out_shape is None and scale is None:
6786
        raise ValueError("One of out_shape and scale must not be None.")
6787
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6788
    dtype = helper.input_dtype()
6789 6790 6791 6792

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6793 6794 6795
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6796
    if out_shape is not None:
6797 6798 6799 6800
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6801
            inputs['OutSize'] = out_shape
6802 6803 6804 6805 6806 6807 6808 6809
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6810 6811 6812 6813
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6814 6815 6816 6817 6818
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6819
    out = helper.create_variable_for_type_inference(dtype)
6820
    helper.append_op(
6821
        type='{}_interp'.format(resample_type),
6822
        inputs=inputs,
6823
        outputs={"Out": out},
6824 6825 6826 6827 6828 6829 6830
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
6831
    return out
F
stash  
fengjiayi 已提交
6832 6833


6834
@templatedoc(op_type="bilinear_interp")
6835 6836 6837 6838
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6839 6840
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
6841
                    align_mode=1):
6842
    """
6843 6844
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6845 6846
    in priority order.

6847 6848 6849 6850
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6851 6852
    again in the other direction.

6853
    For details of bilinear interpolation, please refer to Wikipedia:
6854
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6855

T
tink2123 已提交
6856
    Align_corners and align_mode are optinal parameters,the calculation 
6857 6858 6859
    method of interpolation can be selected by them.


T
tink2123 已提交
6860
    Align_corners and align_mode are optinal parameters,the calculation method 
6861 6862 6863 6864
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6865
      For scale:
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
6877
      if:
6878 6879 6880 6881 6882 6883 6884 6885 6886
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6887 6888
      else:

6889 6890 6891 6892 6893 6894 6895 6896
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
6897 6898 6899 6900
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6901

Y
yuyang18 已提交
6902 6903 6904 6905 6906
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6907 6908 6909
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6910
                                :attr:`out_shape` and :attr:`scale` specifying
6911 6912 6913 6914 6915 6916 6917
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6918 6919
                                constructing stage.
                                Default: None
6920 6921
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
6922 6923 6924

    Returns:
        ${out_comment}.
6925 6926 6927 6928 6929

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6930 6931
    """

6932 6933
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
6934 6935


6936
@templatedoc(op_type="nearest_interp")
6937 6938 6939 6940
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
6941 6942
                   actual_shape=None,
                   align_corners=True):
6943
    """
6944
    Resize input by performing nearest neighbor interpolation in both the
6945 6946
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6947 6948
    out_shape and scale in priority order.

6949 6950
    Example:

T
tink2123 已提交
6951
      For scale:
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6964
      if:
6965 6966 6967 6968 6969 6970 6971 6972
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6973
      else:
6974 6975 6976 6977 6978 6979 6980 6981 6982
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


6983
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6984
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6985 6986 6987 6988 6989

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6990

Y
yuyang18 已提交
6991 6992 6993 6994 6995
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6996 6997 6998
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6999
                                :attr:`out_shape` and :attr:`scale` specifying
7000 7001 7002 7003 7004 7005 7006
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7007 7008
                                constructing stage.
                                Default: None
7009
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7010 7011 7012

    Returns:
        ${out_comment}.
7013 7014 7015 7016 7017

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7018 7019
    """

7020 7021
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7022 7023 7024 7025


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7026 7027 7028
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7029 7030 7031 7032 7033 7034 7035
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7036
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7037

7038
    Returns:
Q
update  
qiaolongfei 已提交
7039
        Variable: The output is a 4-D tensor of the shape
7040
        (num_batches, channls, out_h, out_w).
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7051 7052 7053
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7054 7055 7056
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7057 7058
def gather(input, index):
    """
Q
qiaolongfei 已提交
7059 7060
    **Gather Layer**

7061
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7062 7063 7064 7065
    of X indexed by `index` and concatenate them together.

    .. math::

7066
        Out = X[Index]
W
whs 已提交
7067 7068 7069 7070 7071 7072 7073


    .. code-block:: text


                Given:

7074 7075
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7086
        input (Variable): The source input with rank>=1.
W
whs 已提交
7087 7088 7089 7090 7091 7092
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7093

W
whs 已提交
7094 7095 7096 7097 7098 7099
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7100
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7101 7102 7103 7104 7105 7106 7107 7108
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7140
    out = helper.create_variable_for_type_inference(dtype)
7141 7142 7143 7144 7145 7146 7147 7148 7149
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7150 7151 7152 7153 7154 7155 7156 7157 7158
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7159

Q
Qingsheng Li 已提交
7160
    Given the following input:
H
haowang101779990 已提交
7161

Q
Qingsheng Li 已提交
7162
    .. code-block:: text
H
haowang101779990 已提交
7163

Q
Qingsheng Li 已提交
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7176

Q
Qingsheng Li 已提交
7177
    .. code-block:: text
H
haowang101779990 已提交
7178

Q
Qingsheng Li 已提交
7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7194
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7205
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7206 7207 7208 7209 7210 7211 7212 7213 7214
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7228

7229 7230 7231
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7232
    """
F
stash  
fengjiayi 已提交
7233
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7234
    dtype = x.dtype
X
Xin Pan 已提交
7235
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7236
    if seed is None:
7237
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7238
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7239
    if isinstance(seed, int):
F
fengjiayi 已提交
7240 7241 7242 7243 7244
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7245 7246 7247 7248
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7249
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7250 7251
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7252 7253
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7254
    return out
W
whs 已提交
7255 7256


7257
def log(x, name=None):
W
wanghaoshuang 已提交
7258 7259 7260 7261 7262
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7263
        Out = \\ln(x)
W
wanghaoshuang 已提交
7264 7265

    Args:
7266
        x (Variable): Input tensor.
7267 7268
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7269 7270 7271 7272 7273 7274 7275 7276

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7277
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7278 7279
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7280
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7281
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7282
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7283 7284 7285
    return out


7286
def relu(x, name=None):
W
wanghaoshuang 已提交
7287 7288
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7289
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7290 7291 7292 7293
    the tensor elementwise.

    .. math::

7294
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7295 7296

    Args:
7297
        x (Variable): The input tensor.
7298 7299
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7300 7301 7302 7303 7304 7305 7306 7307

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7308
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7309 7310
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7311
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7312
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7313 7314
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7315
    return out
7316 7317


C
chengduo 已提交
7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7359 7360 7361
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7362 7363 7364 7365
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7366
    .. math::
7367

H
haowang101779990 已提交
7368
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7369

7370
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7371 7372 7373 7374 7375
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7376
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7377
                           Its shape should be the same as input.
7378
        num_classes (int): The possible number of labels.
W
whs 已提交
7379 7380

    Returns:
M
minqiyang 已提交
7381 7382
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7383
                     Three variables:
M
minqiyang 已提交
7384

H
haowang101779990 已提交
7385 7386 7387
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7388 7389 7390 7391

    Examples:

        .. code-block:: python
7392

W
whs 已提交
7393 7394 7395 7396
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7397 7398 7399
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7400 7401
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7402 7403
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7404
        outputs={
W
whs 已提交
7405 7406 7407
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7408 7409 7410
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7479
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7480 7481 7482 7483 7484

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7485
            isinstance(shape, Variable)):
7486 7487 7488 7489 7490
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7491
    out = helper.create_variable_for_type_inference(x.dtype)
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7509 7510


W
whs 已提交
7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7528

W
whs 已提交
7529
              out_shape = [2, 3, 5, 5]
7530

W
whs 已提交
7531
          Step 1:
7532

W
whs 已提交
7533 7534 7535
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7536

W
whs 已提交
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7582
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7583
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7596

W
whs 已提交
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7608
            isinstance(out_shape, Variable)):
W
whs 已提交
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7630 7631
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7632

7633 7634
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7635
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7636 7637 7638
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7639

7640 7641
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7642

H
haowang101779990 已提交
7643 7644
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7645 7646
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7647

H
haowang101779990 已提交
7648 7649 7650 7651 7652 7653 7654 7655
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7656 7657 7658

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7693
    out = helper.create_variable_for_type_inference("float32")
7694 7695 7696 7697 7698 7699 7700 7701

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7702 7703


M
minqiyang 已提交
7704 7705
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7706
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7707
    which compares left score and right score passed in.
M
minqiyang 已提交
7708
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7709 7710 7711

    .. math::

H
haowang101779990 已提交
7712
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7713 7714

    Args:
M
minqiyang 已提交
7715
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7716 7717
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7718
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7719 7720
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7721

M
minqiyang 已提交
7722
    Returns:
M
minqiyang 已提交
7723
       Variable: The ranking loss.
H
haowang101779990 已提交
7724

M
minqiyang 已提交
7725
    Raises:
M
minqiyang 已提交
7726
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7727

M
minqiyang 已提交
7728
    Examples:
H
haowang101779990 已提交
7729

M
minqiyang 已提交
7730
        .. code-block:: python
H
haowang101779990 已提交
7731

M
minqiyang 已提交
7732 7733 7734 7735 7736
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7737
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7738 7739 7740 7741 7742 7743
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7744 7745
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7769
        .. code-block:: text
W
whs 已提交
7770

T
Tink_Y 已提交
7771
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7772

T
Tink_Y 已提交
7773 7774
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7775

T
Tink_Y 已提交
7776
	      Case 0:
M
minqiyang 已提交
7777

T
Tink_Y 已提交
7778 7779 7780
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7781

T
Tink_Y 已提交
7782 7783 7784
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7785

T
Tink_Y 已提交
7786
	      Case 1:
M
minqiyang 已提交
7787

T
Tink_Y 已提交
7788 7789
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7790

T
Tink_Y 已提交
7791 7792 7793
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7794

T
Tink_Y 已提交
7795
	      Case 2:
M
minqiyang 已提交
7796

T
Tink_Y 已提交
7797 7798
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7799

T
Tink_Y 已提交
7800 7801 7802
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7803 7804


W
whs 已提交
7805 7806
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7807
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7831
    out = helper.create_variable_for_type_inference(dtype)
7832 7833 7834 7835 7836 7837 7838 7839 7840
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7841
    helper.append_op(
7842
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7843 7844 7845 7846

    return out


7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7859 7860 7861 7862 7863

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7864 7865
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7866 7867
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7868
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7889 7890 7891 7892 7893

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7894 7895
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7896 7897
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7898
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7919 7920 7921 7922 7923

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7924 7925
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7926 7927
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7928
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7950 7951 7952 7953 7954

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7955
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7956
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7957 7958
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7959
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7982 7983 7984 7985 7986

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7987 7988
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7989 7990
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7991
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8013 8014 8015 8016 8017

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8018 8019
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8020 8021
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8022
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8023 8024 8025 8026 8027 8028 8029 8030
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8031 8032 8033 8034
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8035 8036
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8037 8038 8039

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8040
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8041
          weight (alpha).
J
jerrywgz 已提交
8042
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8043 8044 8045
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8046
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8047
          will be named automatically.
J
jerrywgz 已提交
8048 8049 8050 8051 8052 8053 8054 8055

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8056
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8070
        attr=helper.param_attr,
J
jerrywgz 已提交
8071 8072 8073 8074
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8075
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8076 8077 8078 8079 8080 8081 8082 8083 8084
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8095
    Returns:
8096
        output(${out_type}): ${out_comment}
8097 8098 8099

    Examples:

8100
    .. code-block:: python
8101

H
haowang101779990 已提交
8102 8103
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8104 8105
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8106
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8125
    Returns:
8126
        output(${out_type}): ${out_comment}
8127 8128 8129 8130 8131

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8132 8133
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8134 8135
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8136
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8154
    Returns:
8155
        output(${out_type}): ${out_comment}
8156 8157 8158 8159 8160

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8161 8162
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8163 8164
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8165
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8166 8167 8168 8169 8170 8171 8172 8173
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8174 8175 8176 8177
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8178

H
haowang101779990 已提交
8179
    For Example:
M
minqiyang 已提交
8180

H
haowang101779990 已提交
8181
    .. code-block:: text
8182

H
haowang101779990 已提交
8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8204 8205 8206

    Args:
        x (Variable): A tensor of rank >= axis.
8207 8208
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8209 8210 8211 8212 8213 8214 8215 8216
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8217 8218 8219
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8220 8221 8222 8223
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8224
        ValueError: If axis is not in range [0, rank(x)].
8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8241 8242
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8243
    helper.append_op(
8244
        type='flatten2',
8245
        inputs={"X": x},
8246 8247
        outputs={'Out': out,
                 'XShape': x_shape},
8248 8249
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8250 8251


C
chenweihang 已提交
8252
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8253
    """
C
chenweihang 已提交
8254
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8255
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8256 8257
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8258

H
haowang101779990 已提交
8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8276 8277

    Args:
C
chenweihang 已提交
8278 8279 8280
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8292 8293
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8294 8295 8296 8297 8298 8299
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8300
    return out
8301

8302

S
sneaxiy 已提交
8303 8304 8305 8306 8307 8308 8309 8310 8311
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8312

S
sneaxiy 已提交
8313
    .. math::
8314

S
sneaxiy 已提交
8315 8316 8317
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8318
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8319 8320 8321 8322
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8323 8324 8325
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8326 8327
    Returns:
        Variable: The output sequence mask.
8328

S
sneaxiy 已提交
8329 8330
    """

Q
qingqing01 已提交
8331
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8332
    if name is None:
X
Xin Pan 已提交
8333
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8334
    else:
X
Xin Pan 已提交
8335
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8336

Q
qingqing01 已提交
8337 8338 8339
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8340 8341
        outputs={'Y': out},
        attrs={
8342
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8343 8344 8345
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8346 8347


X
Xin Pan 已提交
8348
def stack(x, axis=0):
S
sneaxiy 已提交
8349 8350 8351 8352
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8353 8354 8355 8356 8357 8358 8359

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8360
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8361
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8362 8363

    Args:
8364
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8365
        axis (int|None): The axis along which all inputs are stacked.
8366

S
sneaxiy 已提交
8367 8368
    Returns:
        Variable: The stacked variable.
8369

S
sneaxiy 已提交
8370 8371
    """

X
Xin Pan 已提交
8372 8373 8374 8375 8376 8377
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8378
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8379
    helper.append_op(
S
sneaxiy 已提交
8380 8381
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8382

X
Xin Pan 已提交
8383
    return out
D
dzhwinter 已提交
8384 8385 8386 8387 8388 8389 8390


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8391

D
dzhwinter 已提交
8392 8393 8394
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8395
    raised.
D
dzhwinter 已提交
8396 8397

    Args:
M
minqiyang 已提交
8398
        x (Variable): Input variable.
D
dzhwinter 已提交
8399 8400
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8401

D
dzhwinter 已提交
8402 8403
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8404

D
dzhwinter 已提交
8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8415
    for _ in range(num):
X
Xin Pan 已提交
8416
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8417 8418 8419 8420 8421 8422 8423 8424

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8437

W
whs 已提交
8438 8439 8440 8441
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8442

W
whs 已提交
8443
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8444

W
whs 已提交
8445
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8446

W
whs 已提交
8447 8448 8449 8450
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8451

W
whs 已提交
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8468
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8469 8470 8471 8472 8473 8474
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8475 8476


G
fix  
gongweibao 已提交
8477 8478 8479
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8480
@templatedoc()
G
fix  
gongweibao 已提交
8481 8482 8483 8484 8485 8486 8487 8488 8489
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8490
    ${comment}
G
fix  
gongweibao 已提交
8491 8492

    Args:
G
gongweibao 已提交
8493 8494 8495
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8496
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8497 8498 8499
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8500 8501
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8502
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8503

8504 8505 8506 8507 8508
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8509 8510 8511
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8512
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8529 8530


G
gongweibao 已提交
8531
@templatedoc()
X
Xin Pan 已提交
8532
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8533
    """
G
gongweibao 已提交
8534
    ${comment}
G
fix  
gongweibao 已提交
8535 8536

    Args:
G
gongweibao 已提交
8537 8538 8539 8540
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8541 8542 8543
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8544
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8545

8546 8547 8548 8549
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8550 8551 8552
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8553
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8554 8555 8556 8557 8558 8559 8560 8561 8562 8563
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8564
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8565 8566 8567 8568 8569
        })

    return out


G
gongweibao 已提交
8570
@templatedoc()
G
fix  
gongweibao 已提交
8571
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8572
    """
G
gongweibao 已提交
8573
    ${comment}
G
fix  
gongweibao 已提交
8574 8575

    Args:
G
gongweibao 已提交
8576 8577 8578 8579
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8580
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8581 8582

    Returns:
G
gongweibao 已提交
8583
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8584

8585 8586 8587 8588 8589 8590 8591 8592 8593 8594
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8595 8596 8597
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8598
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8610
@templatedoc()
G
fix  
gongweibao 已提交
8611 8612 8613 8614 8615 8616 8617 8618 8619
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8620
    ${comment}
G
fix  
gongweibao 已提交
8621 8622

    Args:
G
gongweibao 已提交
8623 8624
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8625
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8626 8627 8628 8629
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8630
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8631 8632

    Returns:
G
gongweibao 已提交
8633
        out (Variable): ${out_comment}
8634 8635 8636 8637 8638 8639 8640 8641

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8642 8643 8644
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8645
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8664
@templatedoc()
X
Xin Pan 已提交
8665
def sum(x):
G
fix  
gongweibao 已提交
8666
    """
G
gongweibao 已提交
8667
    ${comment}
G
fix  
gongweibao 已提交
8668 8669

    Args:
G
gongweibao 已提交
8670
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8671 8672

    Returns:
G
gongweibao 已提交
8673
        out (Variable): ${out_comment}
8674 8675 8676 8677 8678 8679

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8680 8681 8682
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8683 8684
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8685 8686 8687 8688
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8689
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8690 8691 8692 8693

    return out


G
gongweibao 已提交
8694
@templatedoc()
G
fix  
gongweibao 已提交
8695 8696
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8697
    ${comment}
G
fix  
gongweibao 已提交
8698 8699

    Args:
G
gongweibao 已提交
8700 8701 8702 8703
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8704 8705

    Returns:
G
gongweibao 已提交
8706
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8707

8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8719 8720 8721
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8722 8723
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8735
@templatedoc()
G
fix  
gongweibao 已提交
8736 8737
def shape(input):
    """
G
gongweibao 已提交
8738
    ${comment}
G
fix  
gongweibao 已提交
8739 8740

    Args:
G
gongweibao 已提交
8741
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8742 8743

    Returns:
G
gongweibao 已提交
8744
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8745

8746 8747 8748 8749 8750 8751
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8752 8753 8754
    """

    helper = LayerHelper('shape', **locals())
8755
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8756
    helper.append_op(
G
fix  
gongweibao 已提交
8757
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8758 8759

    return out
G
merge  
gongweibao 已提交
8760 8761


S
sneaxiy 已提交
8762 8763 8764 8765 8766 8767 8768 8769
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8770 8771
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8772
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8773 8774 8775
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8776

S
sneaxiy 已提交
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8788
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8789 8790 8791 8792 8793 8794 8795 8796
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8797
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8798
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8799 8800 8801 8802 8803 8804

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8805
    if name is None:
X
Xin Pan 已提交
8806
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8807 8808 8809
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8810 8811 8812 8813 8814 8815 8816 8817 8818 8819

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8820
    return helper.append_activation(out)
S
sneaxiy 已提交
8821 8822


X
Xin Pan 已提交
8823
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8824 8825 8826
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8827
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8828 8829 8830
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8831
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8832 8833 8834
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8835
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8836 8837 8838
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8839
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8840 8841 8842
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8843
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8844 8845 8846
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8847
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8859 8860
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8861
        ])
M
minqiyang 已提交
8862 8863


8864
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8865 8866
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8867 8868
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8869 8870 8871

    if out is None:
        if name is None:
X
Xin Pan 已提交
8872
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8888
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8900 8901 8902 8903 8904 8905 8906 8907 8908

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8909 8910 8911 8912 8913 8914 8915
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8916
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8928 8929 8930 8931 8932 8933 8934 8935 8936

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8937 8938 8939 8940 8941 8942 8943
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8944
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8956 8957 8958 8959 8960 8961 8962 8963 8964

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8965 8966 8967 8968 8969 8970 8971
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8972
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8973 8974 8975 8976 8977 8978 8979 8980 8981 8982
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8983 8984 8985 8986 8987 8988 8989

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8990 8991 8992 8993
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9009 9010 9011 9012 9013 9014 9015

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9016 9017 9018 9019 9020
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9021 9022 9023 9024
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9048 9049 9050 9051 9052 9053 9054

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9055 9056 9057 9058 9059
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9060 9061 9062 9063
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9064 9065 9066 9067 9068 9069 9070 9071

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9090
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9091 9092 9093 9094 9095 9096 9097 9098 9099 9100
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9143
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9144 9145 9146 9147 9148 9149 9150 9151 9152
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9153 9154
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9155 9156 9157 9158 9159 9160
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9161 9162 9163
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9164 9165
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9166 9167 9168 9169 9170 9171
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9172
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9173
        name(basestring|None): Name of the output.
9174 9175
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9176 9177 9178

    Returns:
        out(${out_type}): ${out_comment}
9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9193 9194 9195 9196 9197
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9198
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9199 9200 9201 9202 9203 9204 9205 9206
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9207 9208
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9229
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9230 9231 9232 9233 9234 9235 9236 9237 9238 9239
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9240 9241


J
JiabinYang 已提交
9242
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9243
    """
J
JiabinYang 已提交
9244
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9245 9246 9247

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9248
    The attr blocksize indicates the input block size.
9249 9250

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9251
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9252 9253

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9254
    (but keeping all data)
J
JiabinYang 已提交
9255

J
JiabinYang 已提交
9256
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9257
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9258 9259 9260 9261 9262
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9263
    Args:
J
JiabinYang 已提交
9264
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9265
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9266 9267

    Returns:
J
JiabinYang 已提交
9268
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9269 9270

    Raises:
J
JiabinYang 已提交
9271
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9272 9273 9274 9275 9276 9277

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9278
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9279
                x=data, blocksize=2)
J
JiabinYang 已提交
9280 9281
    """

J
JiabinYang 已提交
9282
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9283

J
JiabinYang 已提交
9284 9285
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9286 9287

    if name is None:
J
JiabinYang 已提交
9288 9289
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9290 9291 9292 9293 9294
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9295
        type="space_to_depth",
J
JiabinYang 已提交
9296
        inputs={"X": x},
J
JiabinYang 已提交
9297
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9298
        outputs={"Out": out})
J
JiabinYang 已提交
9299 9300
    return out

J
JiabinYang 已提交
9301

S
sneaxiy 已提交
9302 9303
@templatedoc()
def sequence_reverse(x, name=None):
9304
    """
S
sneaxiy 已提交
9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9316
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9317 9318 9319 9320 9321 9322 9323 9324 9325 9326
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9327 9328


9329 9330 9331 9332 9333 9334
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9335

9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9355
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9368 9369


B
barrierye 已提交
9370
def similarity_focus(input, axis, indexes, name=None):
9371
    """
B
barrierye 已提交
9372
    SimilarityFocus Operator
B
barrierye 已提交
9373 9374

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9375

9376 9377 9378
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9379
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9380 9381 9382 9383 9384 9385 9386
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9387
       each index.
B
barrierye 已提交
9388 9389 9390 9391
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9441
    Args:
9442
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9443
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9444
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9445
            1, 2 or 3.
B
barrierye 已提交
9446
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9447 9448

    Returns:
H
haowang101779990 已提交
9449 9450
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9451

B
barrierye 已提交
9452 9453
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9454

B
barrierye 已提交
9455
            data = fluid.layers.data(
B
barrierye 已提交
9456 9457
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9458

B
barrierye 已提交
9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9471 9472 9473 9474 9475
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9476 9477 9478 9479 9480 9481 9482
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9483 9484


M
minqiyang 已提交
9485 9486
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9487 9488
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9489 9490
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9529
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9530
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9531 9532 9533 9534 9535 9536

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9537

M
minqiyang 已提交
9538 9539 9540
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9541 9542
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9543 9544
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9545 9546 9547 9548 9549 9550 9551
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9552 9553


D
dengkaipeng 已提交
9554
@templatedoc()
9555 9556
def grid_sampler(x, grid, name=None):
    """
9557
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9558
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9559 9560 9561 9562
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9563
    interpolation value of 4 nearest corner points.
9564

H
haowang101779990 已提交
9565
    .. code-block:: text
9566

H
haowang101779990 已提交
9567 9568
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9569

H
haowang101779990 已提交
9570 9571
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9572

H
haowang101779990 已提交
9573 9574 9575
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9576

H
haowang101779990 已提交
9577 9578 9579 9580 9581 9582 9583 9584 9585
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9586

H
haowang101779990 已提交
9587 9588 9589 9590
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9591

H
haowang101779990 已提交
9592 9593 9594 9595
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9596

H
haowang101779990 已提交
9597 9598 9599 9600
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9601

H
haowang101779990 已提交
9602 9603
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9604 9605

    Args:
9606 9607 9608
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9609 9610

    Returns:
H
haowang101779990 已提交
9611
        Variable: Output of shape [N, C, H, W] data samples input X
9612 9613
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9614 9615 9616 9617 9618 9619 9620 9621
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9622

D
dengkaipeng 已提交
9623 9624 9625 9626 9627 9628 9629 9630 9631
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9632
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9633 9634
    ipts = {'X': x, 'Grid': grid}

9635
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9636 9637 9638
    return out


G
gmcather 已提交
9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9705
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9727 9728 9729 9730
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9731
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9732 9733
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9734
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9735 9736

    .. math::
H
haowang101779990 已提交
9737 9738 9739
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9740 9741

    Where:
H
haowang101779990 已提交
9742 9743
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9758

G
gmcather 已提交
9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9775 9776 9777 9778 9779 9780 9781 9782 9783 9784


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9785
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9786

Q
Qiao Longfei 已提交
9787
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9788 9789 9790
    For example:

    .. math::
H
haowang101779990 已提交
9791
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9792

Q
Qiao Longfei 已提交
9793
    In this formula:
9794 9795
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9796
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9797
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9798 9799 9800
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9801 9802
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9803 9804 9805
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9806
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9807
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9808
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9809 9810 9811 9812
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9813
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9814 9815 9816 9817

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9818
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9819 9820
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9821
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9822 9823 9824 9825

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9826
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9867 9868


S
shippingwang 已提交
9869
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
9870 9871
    """
    **Shuffle Channel Operator**
9872

S
shippingwang 已提交
9873 9874 9875 9876 9877 9878
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
9879
    
S
shippingwang 已提交
9880
    .. code-block:: text
9881

S
shippingwang 已提交
9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
9910
    Args: 
S
shippingwang 已提交
9911 9912
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
9913 9914

    Returns:
S
shippingwang 已提交
9915 9916
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
9917 9918

    Raises:
S
shippingwang 已提交
9919
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
9920 9921 9922

    Examples:
        .. code-block:: python
9923 9924

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
9925
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
9926 9927 9928
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
9929
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
9930 9931 9932 9933 9934 9935 9936 9937 9938

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
9939
    return out
S
Add  
shippingwang 已提交
9940 9941


S
sneaxiy 已提交
9942
class PyFuncRegistry(object):
S
sneaxiy 已提交
9943 9944 9945
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9946
        if func is None or not callable(func):
S
sneaxiy 已提交
9947 9948 9949
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9950
        # find named args using reflection
S
sneaxiy 已提交
9951 9952 9953 9954 9955 9956 9957
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9958 9959 9960
        '''
        Why record self here?

M
minqiyang 已提交
9961 9962
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9963
           to find the registered function corresponding
M
minqiyang 已提交
9964
           to :code:`idx`.
S
sneaxiy 已提交
9965

M
minqiyang 已提交
9966 9967
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9968
           whose reference count is 1 would cause
M
minqiyang 已提交
9969
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9970 9971
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9972
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9987 9988 9989 9990 9991 9992 9993 9994 9995
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9996

S
sneaxiy 已提交
9997 9998
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9999 10000

        ret = []
S
sneaxiy 已提交
10001 10002 10003
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10004 10005
                continue

S
sneaxiy 已提交
10006 10007
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10008

S
sneaxiy 已提交
10009 10010 10011
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10012

S
sneaxiy 已提交
10013
        return tuple(ret)
S
sneaxiy 已提交
10014 10015


S
sneaxiy 已提交
10016 10017 10018 10019
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10020

S
sneaxiy 已提交
10021 10022 10023 10024 10025 10026 10027 10028
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10029
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10030

S
sneaxiy 已提交
10031 10032
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10033 10034 10035 10036
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10037
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10038
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10039 10040
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10041 10042 10043 10044 10045
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10046
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10047
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10048
                                       None means no backward. Default None.
S
sneaxiy 已提交
10049
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10050
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10051 10052
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10053
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10054 10055 10056

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10057 10058

    Examples:
M
minqiyang 已提交
10059

S
sneaxiy 已提交
10060 10061 10062 10063 10064
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10065
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10066 10067
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10068
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10069 10070 10071
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10072
        >>>
S
sneaxiy 已提交
10073 10074 10075 10076 10077
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10078
        >>>     print(x)
S
sneaxiy 已提交
10079 10080 10081 10082 10083 10084
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10085
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10086 10087
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10088 10089
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10090 10091 10092 10093 10094 10095 10096 10097
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10098
    """
S
sneaxiy 已提交
10099
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10100 10101 10102
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10103
        x = [x]
S
sneaxiy 已提交
10104 10105
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10106

S
sneaxiy 已提交
10107 10108 10109
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10110
        out_list = [out]
S
sneaxiy 已提交
10111
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10112
        out_list = out
S
sneaxiy 已提交
10113 10114 10115
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10116

S
sneaxiy 已提交
10117 10118
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10119
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10120 10121

    for each_out in out_list:
S
sneaxiy 已提交
10122 10123
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10124 10125
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10126

S
sneaxiy 已提交
10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10142 10143 10144 10145

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10146 10147
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10148 10149 10150
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10151
        })
S
sneaxiy 已提交
10152
    return out
S
sneaxiy 已提交
10153 10154 10155


# For debug usage
S
sneaxiy 已提交
10156 10157 10158 10159
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10212

M
minqiyang 已提交
10213

M
minqiyang 已提交
10214
def huber_loss(input, label, delta):
10215
    """
M
minqiyang 已提交
10216 10217 10218
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10219 10220 10221 10222

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10223
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10224 10225 10226 10227

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10228
        huber\_loss = 0.5 * (label - input) * (label - input)
10229 10230 10231 10232 10233 10234 10235


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10236
        delta (float): The parameter of huber loss, which controls
10237 10238 10239
                       the range of outliers

    Returns:
M
minqiyang 已提交
10240
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10241 10242 10243 10244 10245

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10246
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10247
    """
M
minqiyang 已提交
10248
    helper = LayerHelper('huber_loss', **locals())
10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)