pybind.cc 148.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
53
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
54
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/framework/scope_pool.h"
56
#include "paddle/fluid/framework/selected_rows_utils.h"
57
#include "paddle/fluid/framework/tensor_util.h"
58
#include "paddle/fluid/framework/trainer.h"
59
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
60
#include "paddle/fluid/framework/version.h"
H
hong 已提交
61
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
62
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
63
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
64
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
66
#include "paddle/fluid/operators/py_func_op.h"
67
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
68
#include "paddle/fluid/platform/cpu_info.h"
69
#include "paddle/fluid/platform/device_context.h"
70
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/platform/enforce.h"
72
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
73
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
74 75
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
76
#include "paddle/fluid/pybind/cuda_streams_py.h"
77
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
78
#ifndef PADDLE_ON_INFERENCE
79
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
80
#endif
81
#include "paddle/fluid/pybind/io.h"
82
#include "paddle/utils/none.h"
83 84 85
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
86
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
87
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
88
#include "paddle/fluid/pybind/box_helper_py.h"
89
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
90
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
91
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
92
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
93
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
94
#include "paddle/fluid/pybind/generator_py.h"
95
#include "paddle/fluid/pybind/global_value_getter_setter.h"
96
#include "paddle/fluid/pybind/gloo_context_py.h"
97
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
98
#include "paddle/fluid/pybind/heter_wrapper_py.h"
99
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
100
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
101
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
102
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
103
#include "paddle/fluid/pybind/pybind_boost_headers.h"
104

105
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
106
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
107
#endif
108
#include "paddle/fluid/framework/data_type.h"
109 110
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
111
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/tensor_py.h"
113
#include "paddle/fluid/string/to_string.h"
114 115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
116
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
117
#endif
118
#ifndef PADDLE_WITH_HIP
119
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
120
#endif
121
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
122 123
#endif

124
#ifdef PADDLE_WITH_ASCEND_CL
125
#include "paddle/fluid/platform/collective_helper.h"
126 127
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
128 129
#endif

130
#ifdef PADDLE_WITH_XPU
131
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
132
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
133 134
#endif

135
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
J
jianghaicheng 已提交
136 137 138 139
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/ipu/ipu_backend.h"
#include "paddle/fluid/platform/ipu_info.h"
#endif
140

141 142 143 144
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
145 146 147 148
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
149
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
150 151 152
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
153 154
#include "pybind11/stl.h"

155
DECLARE_bool(use_mkldnn);
156

Q
Qiao Longfei 已提交
157 158
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
159 160 161
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
162

163
namespace paddle {
164
namespace pybind {
165 166 167 168 169 170 171

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
172
PyTypeObject *g_mluplace_pytype = nullptr;
173
PyTypeObject *g_framework_tensor_pytype = nullptr;
174
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
175

176
bool IsCompiledWithCUDA() {
177 178 179 180 181 182 183 184 185
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
186 187 188 189 190 191
  return false;
#else
  return true;
#endif
}

192 193 194 195 196 197 198 199
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

200 201 202 203 204 205 206 207
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

208 209 210 211 212 213 214 215
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
216 217 218 219 220 221 222 223
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

224 225 226 227 228 229 230 231
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

232 233 234 235 236 237 238 239
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

240 241 242 243 244 245 246 247
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

248 249 250 251 252 253 254 255
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

256 257 258 259 260 261 262 263 264 265 266
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

267 268 269 270 271 272 273 274 275 276 277
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
313 314 315
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

355
bool IsCompiledWithBrpc() {
356
#ifndef PADDLE_WITH_DISTRIBUTE
357 358
  return false;
#endif
359
  return true;
360 361
}

Y
update  
Yancey1989 已提交
362
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
363
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
364 365 366 367 368 369
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
370 371 372 373 374 375 376
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
377
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
378 379
}

H
hong 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
402 403 404
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
418 419
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
420 421
    }
    vec_res.emplace_back(
422
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
423 424 425 426 427 428 429 430 431 432 433 434
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
435 436
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
437 438 439 440 441 442 443 444 445 446 447 448
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
449 450 451
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
452 453 454 455
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
456 457
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
458 459 460 461
  }
  return vec_res;
}

462 463 464 465 466 467 468 469
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
470 471
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
472 473 474 475 476 477 478 479 480 481 482 483 484
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
485 486 487
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
488 489 490 491 492
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
493 494 495 496 497
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
498 499
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
500 501 502
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
503 504 505 506 507 508 509 510 511
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
512 513
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
514 515 516 517 518
  }

  return;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
543 544 545 546
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
547
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
548 549 550 551 552 553 554 555
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
556 557 558 559 560 561 562 563 564 565 566
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

567 568 569 570 571 572
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
573
#ifndef PADDLE_ON_INFERENCE
574
  BindEager(&m);
W
wanghuancoder 已提交
575
#endif
576 577
  BindCudaStream(&m);

Y
Yu Yang 已提交
578 579 580
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
581
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
582

583 584
  AssertStaticGraphAndDygraphGradMakerNoDiff();

585
  m.doc() = "C++ core of PaddlePaddle";
586

587 588 589 590
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

591
  BindException(&m);
Y
Yu Yang 已提交
592

593 594
  m.def("set_num_threads", &platform::SetNumThreads);

595 596
  m.def("disable_signal_handler", &DisableSignalHandler);

597 598 599 600 601 602 603 604
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

605
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
606
  m.def("cudnn_version", &platform::DnnVersion);
607 608 609 610 611 612
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
613
#endif
614

Z
Zeng Jinle 已提交
615 616 617 618
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

619 620 621 622 623 624 625 626 627 628
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
629 630
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
631 632
#endif

Z
Zeng Jinle 已提交
633 634 635 636
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
637 638 639
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
640 641 642 643 644 645

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
646 647
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
648
    framework::Tensor tensor;
6
633WHU 已提交
649

S
Siming Dai 已提交
650
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
651 652
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
653
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
654
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
655 656 657 658 659
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
660

661 662 663 664 665 666
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

667 668 669 670 671 672
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
673 674
  });

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
700 701 702 703 704 705
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
706
  m.def(
S
sneaxiy 已提交
707
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
708 709 710 711
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
712 713 714
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
731 732 733
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
734
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
735

736
  m.def("_set_fuse_parameter_group_size",
737
        &paddle::framework::ir::SetFuseParameterGroupsSize);
738
  m.def("_set_fuse_parameter_memory_size",
739
        &paddle::framework::ir::SetFuseParameterMemorySize);
740

S
sneaxiy 已提交
741 742 743
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

744 745
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

746 747 748
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

749
  BindImperative(&m);
750

751 752 753 754 755
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
756 757
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
758
      .def("_is_initialized",
759
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
760
      .def("_get_dims",
761
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
762
      .def("_set_dims",
763
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
764
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
765
           })
Y
yuyang18 已提交
766
      .def("_set_layout",
767
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
768 769
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
770
      .def("_alloc_float",
771
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
772
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
773
           })
774
      .def("_alloc_float",
775
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
776 777
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
778
      .def("_alloc_float",
779
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
780
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
781
           })
782 783 784 785
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
786 787 788 789
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
790
      .def("_alloc_double",
791
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
792 793
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
794
      .def("_alloc_int",
795
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
796
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
797
           })
798
      .def("_alloc_int",
799
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
800 801
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
802
      .def("_alloc_int",
803
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
804
             self.mutable_data<int>(place);
Q
qijun 已提交
805
           })
806 807 808 809
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
810
      .def("_alloc_int",
811 812
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
813 814
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
815
      .def("_alloc_float",
816 817
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
818 819
             self.mutable_data<float>(place);
           })
820
      .def("_mutable_data",
821
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
822 823 824
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
825
      .def("_mutable_data",
826
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
827 828 829
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
830
      .def("_mutable_data",
831
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
832 833 834 835
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
836
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
837 838 839
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
840 841 842 843 844
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
845
      .def("_clear", &framework::Tensor::clear)
846 847 848 849 850
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
851 852 853 854 855 856 857 858 859 860
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
861 862
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
863
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
864
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
865
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
866
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
867 868
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
869
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
870
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
871 872
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
873 874
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
875 876
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
877
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
878 879
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
880
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
881 882 883
        
        Args:
          lod (numpy.ndarray): The data to set.
884
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
885
          Tensor is to be set.
886 887
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
888 889 890 891 892 893 894 895 896 897

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

898
                t = fluid.Tensor()
L
Leo Chen 已提交
899 900
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
901

902 903 904
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
905
           Return the shape of Tensor.
L
Leo Chen 已提交
906 907

           Returns:
908
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
909 910 911 912 913 914 915 916


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

917
                  t = fluid.Tensor()
L
Leo Chen 已提交
918 919 920
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
921
      .def("_to_dlpack",
922
           [](framework::Tensor &self) {
6
633WHU 已提交
923
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
924
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
942 943 944 945
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
946 947
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
948
      .def("_layout",
949 950 951 952
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
953
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is invalid, "
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
978
      .def("__init__",
979 980
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
981
           })
G
gongweibao 已提交
982
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
983 984
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
985 986 987
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
988
      .def("set_lod",
989 990
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
991
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
992
             LoD new_lod;
993 994
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
995 996
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
997 998
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
999
             self.set_lod(new_lod);
S
sneaxiy 已提交
1000 1001
           },
           py::arg("lod"), R"DOC(
1002
           Set LoD of the Tensor.
S
sneaxiy 已提交
1003 1004

           Args:
L
Leo Chen 已提交
1005 1006 1007 1008
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1009 1010 1011 1012 1013 1014 1015

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1016
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1017 1018
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1019
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1020
           )DOC")
1021
      .def("set_recursive_sequence_lengths",
1022 1023
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1024 1025 1026 1027 1028 1029 1030 1031
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1032 1033
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1034 1035 1036 1037 1038
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1039
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1040 1041
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1042
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1043

L
Leo Chen 已提交
1044
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1045
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1046
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1047 1048

           Args:
L
Leo Chen 已提交
1049 1050 1051 1052
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1053 1054 1055 1056 1057 1058 1059

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1060
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1061 1062
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1063
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1064
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1065
           )DOC")
1066
      .def("lod",
1067
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1068 1069 1070 1071 1072 1073
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1074 1075
           },
           R"DOC(
1076
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1077 1078

           Returns:
1079
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1080
           
Z
Zeng Jinle 已提交
1081 1082 1083 1084 1085 1086
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1087
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1088 1089 1090
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1091
           )DOC")
G
gongweibao 已提交
1092
      // Set above comments of set_lod.
1093
      .def("recursive_sequence_lengths",
1094
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1095
             // output the length-based lod info
1096
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1097 1098 1099 1100
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1101 1102
           },
           R"DOC(
L
Leo Chen 已提交
1103
           Return the recursive sequence lengths corresponding to of the LodD 
1104
           of the Tensor.
S
sneaxiy 已提交
1105 1106

           Returns:
L
Leo Chen 已提交
1107
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1108 1109 1110 1111 1112 1113 1114

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1115
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1116 1117 1118
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1119 1120
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1121
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1122
             // Check that the lod info is valid and match the outermost
1123
             // dimension of the Tensor data
S
sneaxiy 已提交
1124 1125 1126
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1127
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1128 1129

           Returns:
L
Leo Chen 已提交
1130
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1131 1132 1133 1134 1135 1136 1137

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1138
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1139 1140 1141
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1142
           )DOC")
L
Leo Chen 已提交
1143
      .def("_as_type",
1144
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1145
              paddle::framework::proto::VarType::Type type) {
1146
             framework::Tensor dst;
L
Leo Chen 已提交
1147 1148 1149 1150 1151
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1165
#ifdef _WIN32
1166
           });
1167 1168 1169
#else
           })
      .def(py::pickle(
1170
          [](const framework::Tensor &t) {  // __getstate__
1171
            auto holder = t.Holder();
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1184 1185 1186
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1187 1188
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1189 1190 1191
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1192
              throw std::runtime_error("Invalid Tensor state!");
1193 1194

            // 1. Create a new C++ instance
1195
            framework::Tensor tensor;
1196 1197 1198 1199 1200

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1201 1202
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1203 1204

            // 3. Maintain global fd set
1205
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1206 1207
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1208 1209 1210 1211
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1212 1213 1214 1215 1216 1217
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1218

1219
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1220
      .def("__init__",
1221 1222 1223
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1224
      .def("__init__",
1225
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1226
              const int64_t &height) {
1227
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1228 1229
           })
      .def("get_tensor",
1230
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1231
           py::return_value_policy::reference)
1232
      .def("numel",
1233 1234 1235 1236 1237
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1238
      .def("set_rows",
1239
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1240
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1241 1242 1243 1244 1245 1246
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1247 1248 1249
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1250 1251 1252 1253 1254
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1255
      });
Q
qijun 已提交
1256

1257
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1258 1259 1260

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1261
      .def(py::init<>())
1262
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1263
      .def("set_int",
1264 1265
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1266 1267 1268 1269 1270 1271 1272
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1273
      .def("get_tensor",
1274 1275
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1276 1277
           },
           py::return_value_policy::reference)
1278 1279 1280 1281
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1294 1295 1296
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1297
      .def("get_selected_rows",
1298 1299
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1300 1301
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1302 1303 1304
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1305 1306 1307
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1308
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1309 1310 1311 1312 1313
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1314
#endif
Y
Refine  
Yu Yang 已提交
1315 1316
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1317 1318 1319 1320
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1321 1322
             return self.GetMutable<framework::ReaderHolder>();
           },
1323
           py::return_value_policy::reference)
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1335 1336 1337 1338
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1339

S
sneaxiy 已提交
1340
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1341

S
sneaxiy 已提交
1342
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1356
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1357 1358 1359 1360 1361 1362
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1363 1364
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1365
      .def("var",
1366
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1367
             return self.Var(name);
Y
Yu Yang 已提交
1368
           },
S
sneaxiy 已提交
1369 1370
           py::arg("name"),
           R"DOC(
1371
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1372

1373
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1374
           current scope, the variable would be created. Otherwise,
1375
           return the existing variable.
S
sneaxiy 已提交
1376 1377

           Args:
1378 1379
               name (str): the variable name.

S
sneaxiy 已提交
1380
           Returns:
1381
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1382 1383 1384 1385
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1386
           Find variable named :code:`name` in the current scope or
1387
           its parent scope. Return None if not found. 
1388

S
sneaxiy 已提交
1389 1390
           Args:
               name (str): the variable name.
1391

S
sneaxiy 已提交
1392
           Returns:
1393
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1394
           )DOC",
1395
           py::return_value_policy::reference)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1408
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1409 1410 1411 1412 1413 1414
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1415
           py::return_value_policy::reference)
S
sneaxiy 已提交
1416 1417 1418
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1419 1420
           )DOC")
      .def("_kids", &Scope::kids);
1421

S
sneaxiy 已提交
1422 1423 1424 1425 1426 1427
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1428 1429
        R"DOC(
        Create a new scope.
1430

S
sneaxiy 已提交
1431 1432 1433
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1434 1435
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1436 1437
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1438 1439
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1440 1441 1442 1443
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1444 1445
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1446 1447
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1448 1449 1450
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1451 1452
    return ret_values;
  });
1453 1454 1455 1456 1457 1458 1459 1460
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1461
              res = op_checker->GetDefaultAttrsMap();
1462 1463 1464 1465
            }
          }
          return res;
        });
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1482 1483 1484
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1485 1486 1487 1488 1489
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1490 1491 1492
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1507
  m.def("prune", [](const ProgramDesc &origin,
1508
                    const std::set<std::string> &feeded_var_names,
1509
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1510
    ProgramDesc prog_with_targets(origin);
1511

1512
    for (const auto &t : targets) {
1513
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1514
    }
1515
    proto::ProgramDesc pruned_desc;
1516 1517 1518 1519
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1520
  });
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1538 1539 1540 1541
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1542 1543 1544
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1545 1546
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1547

Q
qijun 已提交
1548
  // clang-format off
Y
Yu Yang 已提交
1549
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1550 1551
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1552
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1553 1554
                    return new paddle::platform::CPUDeviceContext();
                  })
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1577 1578
#endif
                  })
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1591
      .def_static("create",
D
dzhwinter 已提交
1592
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1593
                      -> paddle::platform::DeviceContext* {
1594
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1595 1596 1597 1598
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1599
#else
Q
qijun 已提交
1600
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1601
#endif
C
chengduoZH 已提交
1602 1603 1604 1605
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1606
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1607 1608 1609 1610
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1611 1612 1613 1614
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1615
// clang-format on
1616
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1617 1618
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1619
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1620 1621 1622 1623 1624

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1625
    The memory of CUDAPlace with different dev_id is not accessible.
1626 1627 1628 1629 1630 1631 1632 1633
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1634 1635 1636 1637

    Examples:
        .. code-block:: python

1638 1639 1640
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1641

1642 1643 1644
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1645 1646
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1647
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1648 1649 1650 1651 1652 1653 1654 1655
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1656 1657
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1658 1659 1660 1661 1662 1663 1664 1665
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1666 1667
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1668 1669 1670 1671
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1672 1673
             new (&self) platform::CUDAPlace(dev_id);
#else
1674 1675 1676 1677 1678 1679 1680 1681 1682
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1683 1684
#endif
           })
1685
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1686 1687
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1688 1689 1690 1691
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1692
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1693
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1694
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1695 1696
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1697 1698 1699
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1700
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1701
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1702

1703
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1704 1705 1706 1707 1708
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1709 1710 1711
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1750
#ifdef PADDLE_WITH_XPU
1751 1752 1753 1754 1755 1756 1757
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1758 1759 1760
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1761
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1762
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1763
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1764 1765 1766
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1767
      .export_values();
1768
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1769 1770
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1771 1772 1773 1774 1775 1776
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1777 1778
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1779 1780
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1781 1782
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1783 1784 1785
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1786 1787
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1788
  });
1789
#endif
1790

1791
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1792
    CPUPlace is a descriptor of a device.
1793
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1794 1795 1796 1797

    Examples:
        .. code-block:: python

1798 1799
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1800

1801 1802 1803
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1804 1805
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1806
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1807
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1808 1809 1810 1811
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1812
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1813
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1814

1815 1816
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1817 1818 1819 1820 1821 1822
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1823 1824 1825 1826

    Examples:
        .. code-block:: python

1827 1828
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1829

1830 1831 1832 1833
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1834
      .def("__init__",
S
sneaxiy 已提交
1835
           [](platform::CUDAPinnedPlace &self) {
1836
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1837 1838 1839
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1840
#endif
S
sneaxiy 已提交
1841
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1842
           })
S
sneaxiy 已提交
1843 1844 1845 1846
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1847 1848
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1849 1850
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1851 1852 1853 1854
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1855
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1856 1857
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1858
  // NPUPlace
1859
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1860 1861 1862 1863 1864 1865 1866 1867
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1868 1869 1870
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1902
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1917 1918
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1919 1920
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2042 2043 2044
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2045 2046 2047 2048
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2049
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2050
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2051
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2052
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2053
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2054 2055
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2056 2057
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2058 2059
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2060 2061
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2062 2063
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2064 2065 2066 2067
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2068 2069
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2070 2071 2072 2073 2074
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2075 2076
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2077 2078 2079 2080
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2081 2082 2083 2084
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2085
      .def("set_place",
D
dzhwinter 已提交
2086
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2087
             self = gpu_place;
C
chengduoZH 已提交
2088
           })
2089 2090 2091 2092 2093
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2094 2095 2096 2097
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2098 2099 2100 2101
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2102 2103 2104 2105
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2106 2107
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2108

Y
Yu Yang 已提交
2109
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
2124
      .def("run",
2125
           [](OperatorBase &self, const Scope &scope,
2126 2127 2128 2129
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2130 2131
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2132 2133 2134 2135
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2136 2137
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2138 2139 2140 2141
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2142 2143
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2144 2145 2146 2147
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2148 2149 2150
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2151
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2152 2153
             self.Run(scope, place);
           })
2154 2155 2156 2157 2158 2159
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2160 2161 2162 2163 2164 2165 2166
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2167 2168
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2169
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2170
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2171 2172 2173 2174
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2175

2176 2177 2178
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2179 2180 2181 2182 2183 2184 2185
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2186 2187
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2188

2189 2190
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2191
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2192
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2193
      .def("close", &Executor::Close)
2194 2195
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2196 2197
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2198 2199 2200 2201
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2202
             pybind11::gil_scoped_release release;
2203 2204 2205 2206 2207 2208 2209
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2210 2211 2212
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2213
              std::map<std::string, FetchType *> *fetch_targets,
2214 2215 2216 2217 2218 2219 2220 2221
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2222
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2223 2224 2225 2226 2227 2228 2229
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2240
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2241 2242
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2243
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2244 2245
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2246
      });
S
sneaxiy 已提交
2247

2248
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2249
      .def(py::init<>())
2250 2251 2252 2253 2254
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2255

2256
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2257 2258 2259
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2260
           [](StandaloneExecutor &self,
H
hong 已提交
2261
              const std::unordered_map<std::string, py::array> &input_dict,
2262
              std::vector<std::string> fetch_names) {
2263
             std::vector<framework::LoDTensor> feed_tensors;
2264
             std::vector<std::string> feed_names;
H
hong 已提交
2265 2266 2267 2268 2269

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2270 2271
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2272 2273
             }

2274 2275 2276 2277 2278 2279 2280 2281 2282
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2283
              const std::unordered_map<std::string, framework::LoDTensor>
2284 2285
                  &input_dict,
              std::vector<std::string> fetch_names) {
2286
             std::vector<framework::LoDTensor> feed_tensors;
2287 2288 2289 2290 2291 2292 2293
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2294 2295 2296 2297
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2298
             }
W
wanghuancoder 已提交
2299
             return py::cast(std::move(ret));
2300
           })
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2311 2312 2313
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2314
             std::vector<framework::LoDTensor> feed_tensors;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2325
             framework::interpreter::CostInfo cost_info;
2326 2327 2328 2329 2330
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2331 2332
           });

D
dzhwinter 已提交
2333
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2334
  m.def("init_glog", framework::InitGLOG);
2335 2336
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2337
  m.def("init_devices", []() { framework::InitDevices(); });
2338

2339
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2340
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2341
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2342
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2343
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2344
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2345
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2346
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2347
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2348
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2349
  m.def("supports_bfloat16", SupportsBfloat16);
2350
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2351 2352
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2353
  m.def("op_supported_infos", OpSupportedInfos);
2354
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2355
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2356 2357 2358
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2378 2379 2380 2381 2382 2383 2384
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2394
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2395 2396
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2397
    return platform::GetGPUComputeCapability(place.device) >= 53;
2398 2399
  });
#endif
2400

S
Steffy-zxf 已提交
2401 2402 2403 2404 2405 2406
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2407 2408 2409 2410 2411
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2412
            return py::cast(BOOST_GET(LoDTensor, var));
2413
          } else {
2414
            return py::cast(BOOST_GET(LoDTensorArray, var));
2415 2416
          }
        });
2417
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2418

X
Xin Pan 已提交
2419 2420
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2421 2422 2423 2424
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2425
  BindCostModel(&m);
2426
  BindConstValue(&m);
2427
  BindGlobalValueGetterSetter(&m);
2428
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2429
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2430

Y
Yu Yang 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2440
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2441
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2442 2443 2444

    Examples:
        .. code-block:: python
2445

Z
Zeng Jinle 已提交
2446 2447 2448
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2449 2450 2451 2452
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2453 2454
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2455 2456 2457 2458 2459 2460
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2461 2462 2463 2464
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2465 2466 2467
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2468 2469 2470 2471 2472 2473
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2474 2475
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2476 2477 2478 2479 2480 2481
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2504

2505 2506 2507 2508 2509 2510 2511 2512
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2513
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2514 2515
                 res[i] = py::cast(std::move(data));
               } else {
2516
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2532
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2533 2534 2535 2536 2537 2538 2539 2540
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2541
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2542 2543 2544 2545 2546 2547 2548 2549 2550
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2551 2552
        )DOC")
      .def("_move_to_list",
2553
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2554 2555 2556 2557
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2558
                 if (data_is_lod_tensor(self[i][j])) {
2559
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2560 2561
                   tmp[j] = py::cast(std::move(var));
                 } else {
2562
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2563 2564 2565 2566 2567 2568
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2578
  m.def("op_support_gpu", OpSupportGPU);
2579
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2580
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2581 2582 2583 2584 2585 2586 2587 2588
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2589 2590 2591 2592 2593 2594 2595
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2621
      });
D
dangqingqing 已提交
2622

2623
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2624 2625 2626
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2627 2628 2629 2630
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2631
#endif
P
peizhilin 已提交
2632
#endif
Y
Yu Yang 已提交
2633

2634 2635
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2636
  m.def("npu_finalize", []() {
2637 2638
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2639 2640 2641
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2642
      platform::NPUDeviceGuard guard(devices[i]);
2643 2644 2645 2646
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2667 2668 2669 2670
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2671 2672 2673 2674
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2675 2676 2677 2678 2679 2680
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2681 2682 2683 2684
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2685
      .value("kAll", platform::ProfilerState::kAll)
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2697
  m.def("set_tracer_option", platform::SetTracerOption);
2698 2699
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2700
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2701
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2702
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2703 2704 2705 2706 2707
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2708
    callable.inc_ref();
2709 2710 2711 2712 2713 2714 2715 2716
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2717
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2718 2719 2720
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2721

2722 2723
  m.def("size_of_dtype", framework::SizeOfType);

2724
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2725 2726
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2727 2728
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2729
#endif  // PADDLE_WITH_CUDA
2730 2731
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2732

2733 2734 2735
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2736 2737
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2738
      .def("has", &ir::Pass::Has)
2739 2740 2741
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2742
           })
2743
      .def(
2744
          "set",
2745 2746 2747
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2748 2749
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2750 2751
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2752 2753 2754 2755 2756
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2771 2772
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2773
        self.Apply(graph.get());
F
flame 已提交
2774
      });
2775

X
fix  
Xin Pan 已提交
2776 2777
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2792
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2793
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2794 2795 2796 2797
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2798 2799 2800
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2801 2802 2803
    Examples:
        .. code-block:: python

2804 2805 2806 2807 2808 2809 2810 2811 2812
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2813

2814 2815
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2816

2817
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2818 2819
          sgd_optimizer.minimize(avg_loss)

2820
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2821 2822
          exec_strategy.num_threads = 4

2823 2824 2825
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2826 2827
        )DOC");

2828 2829 2830 2831
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2832

Y
yuyang18 已提交
2833
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2834 2835 2836 2837 2838
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2839
          },
2840 2841
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2842 2843 2844 2845 2846 2847 2848
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2862
      .def_property(
2863 2864
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2865
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2866 2867 2868
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2869 2870 2871 2872 2873
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2874 2875 2876
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2877 2878
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2879 2880 2881 2882 2883 2884 2885
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2886 2887 2888 2889
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2890
                because the temp variable's shape maybe the same between two iterations.
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2901

2902 2903 2904 2905 2906 2907 2908
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2909
              )DOC")
Q
Qiao Longfei 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2931
              )DOC")
2932 2933 2934 2935 2936 2937 2938 2939
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2940 2941 2942 2943 2944
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2945

Y
yuyang18 已提交
2946
  exec_strategy.def_property(
Y
yuyang18 已提交
2947 2948 2949 2950 2951 2952 2953
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2954 2955
      });

C
chengduo 已提交
2956 2957 2958 2959
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2960 2961 2962
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2963 2964 2965
    Examples:
        .. code-block:: python

2966
            import os
2967 2968 2969 2970
            import paddle
            import paddle.static as static

            paddle.enable_static()
2971

2972 2973
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2974

2975 2976 2977 2978
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2979

2980
            build_strategy = static.BuildStrategy()
2981 2982
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2983 2984
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2985
            program = program.with_data_parallel(loss_name=loss.name,
2986 2987
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2988
)DOC");
Y
yuyang18 已提交
2989 2990 2991

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
2992 2993
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
2994 2995 2996 2997 2998 2999 3000 3001
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3002
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3003 3004 3005 3006
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3007 3008 3009 3010
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3011
            self.reduce_ = strategy;
C
chengduo 已提交
3012
          },
3013
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3014 3015
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3016
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3017 3018
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3019
                Default is 'AllReduce'.
F
flame 已提交
3020 3021 3022 3023

                Examples:
                    .. code-block:: python

3024 3025 3026 3027 3028 3029 3030
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3031
                  )DOC")
Y
yuyang18 已提交
3032 3033 3034 3035 3036
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3037 3038 3039 3040
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3041
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3042
          },
3043
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3044
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3045 3046
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3047
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3048 3049 3050 3051

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3052 3053
                        import numpy
                        import os
3054 3055 3056 3057
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3058 3059

                        use_cuda = True
3060 3061
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3062 3063

                        # NOTE: If you use CPU to run the program, you need
3064
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3065 3066 3067 3068 3069 3070
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3071
                            places = static.cpu_places()
C
chengduo 已提交
3072
                        else:
3073
                            places = static.cuda_places()
C
chengduo 已提交
3074

3075 3076 3077 3078
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3079

3080
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3081

3082
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3083
                        build_strategy.gradient_scale_strategy = \
3084 3085 3086
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3087
                                          loss_name=loss.name, build_strategy=build_strategy,
3088
                                          places=places)
C
chengduo 已提交
3089 3090 3091 3092 3093 3094

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3095 3096
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3097
                   )DOC")
Y
yuyang18 已提交
3098 3099 3100 3101
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3102 3103 3104 3105
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3106
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3107
          },
3108
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3109
                writing the SSA Graph to file in the form of graphviz.
3110
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3111 3112 3113 3114

                Examples:
                    .. code-block:: python

3115 3116 3117 3118
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3119

3120 3121
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3122
                    )DOC")
S
sneaxiy 已提交
3123 3124 3125 3126 3127 3128
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3129 3130 3131 3132
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3133 3134
            self.enable_sequential_execution_ = b;
          },
3135 3136
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3137 3138 3139 3140

                Examples:
                    .. code-block:: python

3141 3142 3143 3144 3145 3146
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3147 3148
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3149 3150 3151 3152 3153 3154
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3155 3156 3157 3158
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3159 3160
            self.remove_unnecessary_lock_ = b;
          },
3161 3162
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3163 3164 3165 3166

                Examples:
                    .. code-block:: python

3167 3168 3169 3170 3171 3172
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3173 3174
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3175 3176 3177 3178
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3179
#ifdef WIN32
3180
            PADDLE_THROW(platform::errors::Unavailable(
3181
                "Distribution mode is not supported on Windows platform."));
3182
#endif
3183 3184
            self.num_trainers_ = num_trainers;
          })
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3197 3198 3199 3200 3201 3202
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3203 3204 3205 3206 3207 3208
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3209
      .def_property("use_hierarchical_allreduce",
3210 3211 3212 3213 3214 3215
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3216
      .def_property("hierarchical_allreduce_inter_nranks",
3217 3218 3219 3220 3221 3222 3223
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3224 3225 3226 3227 3228 3229
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3230 3231 3232 3233
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3234 3235
            self.fuse_elewise_add_act_ops_ = b;
          },
3236
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3237
                to fuse elementwise_add_op and activation_op,
3238
                it may make the execution faster. Default is False.
F
flame 已提交
3239 3240 3241 3242

                Examples:
                    .. code-block:: python

3243 3244 3245 3246 3247 3248
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3249 3250
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3251 3252 3253 3254
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3255
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3256
                              platform::errors::PreconditionNotMet(
3257 3258
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3268 3269 3270 3271 3272 3273
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3274 3275
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3301 3302 3303 3304
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3305
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3306
                              platform::errors::PreconditionNotMet(
3307 3308
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3319 3320 3321 3322 3323 3324
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3325 3326
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3327 3328 3329 3330 3331 3332
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3333 3334 3335 3336
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3337 3338
            self.fuse_relu_depthwise_conv_ = b;
          },
3339
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3340 3341 3342
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3343
                Default is False.
F
flame 已提交
3344 3345 3346 3347

                Examples:
                    .. code-block:: python

3348 3349 3350 3351 3352 3353
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3354 3355
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3356 3357 3358
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3359
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3360 3361
                    },
                    [](BuildStrategy &self, bool b) {
3362 3363 3364 3365
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3366 3367
                      self.fuse_broadcast_ops_ = b;
                    },
3368
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3369 3370 3371 3372
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3373 3374 3375 3376 3377
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3378 3379 3380 3381 3382 3383
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3384 3385
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3386 3387
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3388
                      return self.fuse_all_optimizer_ops_ == true ||
3389
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3390 3391
                    },
                    [](BuildStrategy &self, bool b) {
3392 3393 3394 3395
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3396 3397
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3398 3399 3400 3401
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3402 3403 3404 3405
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3406 3407
            self.sync_batch_norm_ = b;
          },
3408
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3409 3410 3411
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3412 3413
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3414 3415 3416 3417

                Examples:
                    .. code-block:: python

3418 3419 3420 3421 3422 3423
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3424 3425
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3426 3427
      .def_property(
          "memory_optimize",
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3438
              self.memory_optimize_ = paddle::none;
3439 3440 3441
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3442
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3443 3444
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3445 3446
            }
          },
3447
          R"DOC((bool, optional): memory opitimize aims to save total memory
3448
                consumption, set to True to enable it.
3449

3450 3451 3452
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3467 3468 3469
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3470 3471 3472
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3473
              PADDLE_THROW(platform::errors::Unavailable(
3474
                  "Distribution mode is not supported on Windows platform."));
3475 3476 3477 3478 3479
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3480 3481 3482
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3483
      .def_property(
D
dzhwinter 已提交
3484 3485 3486
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3487 3488 3489 3490
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3491 3492
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3493 3494
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3495
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3496
          },
C
chengduo 已提交
3497
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3498 3499 3500 3501 3502 3503 3504
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3505 3506 3507 3508
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3509 3510 3511 3512 3513 3514 3515 3516 3517
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3518 3519 3520 3521 3522 3523
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3524 3525 3526 3527 3528 3529 3530
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3531 3532 3533 3534 3535 3536
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3537
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3538
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3539 3540 3541 3542 3543
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3544

3545 3546 3547 3548 3549 3550
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3551
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3552
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3553
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3554
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3555 3556 3557 3558
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3559 3560 3561 3562 3563
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3564 3565 3566
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3567 3568 3569 3570
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3571 3572
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3573 3574 3575 3576 3577 3578 3579 3580
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3581
               return py::cast(
3582
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3583 3584
             } else {
               return py::cast(std::move(
3585
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3586
             }
3587 3588
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3589

J
jianghaicheng 已提交
3590 3591 3592 3593 3594 3595 3596 3597
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3598 3599
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3600 3601 3602 3603 3604
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3605
          })
J
jianghaicheng 已提交
3606 3607 3608 3609 3610 3611 3612
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3613
          })
J
jianghaicheng 已提交
3614 3615 3616 3617 3618 3619
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3620
                    })
J
jianghaicheng 已提交
3621 3622 3623 3624 3625 3626
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3627
                    })
J
jianghaicheng 已提交
3628 3629 3630 3631 3632 3633 3634
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3635
          })
J
jianghaicheng 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3650
          })
J
jianghaicheng 已提交
3651 3652 3653 3654 3655 3656
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3657
                    })
J
jianghaicheng 已提交
3658 3659 3660 3661 3662 3663
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3664
                    })
J
jianghaicheng 已提交
3665 3666 3667 3668 3669 3670
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3671
                    });
J
jianghaicheng 已提交
3672 3673
#endif

D
dongdaxiang 已提交
3674
  BindFleetWrapper(&m);
3675
  BindIO(&m);
T
Thunderbrook 已提交
3676

T
Thunderbrook 已提交
3677 3678
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3679
#endif
T
Thunderbrook 已提交
3680
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3681
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3682
#endif
3683
  BindGlooWrapper(&m);
H
hutuxian 已提交
3684
  BindBoxHelper(&m);
H
hutuxian 已提交
3685 3686 3687
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3688
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3689
  BindNCCLWrapper(&m);
3690 3691 3692
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3693
#endif
F
flame 已提交
3694 3695
  BindGraph(&m);
  BindNode(&m);
3696
  BindPass(&m);
F
flame 已提交
3697
  BindInferenceApi(&m);
3698
  BindCompatible(&m);
3699
  BindDataset(&m);
Y
yaoxuefeng 已提交
3700
  BindGenerator(&m);
3701 3702 3703
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3704
  BindAscendDevice(&m);
3705
#endif
Y
Yanghello 已提交
3706 3707 3708
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3709

T
tangwei12 已提交
3710
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3711 3712
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3713
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3714 3715
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3716 3717 3718 3719 3720
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3721 3722 3723 3724
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3725
  BindSparseShardingTools(&m);
3726
#endif
L
Luo Tao 已提交
3727
}
3728
}  // namespace pybind
3729
}  // namespace paddle