framework.py 189.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69

70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
182 183 184 185
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
186
    This function checks whether the program runs in dynamic graph mode or not.
187 188 189
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
190 191

    Returns:
Y
Youwei Song 已提交
192
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
193 194 195 196

    Examples:
        .. code-block:: python

197
            import paddle.fluid as fluid
L
lujun 已提交
198

199 200 201 202
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
203
    """
L
lujun 已提交
204
    return _dygraph_tracer_ is not None
205 206


207 208 209
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
210
        ), "We don't support %s in imperative mode" % func.__name__
211 212 213 214 215 216 217 218
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
219
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
220 221 222 223 224
        return func(*args, **kwargs)

    return __impl__


225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


241 242
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
243
fake_interface_only = wrap_decorator(_fake_interface_only_)
244 245


L
lujun 已提交
246 247
def _dygraph_tracer():
    return _dygraph_tracer_
248

W
Wu Yi 已提交
249

M
minqiyang 已提交
250
def _current_expected_place():
L
lujun 已提交
251
    return _dygraph_current_expected_place_
M
minqiyang 已提交
252 253


L
Leo Chen 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
271
def _cpu_num():
272
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
273 274 275 276 277 278 279 280
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
281
        os.environ['CPU_NUM'] = str(1)
282
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
283 284 285 286 287 288 289 290 291 292
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
293 294


C
chengduo 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
310
def cuda_places(device_ids=None):
L
lujun 已提交
311
    """
312 313 314 315 316
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
317 318

    If :code:`device_ids` is None, environment variable of
319
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
320 321 322
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
323
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
324 325

    If :code:`device_ids` is not None, it should be the device
326
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
327 328 329
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
330 331
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
332 333

    Returns:
334
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
335 336 337 338

    Examples:
        .. code-block:: python

339
            import paddle.fluid as fluid
L
lujun 已提交
340 341 342
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
343 344 345
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
346
        device_ids = _cuda_ids()
S
sneaxiy 已提交
347 348 349 350 351 352
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
353
    """
354
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
355 356 357
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
358 359
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
360 361
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
362

363 364
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
365 366

    Returns:
367
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
368 369 370 371

    Examples:
        .. code-block:: python

372
            import paddle.fluid as fluid
L
lujun 已提交
373 374 375
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
376 377 378 379 380 381
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
382
    """
383
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
384 385 386

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
387 388 389 390
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
391

392 393
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
394 395

    Returns:
396
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
397 398 399 400

    Examples:
        .. code-block:: python

401
            import paddle.fluid as fluid
L
lujun 已提交
402 403 404 405 406
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
407 408 409
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
410 411
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
412 413


414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
440
@signature_safe_contextmanager
441 442
def name_scope(prefix=None):
    """
443 444
    :api_attr: Static Graph

445 446
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
447 448 449
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
450 451

    Args:
T
Tao Luo 已提交
452
        prefix(str, optional): prefix. Default is none.
453 454 455

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
456

457
          import paddle.fluid as fluid
458
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
459 460 461 462 463 464
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
465
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
466
                f = fluid.layers.pow(d, 2.0)
467
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
487 488
    """
    # TODO(panyx0718): Only [0-9a-z].
489
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
490 491 492
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
493
        assert prefix, "namescope prefix can not be empty."
494 495
        global _name_scope
        _name_scope = _name_scope.child(prefix)
496 497 498 499
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
500 501 502 503 504 505 506 507 508 509 510 511


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
512 513 514
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
515 516 517 518


def grad_var_name(var_name):
    """
519 520
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
521 522 523
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
524

525
def convert_np_dtype_to_dtype_(np_dtype):
526 527
    """
    Convert the data type in numpy to the data type in Paddle
528

529
    Args:
530
        np_dtype(np.dtype): the data type in numpy.
531

532 533
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
534 535

    """
536 537
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
538
        return core.VarDesc.VarType.FP32
539
    elif dtype == np.float64:
540
        return core.VarDesc.VarType.FP64
541
    elif dtype == np.float16:
542
        return core.VarDesc.VarType.FP16
543
    elif dtype == np.int32:
544
        return core.VarDesc.VarType.INT32
545
    elif dtype == np.int16:
546
        return core.VarDesc.VarType.INT16
547
    elif dtype == np.int64:
548
        return core.VarDesc.VarType.INT64
549
    elif dtype == np.bool:
550
        return core.VarDesc.VarType.BOOL
551 552
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
553 554
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
555 556
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
557
    else:
M
minqiyang 已提交
558
        raise ValueError("Not supported numpy dtype %s" % dtype)
559 560 561


def dtype_is_floating(dtype):
562 563 564
    """
    Check the data type is floating or not.
    Args:
565
        dtype(np.dtype|core.VarDesc.VarType): data type.
566 567 568 569 570
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
571
    if not isinstance(dtype, core.VarDesc.VarType):
572 573
        dtype = convert_np_dtype_to_dtype_(dtype)

574 575 576 577
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
578 579


Y
Yang Yang(Tony) 已提交
580
def _debug_string_(proto, throw_on_error=True):
581 582 583 584 585 586 587 588 589 590 591
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
592
    error_fields = list()
Y
Yang Yang(Tony) 已提交
593
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
594 595
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
596 597 598
    return proto.__str__()


599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
656
    target_block = default_main_program().current_block()
657 658 659 660 661 662 663 664 665 666 667

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
668
            })
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
708
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
709
                fill_constant([1], 1, force_cpu=True, out=temp_1)
710
                temp_end = target_block.create_var(dtype=slice_item.dtype)
711
                target_block.append_op(
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
751

752
    # starts
L
Leo Chen 已提交
753
    if contain_var(slice_start):
754 755 756 757 758 759 760 761
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
762 763 764 765
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
766 767 768 769 770 771 772
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
773 774 775
    else:
        attrs['ends'] = slice_end

776 777
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
778
        if contain_var(slice_step):
779 780 781 782 783 784 785
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
786 787
        else:
            attrs['strides'] = slice_step
788 789 790 791 792 793
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
794
        slice_out_var = target_block.create_var(
795 796 797
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

798
        target_block.append_op(
799 800 801 802 803 804 805
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
806
        strided_slice_out_var = target_block.create_var(
807 808 809
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
810
        target_block.append_op(
811 812 813 814 815 816 817 818
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
819
        reverse_out_var = target_block.create_var(
820 821 822
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
823
        target_block.append_op(
824 825 826 827 828 829 830 831 832 833 834
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
835
class Variable(object):
836
    """
J
Jiabin Yang 已提交
837
    **Notes**:
838
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
839

840 841
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
842 843 844
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
845
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
846 847
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
848

849
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
850
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
851

T
tianshuo78520a 已提交
852
    Most of a Variable's member variables can be set to be None. It mean
853
    it is not available or will be specified later.
854

855
    Examples:
856 857
        In Static Graph Mode:

858 859
        .. code-block:: python

860
            import paddle.fluid as fluid
861
            cur_program = fluid.Program()
862 863 864 865
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
866
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
867 868 869 870 871 872 873 874 875

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

876 877
    """

Y
Yu Yang 已提交
878 879
    def __init__(self,
                 block,
Y
Yu Yang 已提交
880
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
881 882 883 884
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
885
                 capacity=None,
Q
QI JUN 已提交
886
                 persistable=None,
F
fengjiayi 已提交
887
                 error_clip=None,
Y
Yu Yang 已提交
888
                 stop_gradient=False,
F
fengjiayi 已提交
889
                 is_data=False,
H
Huihuang Zheng 已提交
890
                 need_check_feed=False,
H
hong 已提交
891
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
892
                 **kwargs):
Y
Yu Yang 已提交
893 894
        self.block = block
        if name is None:
Y
Yu Yang 已提交
895
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
896

Y
Yu Yang 已提交
897
        if dtype is not None:
898
            if not isinstance(dtype, core.VarDesc.VarType):
899
                dtype = convert_np_dtype_to_dtype_(dtype)
900

H
hong 已提交
901 902
        self.belong_to_optimizer = belong_to_optimizer

903 904 905 906 907
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
908

909 910 911
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
912

913 914 915 916 917 918 919
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
920

921
        if shape is not None:
922
            if is_new_var:
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
964

965 966
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
967

968 969 970 971 972 973 974
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
975

976 977 978 979
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
980

981
    @fake_interface_only
982 983
    def detach(self):
        """
J
Jiabin Yang 已提交
984
        **Notes**:
T
tianshuo78520a 已提交
985
            **This API is ONLY available in Dygraph mode**
986

987
        Returns a new Variable, detached from the current graph.
988

989
        Returns:
J
Jiabin Yang 已提交
990
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
991

992

993 994 995 996 997
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
998
                from paddle.fluid.dygraph import Linear
999 1000 1001 1002
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1003
                    linear = Linear(32, 64)
1004
                    data = to_variable(data)
1005
                    x = linear(data)
1006 1007 1008
                    y = x.detach()

        """
1009
        pass
1010

1011
    @fake_interface_only
1012
    def numpy(self):
1013
        """
J
Jiabin Yang 已提交
1014
        **Notes**:
T
tianshuo78520a 已提交
1015
            **This API is ONLY available in Dygraph mode**
1016

J
Jiabin Yang 已提交
1017
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1018 1019 1020 1021 1022

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1023
            ndarray: dtype is same as current Variable
1024 1025 1026 1027 1028 1029

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1030
                from paddle.fluid.dygraph import Linear
1031 1032 1033 1034
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1035
                    linear = Linear(32, 64)
1036
                    data = to_variable(data)
1037
                    x = linear(data)
1038 1039 1040
                    print(x.numpy())

        """
1041
        pass
1042

1043
    @fake_interface_only
1044 1045
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1046
        **Notes**:
T
tianshuo78520a 已提交
1047
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1059
                from paddle.fluid.dygraph import Linear
1060 1061
                import numpy as np

1062
                data = np.ones([3, 1024], dtype='float32')
1063
                with fluid.dygraph.guard():
1064
                    linear = fluid.dygraph.Linear(1024, 4)
1065
                    t = to_variable(data)
1066
                    linear(t)  # call with default weight
1067
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1068 1069
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1070 1071

        """
1072
        pass
1073

1074
    @fake_interface_only
1075
    def backward(self, backward_strategy=None):
1076
        """
J
Jiabin Yang 已提交
1077
        **Notes**:
T
tianshuo78520a 已提交
1078
            **This API is ONLY available in Dygraph mode**
1079 1080 1081

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1082 1083
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1084

J
Jiabin Yang 已提交
1085 1086
        Returns:
            NoneType: None
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1099 1100
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1101 1102 1103 1104 1105 1106 1107 1108 1109
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1110
        pass
1111

1112
    @fake_interface_only
1113
    def gradient(self):
1114
        """
J
Jiabin Yang 已提交
1115
        **Notes**:
T
tianshuo78520a 已提交
1116
            **This API is ONLY available in Dygraph mode**
1117 1118 1119

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1120
        Returns:
1121
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1122 1123 1124 1125 1126 1127 1128

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1129
                # example1: return ndarray
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1157
        """
1158
        pass
1159

1160
    @fake_interface_only
1161
    def clear_gradient(self):
1162
        """
J
Jiabin Yang 已提交
1163
        **Notes**:
T
tianshuo78520a 已提交
1164
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1165 1166

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1167

J
Jiabin Yang 已提交
1168
        Clear  (set to ``0`` ) the Gradient of Current Variable
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1195
        pass
X
Xin Pan 已提交
1196

1197
    def __str__(self):
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1242

F
update  
fengjiayi 已提交
1243
    def to_string(self, throw_on_error, with_details=False):
1244 1245 1246
        """
        Get debug string.

J
Jiabin Yang 已提交
1247 1248 1249 1250 1251
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1252

1253 1254
        Returns:
            str: The debug string.
1255 1256 1257 1258 1259

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1260

1261 1262 1263 1264 1265
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1266
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1267
                print("=============with detail===============")
1268
                print(new_variable.to_string(True, True))
1269
        """
F
update  
fengjiayi 已提交
1270 1271
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1272
        protostr = self.desc.serialize_to_string()
1273
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1274 1275 1276 1277
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1278 1279 1280
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1281
        return res_str
1282 1283 1284

    __repr__ = __str__

1285
    @property
1286
    def stop_gradient(self):
J
Jiabin Yang 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1302 1303
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1304 1305 1306
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1307 1308
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1309 1310 1311 1312
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1313
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1314 1315
                assert (out1.gradient() == 0).all()
        """
1316
        return self._stop_gradient
1317

1318 1319
    @stop_gradient.setter
    def stop_gradient(self, s):
1320
        self._stop_gradient = s
1321

1322 1323
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1345
        return self.desc.persistable()
1346

Y
Yu Yang 已提交
1347 1348
    @persistable.setter
    def persistable(self, p):
1349
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1350

Y
Yu Yang 已提交
1351 1352
    @property
    def name(self):
J
Jiabin Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1369
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1391 1392
    @name.setter
    def name(self, new_name):
1393
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1394

Y
Yu Yang 已提交
1395 1396
    @property
    def shape(self):
J
Jiabin Yang 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1414
        # convert to tuple, make it as same as numpy API.
1415
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1416 1417

    @property
F
fengjiayi 已提交
1418
    def dtype(self):
J
Jiabin Yang 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1435
        return self.desc.dtype()
Y
Yu Yang 已提交
1436 1437 1438

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1460 1461 1462
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1463
        return self.desc.lod_level()
Y
Yu Yang 已提交
1464

Y
Yu Yang 已提交
1465 1466
    @property
    def type(self):
J
Jiabin Yang 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1483
        return self.desc.type()
Y
Yu Yang 已提交
1484

W
Wu Yi 已提交
1485
    def _set_error_clip(self, error_clip):
1486 1487 1488 1489 1490 1491 1492 1493 1494
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1495 1496
        self.error_clip = error_clip

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1537
            raise ValueError("slice step can not be zero")
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1613
    def _cloneVar(self, copy=False):
1614 1615
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1616 1617
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1618 1619 1620 1621
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1622
        new_var = self._cloneVar()
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1633
        new_var = self._cloneVar()
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1644
                return self._cloneVar(True)
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1663
                return self._cloneVar(True)
1664
            index = int(item)
1665
            if (index > 0 and index >= self.shape[axis]) \
1666 1667 1668 1669 1670 1671 1672
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1673
        return _getitem_impl_(self, item)
1674

Y
Yu Yang 已提交
1675

F
fengjiayi 已提交
1676 1677 1678
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1679

1680 1681
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1682 1683 1684 1685
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1686
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1687 1688 1689 1690
        ret_values.append(op_proto)
    return ret_values


1691 1692 1693 1694 1695 1696 1697
class ComplexVariable(object):
    """
    The Variable defined on the complex number domain. It contains two common 
    real number Variables as its members, :attr:`real` and :attr:`imag` 
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1698
        **The constructor of ComplexVariable should not be invoked directly.**
1699

1700
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexVariable with complex number data.**
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

    Args:
        real (Variable): The Variable holding real-part data.
        imag (Variable): The Variable holding imaginery-part data.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            a = np.array([1.0+2.0j, 0.2])
            with fluid.dygraph.guard():
                var = fluid.dygraph.to_variable(a, name="new_var")
                print(var.name, var.dtype, var.shape)
                # ({'real': u'new_var.real', 'imag': u'new_var.imag'}, 'complex128', [2L]) 
                print(var.numpy())
                # [1. +2.j 0.2+0.j]
    """

    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
        return "REAL: " + self.real.__str__() + "IMAG: " + self.imag.__str__()

    __repr__ = __str__


F
fengjiayi 已提交
1772
class OpProtoHolder(object):
1773 1774 1775 1776
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1786
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1787 1788 1789 1790 1791 1792
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1793 1794 1795 1796 1797 1798 1799 1800
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1801 1802
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1803 1804
        return self.op_proto_map[type]

1805 1806 1807 1808 1809 1810
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1811 1812 1813 1814
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1815
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1816
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1817 1818
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1819 1820
        }

F
fengjiayi 已提交
1821

X
Xin Pan 已提交
1822
class Operator(object):
1823
    """
1824 1825 1826 1827 1828 1829 1830
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1831
        type(str): The type of operator. Default None.
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1852
        Block.append_op or Block._prepend_op instead.
1853 1854 1855 1856

    Examples:
        .. code-block:: python

1857
            import paddle.fluid as fluid
1858
            cur_program = fluid.Program()
1859 1860 1861 1862 1863
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1864
    """
1865
    OP_WITHOUT_KERNEL_SET = {
1866 1867
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1868 1869
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1870
        'c_sync_comm_stream'
1871
    }
1872

Y
Yu Yang 已提交
1873 1874
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1875
                 desc,
Y
Yu Yang 已提交
1876 1877 1878
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1879
                 attrs=None):
L
lujun 已提交
1880
        if in_dygraph_mode():
1881 1882
            if type is None:
                raise ValueError(
1883
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1884
            self._type = type
M
minqiyang 已提交
1885
            self.attrs = attrs if attrs else {}
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1900
                )] = self.block.program._op_role
1901 1902 1903

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1904 1905
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1906 1907 1908 1909 1910 1911 1912 1913

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1914
                    "`type` to initialized an Operator can not be None.")
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1964
                        for index, arg in enumerate(in_args):
1965 1966 1967 1968
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1969
                            elif isinstance(arg, (Variable, core.VarBase)):
1970
                                in_arg_names.append(cpt.to_text(arg.name))
1971
                            else:
1972 1973 1974 1975
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1976 1977
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2004
                        if not in_dygraph_mode():
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2024
    def _has_kernel(self, op_type):
2025 2026
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2027
    def to_string(self, throw_on_error):
2028
        """
2029 2030
        Get debug string.

2031
        Args:
2032 2033
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2034

2035 2036
        Returns:
            str: The debug string.
2037 2038

        """
2039
        protostr = self.desc.serialize_to_string()
2040
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2041 2042
        return _debug_string_(proto, throw_on_error)

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2136
    def __str__(self):
2137
        return self._to_readable_code()
2138 2139 2140

    __repr__ = __str__

F
fengjiayi 已提交
2141 2142
    @property
    def type(self):
2143
        return self.desc.type()
F
fengjiayi 已提交
2144 2145

    def input(self, name):
2146
        """
2147
        Get the input arguments according to the input parameter name.
2148

2149 2150
        Args:
            name(str): The input parameter name.
2151

2152 2153 2154
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2155
        """
F
fengjiayi 已提交
2156 2157
        return self.desc.input(name)

W
Wu Yi 已提交
2158
    def _rename_input(self, old_name, new_name):
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2169
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2170

W
Wu Yi 已提交
2171
    def _rename_output(self, old_name, new_name):
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2182
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2183

F
fengjiayi 已提交
2184 2185 2186 2187
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2188 2189 2190 2191 2192 2193 2194 2195
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2196
    def output(self, name):
2197
        """
2198
        Get output arguments by the output parameter name.
2199

2200 2201
        Args:
            name(str): The output parameter name.
2202

2203 2204 2205
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2206
        """
F
fengjiayi 已提交
2207 2208 2209 2210 2211 2212
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2213 2214 2215 2216 2217 2218 2219 2220
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2221
    def has_attr(self, name):
2222
        """
2223 2224
        Whether this Operator has the attribute with name or not.

2225
        Args:
2226
            name(str): the attribute name.
2227

2228 2229
        Returns:
            bool: True if has this attribute.
2230 2231

        """
F
fengjiayi 已提交
2232 2233 2234
        return self.desc.has_attr(name)

    def attr_type(self, name):
2235
        """
2236
        Get the type of attribute by attribute's name.
2237

2238 2239
        Args:
            name(str): the attribute name.
2240

2241 2242
        Returns:
            core.AttrType: the attribute type.
2243
        """
F
fengjiayi 已提交
2244 2245
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2246
    def _set_attr(self, name, val):
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2257 2258
        self._update_desc_attr(name, val)

2259 2260 2261
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2273 2274
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2275 2276
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2277
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2278 2279 2280 2281
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2282
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2283

F
fengjiayi 已提交
2284 2285 2286 2287 2288
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2289
        """
2290 2291
        Get the attribute by name.

2292
        Args:
2293
            name(str): the attribute name.
2294

2295 2296
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2297 2298
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2299
        return self.desc.attr(name)
Y
Yu Yang 已提交
2300

W
Wu Yi 已提交
2301
    def _block_attr_id(self, name):
2302
        """
G
gongweibao 已提交
2303
        Get the block attribute's id by name.
2304

2305 2306
        Args:
            name(str): the attribute name.
2307

2308 2309
        Returns:
            int: the block index.
2310
        """
W
Wu Yi 已提交
2311
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2312

W
Wu Yi 已提交
2313
    def _block_attr(self, name):
G
gongweibao 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2324
        id = self._block_attr_id(name)
G
gongweibao 已提交
2325 2326 2327
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2328
    def _blocks_attr(self, name):
G
gongweibao 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2339
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2340 2341 2342 2343 2344
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2345
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2356
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2357

J
JiayiFeng 已提交
2358
    def all_attrs(self):
F
fengjiayi 已提交
2359
        """
2360 2361 2362
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2363
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2364 2365 2366 2367
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2368 2369
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2370
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2371 2372 2373
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2374
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2375 2376 2377 2378
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2379 2380
        return attr_map

2381 2382 2383 2384 2385 2386 2387 2388 2389
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2390

Y
Yu Yang 已提交
2391
class Block(object):
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2406
        use `Program._create_block()` to create a block.
2407 2408 2409 2410

    Examples:
        .. code-block:: python

2411 2412 2413
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2414 2415 2416 2417 2418 2419 2420 2421 2422
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2423
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2424
        self.desc = program.desc.block(idx)
2425
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2426
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2427
        self.program = program
2428
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2429

2430
    def __str__(self):
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2477

F
fengjiayi 已提交
2478 2479
    def to_string(self, throw_on_error, with_details=False):
        """
2480 2481
        Get debug string.

F
fengjiayi 已提交
2482 2483
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2484
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2485
            with_details(bool): more details about variables and parameters
2486 2487
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2488

2489 2490
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2491 2492 2493 2494
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2495
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2496 2497
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2498
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2499
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2500
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2501
            for op in self.ops:
F
fengjiayi 已提交
2502 2503
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2504 2505 2506
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2507 2508
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2509 2510
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2511 2512 2513

    __repr__ = __str__

Y
Yu Yang 已提交
2514 2515
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2516
        return self.desc.parent
Y
Yu Yang 已提交
2517

Y
Yu Yang 已提交
2518 2519 2520 2521
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2522
    def _set_forward_block_idx(self, idx):
2523 2524 2525 2526 2527 2528 2529 2530 2531
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2532
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2533

2534 2535 2536 2537 2538 2539 2540 2541
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2542 2543
    @property
    def idx(self):
Y
Yu Yang 已提交
2544
        return self.desc.id
Y
Yu Yang 已提交
2545

Q
Qiao Longfei 已提交
2546
    def var(self, name):
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2560
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2561 2562 2563
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2564 2565
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2566
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2567
        return v
Q
Qiao Longfei 已提交
2568

X
Xin Pan 已提交
2569
    def _find_var_recursive(self, name):
2570 2571 2572 2573 2574 2575 2576
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2577
            Variable: the Variable with the giving name. Or None if not found.
2578
        """
Y
Yu Yang 已提交
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2603
        return None
Y
Yu Yang 已提交
2604

X
Xin Pan 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2624

Q
Qiao Longfei 已提交
2625
    def all_parameters(self):
2626
        return list(self.iter_parameters())
2627

2628
    def iter_parameters(self):
M
minqiyang 已提交
2629
        return (item[1] for item in six.iteritems(self.vars)
2630
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2631

Y
Yu Yang 已提交
2632
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2633 2634 2635
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2636 2637 2638
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2639
        return var
Y
Yu Yang 已提交
2640

Q
Qiao Longfei 已提交
2641 2642 2643
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2644
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2645 2646
        """
        Rename variable in vars and ops' inputs and outputs
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2659
        """
M
minqiyang 已提交
2660 2661
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2662

T
typhoonzero 已提交
2663
        if not self.has_var(name):
2664
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2665 2666
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2667
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2668 2669 2670 2671 2672 2673
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2674
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2675 2676 2677 2678
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2679
        orig_var_type = v.type
M
minqiyang 已提交
2680
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2681
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2682
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2683
        if var_type == "Parameter":
L
Leo Chen 已提交
2684 2685
            if in_dygraph_mode():
                var = ParamBase(
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2696 2697
                var = Parameter(
                    self,
2698 2699 2700 2701 2702 2703 2704 2705 2706
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2707
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2708 2709
            var = Variable(
                self,
T
typhoonzero 已提交
2710
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2711 2712 2713 2714
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2715
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2716 2717 2718
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2719
        self._sync_with_cpp()
2720
        return var
T
typhoonzero 已提交
2721

W
Wu Yi 已提交
2722 2723
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2724
        self.desc._remove_var(cpt.to_bytes(name))
2725 2726
        del self.vars[name]

Y
Yu Yang 已提交
2727 2728
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2729
        param = None
L
Leo Chen 已提交
2730
        if in_dygraph_mode():
2731
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2732 2733
        else:
            param = Parameter(global_block, *args, **kwargs)
2734
        if 'initializer' in kwargs:
2735 2736 2737 2738 2739

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2740 2741 2742 2743 2744
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2756
                # TODO already inited, do nothing, should log a warning
2757 2758 2759
                pass
            else:
                initializer(param, self)
2760
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2761
        return param
Y
Yu Yang 已提交
2762

Y
Yu Yang 已提交
2763
    def append_op(self, *args, **kwargs):
2764 2765 2766 2767 2768 2769
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2770
        if in_dygraph_mode():
2771
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2772
            type = kwargs.get("type", None)
2773 2774 2775
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2776
                type=type,
M
minqiyang 已提交
2777 2778
                inputs=None,
                outputs=None,
2779
                attrs=attrs)
2780

M
minqiyang 已提交
2781 2782 2783
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2784
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2785 2786

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2787
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2788 2789
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2790
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2791
        else:
2792 2793 2794 2795 2796 2797 2798 2799 2800
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2801
            self.ops.append(op)
M
minqiyang 已提交
2802

2803 2804
        return op

W
Wu Yi 已提交
2805
    def _insert_op(self, index, *args, **kwargs):
2806 2807 2808 2809 2810 2811 2812 2813 2814
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2815 2816
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2817 2818 2819 2820
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2821
    def _remove_op(self, index):
2822 2823 2824 2825 2826 2827 2828 2829 2830
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2831 2832
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2833 2834
        del self.ops[index]

W
Wu Yi 已提交
2835
    def _slice_ops(self, start, end):
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2846
        return self.ops[start:end]
Y
Yancey1989 已提交
2847

W
Wu Yi 已提交
2848
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2849
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2850 2851
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2852
            op = Operator(
J
Jiabin Yang 已提交
2853
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2854

J
Jiabin Yang 已提交
2855
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2856
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2857 2858
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2859
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2860
        else:
2861 2862 2863 2864 2865 2866 2867 2868
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2869
            self.ops.insert(0, op)
2870

Y
Yu Yang 已提交
2871 2872
        return op

W
Wu Yi 已提交
2873
    def _sync_with_cpp(self):
2874
        """
2875 2876
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2877
        """
Q
Qiao Longfei 已提交
2878 2879 2880 2881 2882
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2883
        # sync variables removed from c++ end
2884
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2885
            if not self.desc.find_var(cpt.to_bytes(var)):
2886 2887
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2888
        # sync operators from cpp
2889 2890 2891 2892
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2909 2910 2911 2912 2913

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2914
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2915 2916 2917 2918 2919 2920 2921

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2935 2936 2937 2938
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2939
    def _copy_param_info_from(self, other):
2940
        """
2941 2942
        Copy the information of parameters from the other block.

2943
        Args:
2944 2945 2946 2947 2948
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2949 2950 2951 2952 2953

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2954 2955
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2956
        for p in other.iter_parameters():
2957 2958 2959
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2960 2961
                # if the Parameter is pruned, v may be None
                continue
2962
            assert isinstance(v, Variable)
2963
            new_p = None
L
Leo Chen 已提交
2964 2965
            if in_dygraph_mode():
                new_p = ParamBase(
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2977 2978
                new_p = Parameter(
                    block=self,
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2989 2990
            self.vars[new_p.name] = new_p

2991
    def _clone_variable(self, var, force_persistable=True):
2992 2993
        """
        Clone a variable into current block.
2994

2995 2996
        Args:
            var: the variable to be cloned.
2997 2998 2999
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3000 3001

        Returns:
3002
            Variable: the new  variable cloned from 'var' in current block.
3003 3004
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3005 3006 3007 3008 3009
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3010 3011
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3012
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3013 3014 3015 3016 3017 3018
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3019
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3020 3021
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3022 3023 3024 3025 3026 3027 3028
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3029
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3030 3031
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3032
        return ret_var
3033

Y
Yu Yang 已提交
3034

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3130
    def remove_input_by_id(self, node_id):
3131 3132 3133 3134 3135 3136
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3137
        self.node.remove_input(node_id)
3138

3139
    def remove_input(self, node):
3140 3141 3142 3143
        """
        Remove a node from inputs.

        Args:
3144
            node(IrNode): the node being removed.
3145
        """
3146
        self.node.remove_input(node.node)
3147

3148
    def append_input(self, node):
3149 3150 3151 3152
        """
        Append a node in inputs.

        Args:
3153
            node(IrNode): the node being appended.
3154
        """
3155
        self.node.append_input(node.node)
3156 3157 3158 3159 3160 3161 3162 3163

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3164
    def remove_output_by_id(self, node_id):
3165 3166 3167 3168 3169 3170
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3171
        self.node.remove_output(node_id)
3172

3173
    def remove_output(self, node):
3174 3175 3176 3177
        """
        Remove a node from outputs.

        Args:
3178
            node(IrNode): the node being removed.
3179
        """
3180
        self.node.remove_output(node.node)
3181

3182
    def append_output(self, node):
3183 3184 3185 3186
        """
        Append a node in outputs.

        Args:
3187
            node(IrNode): the node being appended.
3188
        """
3189
        self.node.append_output(node.node)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3237
            "The node variable description can not be None."
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3248
            "The node variable description can not be None."
3249 3250
        return self.node.var().persistable()

3251 3252 3253 3254 3255 3256 3257 3258
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3259
            "The node variable description can not be None."
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3270
            "The node variable description can not be None."
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3281
            "The node variable description can not be None."
3282 3283
        return self.node.var().shape()

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3331
            "The node operator description can not be None."
3332 3333
        self.node.op()._rename_input(old_input_name, new_input_name)

3334 3335 3336 3337 3338 3339 3340 3341 3342
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3343
            "The node operator description can not be None."
3344 3345 3346 3347
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3359
            "The node operator description can not be None."
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3373
            "The node operator description can not be None."
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3384
            "The node operator description can not be None."
3385 3386
        return self.node.op().set_type(new_type)

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3402
            "The node operator description can not be None."
3403 3404 3405 3406
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3407
                all(isinstance(v, Block) for v in val):
3408 3409
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3410
                isinstance(val, core.ProgramDesc):
3411 3412 3413 3414
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3415 3416 3417 3418 3419 3420 3421 3422
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3423
            "The node operator description can not be None."
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3434
            "The node operator description can not be None."
3435 3436
        return self.node.op().output_arg_names()

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3458 3459
class IrGraph(object):
    """
3460
    Python IrGraph. Beneath it is a core.Graph, which is used for
3461
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3462 3463
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3464 3465 3466 3467
    """

    def __init__(self, graph, for_test=False):
        """
3468 3469
        Construct an IrGraph using core.Graph.

3470 3471 3472 3473 3474 3475 3476 3477 3478
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3479 3480 3481 3482
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3483 3484 3485
        Warns:
            The method only clones the graph structure, not its attributes.

3486 3487 3488
        Returns:
            IrGraph: A new and duplicated graph.
        """
3489
        g = self.graph.clone()
3490 3491
        return IrGraph(g, self._for_test)

3492
    def is_test(self):
3493 3494 3495
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3496 3497
        return self._for_test

W
WangZhen 已提交
3498
    def all_nodes(self):
3499 3500 3501
        """
        Return all nodes included in the graph as a set.
        """
3502
        return {IrNode(node) for node in self.graph.nodes()}
3503

3504
    def all_var_nodes(self):
3505 3506 3507
        """
        Return all variable nodes included in the graph as a set.
        """
3508
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3509

3510
    def all_persistable_nodes(self):
3511 3512 3513
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3514 3515 3516 3517 3518
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3519
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3520

3521
    def all_op_nodes(self):
3522 3523 3524
        """
        Return all operator nodes included in the graph as a set.
        """
3525
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3526

3527
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3539
            IrVarNode: the created persistable variable node.
3540
        """
3541 3542 3543 3544 3545
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3546
        return IrVarNode(self.graph.create_var_node(var_desc))
3547 3548

    def create_var_node(self, name, var_type, shape, var_dtype):
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3560
            IrVarNode: the created variable node.
3561 3562
        """

3563 3564 3565 3566
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3567
        return IrVarNode(self.graph.create_var_node(var_desc))
3568 3569

    def create_var_node_from_desc(self, var_desc):
3570 3571 3572 3573 3574 3575 3576 3577
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3578
            IrVarNode: the created variable node.
3579
        """
3580
        return IrVarNode(self.graph.create_var_node(var_desc))
3581 3582

    def create_op_node(self, op_type, attrs, inputs, outputs):
3583 3584 3585 3586 3587 3588 3589
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3590
            outputs(dict): the outputs of the operator node.
3591 3592

        Returns:
3593
            IrOpNode: the created operator node.
3594
        """
3595 3596
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3597
        for attr, value in six.iteritems(attrs):
3598
            self._update_desc_attr(op_desc, attr, value)
3599
        for input_name, var_nodes in six.iteritems(inputs):
3600 3601 3602 3603
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3604
        for output_name, var_nodes in six.iteritems(outputs):
3605 3606 3607 3608
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3609
        return IrOpNode(self.graph.create_op_node(op_desc))
3610 3611

    def create_op_node_from_desc(self, op_desc):
3612 3613 3614 3615 3616 3617 3618
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3619
            IrOpNode: the created operator node.
3620
        """
3621
        return IrOpNode(self.graph.create_op_node(op_desc))
3622 3623

    def update_input_link(self, old_input_node, new_input_node, op_node):
3624 3625 3626 3627
        """
        Update the input's link of a operator node.

        Args:
3628 3629 3630
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3631
        """
3632
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3633 3634
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3635 3636 3637 3638
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3639
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3640

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3651 3652
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3653 3654 3655 3656 3657 3658
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3659
    def link_to(self, node_in, node_out):
3660 3661 3662 3663
        """
        Connect two nodes.

        Args:
3664 3665
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3666
        """
3667
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3668
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3669 3670
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3671 3672

    def safe_remove_nodes(self, remove_nodes):
3673 3674 3675 3676 3677 3678 3679
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3680
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3681 3682 3683 3684
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3685 3686
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3687

Z
Zhen Wang 已提交
3688 3689 3690 3691 3692 3693 3694 3695
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3696
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3697 3698 3699 3700
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3701
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3702 3703 3704
                        ]
                    else:
                        var_nodes[each_var_name].append(
3705 3706
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3707 3708
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3709
    def has_circle(self):
3710 3711 3712 3713 3714 3715
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3716 3717 3718
        return core.has_circle(self.graph)

    def graph_num(self):
3719 3720 3721 3722 3723 3724
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3725 3726 3727
        return core.graph_num(self.graph)

    def topology_sort(self):
3728 3729 3730
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3731
        Notes: the `graph` can not contain a circle.
3732 3733

        Returns:
Z
Zhen Wang 已提交
3734
            list(IrNode): nodes in topology order.
3735
        """
3736
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3737
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3738 3739

    def build_adjacency_list(self):
3740 3741 3742 3743
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3744
            dict{IrNode: set(IrNode)}: the adjacency list.
3745
        """
3746 3747 3748 3749 3750
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3751

3752 3753 3754 3755 3756 3757 3758 3759
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3760
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3761 3762 3763 3764 3765
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3766 3767 3768
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3769
                                          + ' -o ' + pdf_save_path, shell=True)
3770 3771 3772 3773 3774
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3775
        remove_ctr_vars = set()
3776
        if remove_ctr_var:
3777
            for node in self.all_var_nodes():
3778 3779 3780
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3781 3782
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3783 3784
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3785 3786 3787 3788 3789 3790
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3791 3792 3793 3794
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3795 3796
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3797 3798 3799 3800 3801 3802 3803
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3804 3805 3806
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3807
        WARN: When the graph includes backward operator nodes, the
3808 3809 3810 3811 3812 3813
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3814
        convert_pass = core.get_pass('graph_to_program_pass')
3815 3816
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3817 3818 3819 3820
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3848
class Program(object):
D
dzhwinter 已提交
3849
    """
3850 3851
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3852
    it will contain nested block.
3853

J
Jiabin Yang 已提交
3854 3855 3856
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3857

J
Jiabin Yang 已提交
3858
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3859
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3860 3861 3862 3863 3864 3865 3866
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3867 3868 3869 3870
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3871 3872

    Returns:
J
Jiabin Yang 已提交
3873
        Program: An empty Program.
D
dzhwinter 已提交
3874 3875

    Examples:
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3889 3890 3891

    """

3892 3893
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3894 3895
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3896 3897
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3898
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3899
        self.__op_role_var = []
T
tangwei12 已提交
3900

3901 3902
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3903
        self._is_distributed = False
3904
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3905
        self._is_chief = False
3906 3907 3908
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3909
        self._endpoints = []
3910 3911 3912
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3913
        self._trainers_endpoints = []
3914
        # the distributed lookup table names
T
tangwei12 已提交
3915
        self._distributed_lookup_table = None
3916 3917 3918

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3919 3920
        self._use_lamb = False

3921 3922 3923
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3924

3925 3926 3927
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3928
        self._program_config = None
3929

H
hutuxian 已提交
3930 3931 3932
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3933 3934 3935
        # appending gradients times
        self._appending_grad_times = 0

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3963
    @property
3964
    def _op_role(self):
Y
yuyang18 已提交
3965 3966 3967 3968 3969 3970 3971 3972
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3973
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3974 3975 3976 3977
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3978 3979
        return self._current_role

3980 3981
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3982 3983 3984
        self._current_role = role

    @property
3985
    def _op_role_var(self):
Y
yuyang18 已提交
3986
        """
3987
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3988

3989
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3990 3991 3992

        Notes: This is a very low-level API. Users should not use it directly.
        """
3993
        return self.__op_role_var
Y
yuyang18 已提交
3994

3995
    @signature_safe_contextmanager
3996 3997 3998 3999 4000
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4001 4002 4003 4004
        try:
            yield
        finally:
            self._current_role = tmp_role
4005

S
rename  
sneaxiy 已提交
4006
    @signature_safe_contextmanager
W
Wu Yi 已提交
4007
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4008 4009 4010 4011 4012 4013 4014
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4015
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4016 4017 4018

        Examples:

4019
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4020
            >>> p, g = backward(...)
W
Wu Yi 已提交
4021
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4022 4023
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4024
        tmp_role = self._current_role
4025
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4026

Y
yuyang18 已提交
4027 4028
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4029
        self.__op_role_var = [
4030 4031 4032
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4033 4034 4035 4036 4037
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4038

S
rename  
sneaxiy 已提交
4039
    @signature_safe_contextmanager
X
Xin Pan 已提交
4040
    def _lr_schedule_guard(self, is_with_opt=False):
4041 4042 4043 4044 4045 4046 4047
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4048 4049 4050 4051
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4052 4053 4054

        Examples:

4055
            >>> import paddle.fluid as fluid
4056 4057 4058 4059
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4060 4061

        tmp_role = self._current_role
4062
        tmp_var = self.__op_role_var
4063

4064 4065
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4066 4067
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4068
        # TODO(typhoonzero): how to set target learning rate var
4069
        self.__op_role_var = []
4070 4071 4072 4073 4074
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4075

4076
    def __str__(self):
Y
yuyang18 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4125
            program_str += '\n'
4126
        return program_str
Y
Yang Yang(Tony) 已提交
4127

F
fengjiayi 已提交
4128 4129 4130
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4131

J
Jiabin Yang 已提交
4132 4133 4134
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4135

J
Jiabin Yang 已提交
4136
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4137

H
haowang101779990 已提交
4138
        Returns:
J
Jiabin Yang 已提交
4139
            str: The debug string describe current Program.
Y
yuyang18 已提交
4140 4141

        Raises:
J
Jiabin Yang 已提交
4142
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4143

4144 4145 4146 4147 4148 4149
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4150 4151
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4152
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4153
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4154
                print("program string without detail: {}".format(prog_string))
4155
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4156
        """
4157 4158 4159 4160 4161 4162 4163 4164 4165
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4166 4167 4168 4169 4170 4171
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4172 4173
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4174 4175
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4176

W
Wu Yi 已提交
4177
    def _get_desc(self):
Y
yuyang18 已提交
4178 4179 4180 4181 4182 4183 4184
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4185 4186
        return self.desc

X
version  
Xin Pan 已提交
4187 4188 4189
    def _version(self):
        return self.desc._version()

4190
    def clone(self, for_test=False):
Y
yuyang18 已提交
4191
        """
4192
        **Notes**:
J
Jiabin Yang 已提交
4193 4194 4195 4196
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4197
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4198

4199
        Create a new Program with forward content of original one when ``for_test=True``.
4200
        Create a new Program as same as the original one when ``for_test=False``.
4201

J
Jiabin Yang 已提交
4202
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4203 4204 4205
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4206

4207 4208
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4209 4210
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4211
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4212

J
Jiabin Yang 已提交
4213
        For Example:
4214
          ::
L
Luo Tao 已提交
4215

4216 4217 4218 4219 4220 4221 4222 4223
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4224

J
Jiabin Yang 已提交
4225
        Args:
4226

4227 4228
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4229

J
Jiabin Yang 已提交
4230
        Returns:
4231
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4232

Y
yuyang18 已提交
4233 4234 4235

        Examples:

J
Jiabin Yang 已提交
4236
        **Notes: The Program's order maybe different after** :code:`clone` **and
4237
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4238
        example we give you an simple method** :code:`print_prog(program)` **to
4239
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4240
        after** :code:`clone`:
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4277 4278 4279

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4280 4281 4282 4283 4284 4285 4286 4287 4288
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4289
                            test_program = train_program.clone(for_test=True)
4290
                    print_prog(test_program)
J
Jiabin Yang 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4322 4323
                    
                    def network():
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4338 4339 4340
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4341
                    # the test startup program is not used.
4342
                    with fluid.program_guard(test_program_2, startup_program_2):
4343
                        with fluid.unique_name.guard():
4344 4345
                            avg_loss = network()
                    print_prog(test_program_2)
4346 4347

        The two code snippets above will generate and print same programs.
4348
        """
4349 4350 4351 4352 4353

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4354
        pruned_origin_block_id_map = None
4355
        if for_test:
4356 4357 4358 4359 4360 4361 4362 4363 4364
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4365
        else:
4366
            p = Program()
G
gongweibao 已提交
4367 4368
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4369
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4370 4371 4372
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4373 4374

            p._current_role = self._current_role
4375
            p.__op_role_var = self.__op_role_var
4376
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4377

4378 4379
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4380
            p._sync_with_cpp()
4381

W
Wu Yi 已提交
4382
        p._copy_param_info_from(self)
4383
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4384
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4385
        return p
4386

4387
    def _prune(self, targets):
Y
yuyang18 已提交
4388 4389 4390 4391 4392 4393 4394 4395
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4396
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4397 4398 4399 4400
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4401
        """
4402
        return self._prune_with_input([], targets)
4403 4404

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4405
        """
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4416
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4417 4418 4419 4420 4421 4422
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4423 4424 4425 4426
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4427 4428
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4429 4430
        if not isinstance(targets, list):
            targets = [targets]
4431 4432 4433

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4434 4435 4436
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4437

4438 4439 4440 4441
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4442 4443 4444
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4445
                else:
4446 4447 4448
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4449 4450 4451 4452 4453 4454 4455 4456

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4473 4474 4475 4476 4477 4478 4479 4480
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4481

4482
        res = Program()
4483 4484 4485
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4486 4487 4488
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4489
        res._sync_with_cpp()
4490 4491 4492 4493 4494

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4495 4496
        return res

X
Xin Pan 已提交
4497
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4498
        """
F
fengjiayi 已提交
4499 4500 4501 4502 4503
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4504
        3. change the :code:`is_test`
Y
yuyang18 已提交
4505 4506 4507
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4508
        Args:
X
Xin Pan 已提交
4509 4510
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4511

Y
yuyang18 已提交
4512 4513 4514 4515 4516 4517
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4518
        res = Program()
4519
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4520 4521 4522 4523

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4524
        if prune_read_op:
4525 4526 4527 4528 4529 4530 4531 4532 4533
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4534
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4535 4536

        # change all `is_test` attributes to True
M
minqiyang 已提交
4537
        for i in six.moves.range(res.desc.num_blocks()):
4538
            block = res.desc.block(i)
M
minqiyang 已提交
4539
            for j in six.moves.range(block.op_size()):
4540 4541
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4542
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4543 4544 4545
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4546
        res._sync_with_cpp()
4547 4548
        return res

4549 4550
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4551
        """
J
Jiabin Yang 已提交
4552 4553 4554 4555
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4556

4557 4558
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4559

J
Jiabin Yang 已提交
4560
        Args:
Y
yuyang18 已提交
4561

J
Jiabin Yang 已提交
4562
            binary_str_type (str): the binary prootbuf string.
4563

J
Jiabin Yang 已提交
4564 4565
        Returns:
            Program: A deserialized Program.
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4588
        """
4589 4590
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4591
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4592
        p._sync_with_cpp()
4593
        return p
Y
Yu Yang 已提交
4594

4595
    @staticmethod
4596
    def _construct_from_desc(desc):
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4612 4613
    @property
    def random_seed(self):
Y
yuyang18 已提交
4614
        """
J
Jiabin Yang 已提交
4615
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4616 4617
        the random seed from random device.

J
Jiabin Yang 已提交
4618 4619 4620 4621
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4622

4623 4624 4625 4626 4627 4628 4629 4630

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4631
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4632 4633 4634
                print(random_seed)
                ## 0
                ## the default random seed is 0
4635 4636

                # Here we need to set random seed before we use fluid.layers.dropout
4637
                prog.random_seed = 1
4638 4639
                z_var = fluid.layers.dropout(x_var, 0.7)

4640
                print(prog.random_seed)
4641 4642
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4643
        """
D
dzhwinter 已提交
4644 4645
        return self._seed

Q
qiaolongfei 已提交
4646 4647
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4648
        """
4649 4650
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4651 4652 4653 4654
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4655

4656 4657 4658 4659 4660 4661 4662 4663 4664

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4665 4666


Y
yuyang18 已提交
4667
        """
Q
qiaolongfei 已提交
4668 4669
        return self.desc.num_blocks()

D
dzhwinter 已提交
4670 4671 4672
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4673 4674 4675
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4676 4677
        self._seed = seed

Y
Yu Yang 已提交
4678
    def __repr__(self):
4679
        return self.__str__()
4680

Y
Yu Yang 已提交
4681
    def global_block(self):
Y
yuyang18 已提交
4682
        """
J
Jiabin Yang 已提交
4683 4684
        **Notes**:
            **This API has no effect in Dygraph mode**
4685 4686 4687

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4688 4689
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4690

4691 4692 4693 4694 4695 4696 4697 4698 4699

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4700

Y
yuyang18 已提交
4701
        """
Y
Yu Yang 已提交
4702 4703
        return self.blocks[0]

Q
Qiao Longfei 已提交
4704
    def block(self, index):
Y
yuyang18 已提交
4705
        """
J
Jiabin Yang 已提交
4706 4707
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4708

4709 4710
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4711 4712
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4713

J
Jiabin Yang 已提交
4714 4715
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4716 4717 4718 4719 4720 4721 4722 4723 4724

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4725
        """
Q
Qiao Longfei 已提交
4726 4727
        return self.blocks[index]

Y
Yu Yang 已提交
4728
    def current_block(self):
Y
yuyang18 已提交
4729
        """
J
Jiabin Yang 已提交
4730 4731
        **Notes**:
            **This API has no effect in Dygraph mode**
4732

J
Jiabin Yang 已提交
4733 4734
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4735

J
Jiabin Yang 已提交
4736 4737
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4738

4739 4740 4741 4742 4743 4744 4745 4746
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4747
        """
Y
Yu Yang 已提交
4748 4749
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4750
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4751 4752 4753 4754 4755
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4756

Y
yuyang18 已提交
4757 4758 4759 4760 4761
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4762
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4763 4764 4765
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4766 4767 4768 4769
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4770
    def _rollback(self):
Y
yuyang18 已提交
4771 4772 4773 4774 4775
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4776 4777
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4778
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4789 4790 4791
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4792
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4793

W
Wu Yi 已提交
4794
    def _copy_param_info_from(self, other):
4795
        """
4796
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4797

Y
yuyang18 已提交
4798 4799 4800
        Notes: This is a very low level API. Users should not invoke it
        directly.

4801 4802 4803 4804 4805 4806 4807
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4808 4809 4810
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4811

W
Wu Yi 已提交
4812
        self.global_block()._copy_param_info_from(other.global_block())
4813

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4825 4826 4827
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4828 4829
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4830
        self._parameters_on_pservers = other._parameters_on_pservers
4831
        self._endpoints = other._endpoints
4832
        self._ps_endpoint = other._ps_endpoint
4833 4834
        self._distributed_lookup_table = other._distributed_lookup_table

4835
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4836 4837
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4838

Y
yuyang18 已提交
4839 4840 4841
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4842 4843
        Args:
            other(Program): Other program
4844 4845 4846 4847
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4848 4849 4850 4851 4852

        Returns:
            None
        """
        if not isinstance(other, Program):
4853 4854 4855
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4856

4857 4858 4859 4860 4861
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4862 4863 4864

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4865 4866
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4867
            for var in list(block.vars.values()):
4868 4869 4870 4871 4872 4873 4874
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4875

4876
    def list_vars(self):
Y
yuyang18 已提交
4877
        """
J
Jiabin Yang 已提交
4878
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4879

J
Jiabin Yang 已提交
4880 4881
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4893
        """
4894
        for each_block in self.blocks:
4895
            for each_var in list(each_block.vars.values()):
4896 4897
                yield each_var

4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4956

4957
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4958
class Parameter(Variable):
4959
    """
4960
    Parameter is derived from Variable. A parameter is a persistable
4961
    Variable, and will be updated by optimizers after each iteration.
4962
    The training of a neural network is essentially the updating of
4963 4964
    its parameters.

4965
    Relative to a general Variable, a Parameter has several its own
4966 4967
    member variables:

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4978 4979
    """

4980 4981 4982 4983 4984 4985
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4986 4987 4988 4989 4990
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4991
        if len(shape) == 0:
4992 4993
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4994 4995 4996

        for each in shape:
            if each < 0:
4997 4998 4999
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5000 5001

        Variable.__init__(
5002 5003 5004 5005 5006 5007 5008
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5009 5010 5011 5012
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5013 5014
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5015
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5016

5017 5018
        self.is_distributed = False

F
fengjiayi 已提交
5019
    def __str__(self):
5020
        return self._to_readable_code()
F
fengjiayi 已提交
5021

F
update  
fengjiayi 已提交
5022 5023 5024
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5025

F
update  
fengjiayi 已提交
5026 5027 5028 5029 5030 5031 5032 5033
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5034 5035 5036 5037 5038 5039 5040 5041 5042
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5043 5044 5045 5046 5047 5048
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5049
                               "do_model_average")
F
update  
fengjiayi 已提交
5050
            for attr_name in additional_attr:
5051 5052
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5053 5054
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5055 5056 5057 5058
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5059

5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

5120
        # self.block = default_main_program().global_block()
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
5151
            return 'Parameter: %s\n%s' % (self.name, str(tensor))
5152
        else:
5153
            return 'Parameter: %s, not initialized' % (self.name)
5154 5155 5156 5157

    __repr__ = __str__


Y
Yu Yang 已提交
5158
# program is a global instance.
Y
Yu Yang 已提交
5159 5160
_main_program_ = Program()
_startup_program_ = Program()
5161

5162

5163
def default_startup_program():
Y
Yu Yang 已提交
5164
    """
Y
yuyang18 已提交
5165 5166
    Get default/global startup program.

J
Jiabin Yang 已提交
5167 5168 5169
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5170 5171 5172
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5173
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5174

J
Jiabin Yang 已提交
5175
    Returns: current default startup :ref:`api_fluid_Program`
5176

J
Jiabin Yang 已提交
5177
    Returns type: :ref:`api_fluid_Program`
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5193
    """
Y
Yu Yang 已提交
5194
    return _startup_program_
5195

5196

5197
def default_main_program():
Y
Yu Yang 已提交
5198
    """
5199 5200 5201 5202 5203
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5204

5205 5206
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5207
    :code:`default_main_program` when the program is not specified.
5208

5209 5210
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5211
    Returns:
5212
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5213 5214 5215 5216 5217

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5218

5219
            # Sample Network:
5220 5221
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5241
            #print the number of blocks in the program, 1 in this case
5242
            print(fluid.default_main_program().num_blocks)
5243 5244

            #print the description of variable 'image'
5245
            print(fluid.default_main_program().blocks[0].var('image'))
5246

Y
Yu Yang 已提交
5247
    """
Y
Yu Yang 已提交
5248
    return _main_program_
Y
Yu Yang 已提交
5249 5250 5251 5252 5253


def switch_main_program(program):
    """
    Switch the main program to a new program.
5254

Y
Yu Yang 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5269
    Switch the startup program to a new program
Y
Yu Yang 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5282
@signature_safe_contextmanager
Y
Yu Yang 已提交
5283 5284
def program_guard(main_program, startup_program=None):
    """
5285 5286
    :api_attr: Static Graph

5287 5288
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5289
    variables to the new main programs.
5290

G
guofei 已提交
5291 5292 5293 5294 5295 5296 5297
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5298
    Examples:
5299 5300 5301
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5302

5303 5304 5305
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5306
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5307
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5308 5309 5310

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5311

Y
Yu Yang 已提交
5312
    Examples:
5313
       .. code-block:: python
Y
yuyang18 已提交
5314

5315 5316 5317 5318 5319
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5320 5321
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5322
    """
5323 5324
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5325 5326
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5327 5328
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5329
        startup_program = switch_startup_program(startup_program)
5330 5331 5332 5333 5334 5335
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5336 5337


W
Wu Yi 已提交
5338
def _get_var(name, program=None):
X
xuwei06 已提交
5339
    """
Y
yuyang18 已提交
5340
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5341

X
xuwei06 已提交
5342 5343 5344
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5345
        If None, default_global_program() will be used.
X
xuwei06 已提交
5346 5347 5348 5349 5350 5351 5352

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5353
    assert isinstance(program, Program)
X
xuwei06 已提交
5354 5355

    return program.global_block().var(name)
5356 5357


S
rename  
sneaxiy 已提交
5358
@signature_safe_contextmanager
L
lujun 已提交
5359 5360 5361 5362
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5363
    core._switch_tracer(tracer)
M
minqiyang 已提交
5364

5365 5366 5367 5368 5369
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5370 5371


S
rename  
sneaxiy 已提交
5372
@signature_safe_contextmanager
L
lujun 已提交
5373 5374 5375 5376
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5377

5378 5379 5380 5381
    try:
        yield
    finally:
        _dygraph_current_expected_place_ = tmp_place
5382 5383 5384 5385


def load_op_library(lib_filename):
    """
5386 5387
    :api_attr: Static Graph
    
5388 5389 5390
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5391
    Please note, the type of custom operators can't have the same type
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
5463 5464 5465 5466
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value