framework.py 178.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
    'device_guard',
G
guofei 已提交
55 56
    'set_flags',
    'get_flags',
57
]
Y
Yu Yang 已提交
58

Q
qiaolongfei 已提交
59 60 61 62
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
63 64
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
65 66
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
67
_current_device = None
68

69 70
global_prog_seed = 0

71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
179
def in_dygraph_mode():
L
lujun 已提交
180
    """
Y
Youwei Song 已提交
181
    This function checks whether the program runs in dynamic graph mode or not.
182 183 184
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
185 186

    Returns:
Y
Youwei Song 已提交
187
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
188 189 190 191

    Examples:
        .. code-block:: python

192
            import paddle.fluid as fluid
L
lujun 已提交
193

194 195 196 197
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
198
    """
L
lujun 已提交
199
    return _dygraph_tracer_ is not None
200 201


202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
224 225
def _dygraph_tracer():
    return _dygraph_tracer_
226

W
Wu Yi 已提交
227

M
minqiyang 已提交
228
def _current_expected_place():
L
lujun 已提交
229
    return _dygraph_current_expected_place_
M
minqiyang 已提交
230 231


L
Leo Chen 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
249
def _cpu_num():
250
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
251 252 253 254 255 256 257 258
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
259
        os.environ['CPU_NUM'] = str(1)
260
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
261 262 263 264 265 266 267 268 269 270
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
271 272


C
chengduo 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
288
def cuda_places(device_ids=None):
L
lujun 已提交
289
    """
290 291 292 293 294
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
295 296

    If :code:`device_ids` is None, environment variable of
297
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
298 299 300
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
301
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
302 303

    If :code:`device_ids` is not None, it should be the device
304
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
305 306 307
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
308 309
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
310 311

    Returns:
312
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
313 314 315 316

    Examples:
        .. code-block:: python

317
            import paddle.fluid as fluid
L
lujun 已提交
318 319 320
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
321 322 323
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
324
        device_ids = _cuda_ids()
S
sneaxiy 已提交
325 326 327 328 329 330
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
331
    """
332
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
333 334 335
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
336 337
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
338 339
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
340

341 342
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
343 344

    Returns:
345
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
346 347 348 349

    Examples:
        .. code-block:: python

350
            import paddle.fluid as fluid
L
lujun 已提交
351 352 353
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
354 355 356 357 358 359
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
360
    """
361
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
362 363 364

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
365 366 367 368
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
369

370 371
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
372 373

    Returns:
374
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
375 376 377 378

    Examples:
        .. code-block:: python

379
            import paddle.fluid as fluid
L
lujun 已提交
380 381 382 383 384
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
385 386 387
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
388 389
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
390 391


392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
418
@signature_safe_contextmanager
419 420 421 422
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
423 424 425
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
426 427

    Args:
T
Tao Luo 已提交
428
        prefix(str, optional): prefix. Default is none.
429 430 431

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
432

433
          import paddle.fluid as fluid
434
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
435 436 437 438 439 440
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
441
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
442
                f = fluid.layers.pow(d, 2.0)
443
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
463 464
    """
    # TODO(panyx0718): Only [0-9a-z].
465
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
466 467 468
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
469
        assert prefix, "namescope prefix can not be empty."
470 471 472 473
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
474 475 476 477 478 479 480 481 482 483 484 485


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
486 487 488
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
489 490 491 492


def grad_var_name(var_name):
    """
493 494
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
495 496 497
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
498

499
def convert_np_dtype_to_dtype_(np_dtype):
500 501
    """
    Convert the data type in numpy to the data type in Paddle
502

503
    Args:
504
        np_dtype(np.dtype): the data type in numpy.
505

506 507
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
508 509

    """
510 511
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
512
        return core.VarDesc.VarType.FP32
513
    elif dtype == np.float64:
514
        return core.VarDesc.VarType.FP64
515
    elif dtype == np.float16:
516
        return core.VarDesc.VarType.FP16
517
    elif dtype == np.int32:
518
        return core.VarDesc.VarType.INT32
519
    elif dtype == np.int16:
520
        return core.VarDesc.VarType.INT16
521
    elif dtype == np.int64:
522
        return core.VarDesc.VarType.INT64
523
    elif dtype == np.bool:
524
        return core.VarDesc.VarType.BOOL
525 526
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
527 528
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
529 530
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
531
    else:
M
minqiyang 已提交
532
        raise ValueError("Not supported numpy dtype %s" % dtype)
533 534 535


def dtype_is_floating(dtype):
536 537 538
    """
    Check the data type is floating or not.
    Args:
539
        dtype(np.dtype|core.VarDesc.VarType): data type.
540 541 542 543 544
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
545
    if not isinstance(dtype, core.VarDesc.VarType):
546 547
        dtype = convert_np_dtype_to_dtype_(dtype)

548 549 550 551
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
552 553


Y
Yang Yang(Tony) 已提交
554
def _debug_string_(proto, throw_on_error=True):
555 556 557 558 559 560 561 562 563 564 565
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
566
    error_fields = list()
Y
Yang Yang(Tony) 已提交
567
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
568 569
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
570 571 572
    return proto.__str__()


573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
726

727
    # starts
L
Leo Chen 已提交
728
    if contain_var(slice_start):
729 730 731 732 733 734 735 736
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
737 738 739 740
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
741 742 743 744 745 746 747
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
748 749 750
    else:
        attrs['ends'] = slice_end

751 752
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
753
        if contain_var(slice_step):
754 755 756 757 758 759 760
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
761 762
        else:
            attrs['strides'] = slice_step
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
810
class Variable(object):
811
    """
J
Jiabin Yang 已提交
812
    **Notes**:
813
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
814

815 816
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
817 818 819
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
820
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
821 822
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
823

824
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
825
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
826

T
tianshuo78520a 已提交
827
    Most of a Variable's member variables can be set to be None. It mean
828
    it is not available or will be specified later.
829

830
    Examples:
831 832
        In Static Graph Mode:

833 834
        .. code-block:: python

835
            import paddle.fluid as fluid
836
            cur_program = fluid.Program()
837 838 839 840
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
841
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
842 843 844 845 846 847 848 849 850

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

851 852
    """

Y
Yu Yang 已提交
853 854
    def __init__(self,
                 block,
Y
Yu Yang 已提交
855
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
856 857 858 859
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
860
                 capacity=None,
Q
QI JUN 已提交
861
                 persistable=None,
F
fengjiayi 已提交
862
                 error_clip=None,
Y
Yu Yang 已提交
863
                 stop_gradient=False,
F
fengjiayi 已提交
864
                 is_data=False,
H
Huihuang Zheng 已提交
865
                 need_check_feed=False,
H
hong 已提交
866
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
867
                 **kwargs):
Y
Yu Yang 已提交
868 869
        self.block = block
        if name is None:
Y
Yu Yang 已提交
870
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
871

Y
Yu Yang 已提交
872
        if dtype is not None:
873
            if not isinstance(dtype, core.VarDesc.VarType):
874
                dtype = convert_np_dtype_to_dtype_(dtype)
875

H
hong 已提交
876 877
        self.belong_to_optimizer = belong_to_optimizer

878 879 880 881 882
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
883

884 885 886
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
887

888 889 890 891 892 893 894
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
895

896
        if shape is not None:
897
            if is_new_var:
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
939

940 941
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
942

943 944 945 946 947 948 949
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
950

951 952 953 954
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
955

956
    @dygraph_only
957 958
    def detach(self):
        """
J
Jiabin Yang 已提交
959
        **Notes**:
T
tianshuo78520a 已提交
960
            **This API is ONLY available in Dygraph mode**
961

962
        Returns a new Variable, detached from the current graph.
963

964
        Returns:
J
Jiabin Yang 已提交
965
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
966

967

968 969 970 971 972
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
973
                from paddle.fluid.dygraph import Linear
974 975 976 977
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
978
                    linear = Linear(32, 64)
979
                    data = to_variable(data)
980
                    x = linear(data)
981 982 983
                    y = x.detach()

        """
984
        pass
985

986
    @dygraph_only
987
    def numpy(self):
988
        """
J
Jiabin Yang 已提交
989
        **Notes**:
T
tianshuo78520a 已提交
990
            **This API is ONLY available in Dygraph mode**
991

J
Jiabin Yang 已提交
992
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
993 994 995 996 997

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
998
            ndarray: dtype is same as current Variable
999 1000 1001 1002 1003 1004

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1005
                from paddle.fluid.dygraph import Linear
1006 1007 1008 1009
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1010
                    linear = Linear(32, 64)
1011
                    data = to_variable(data)
1012
                    x = linear(data)
1013 1014 1015
                    print(x.numpy())

        """
1016
        pass
1017

1018 1019 1020
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1021
        **Notes**:
T
tianshuo78520a 已提交
1022
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1034
                from paddle.fluid.dygraph import Linear
1035 1036
                import numpy as np

1037
                data = np.ones([3, 1024], dtype='float32')
1038
                with fluid.dygraph.guard():
1039
                    linear = fluid.dygraph.Linear(1024, 4)
1040
                    t = to_variable(data)
1041
                    linear(t)  # call with default weight
1042
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1043 1044
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1045 1046

        """
1047
        pass
1048

1049
    @dygraph_only
1050
    def backward(self, backward_strategy=None):
1051
        """
J
Jiabin Yang 已提交
1052
        **Notes**:
T
tianshuo78520a 已提交
1053
            **This API is ONLY available in Dygraph mode**
1054 1055 1056

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1057 1058
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1059

J
Jiabin Yang 已提交
1060 1061
        Returns:
            NoneType: None
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1074 1075
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1076 1077 1078 1079 1080 1081 1082 1083 1084
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1085
        pass
1086

1087
    @dygraph_only
1088
    def gradient(self):
1089
        """
J
Jiabin Yang 已提交
1090
        **Notes**:
T
tianshuo78520a 已提交
1091
            **This API is ONLY available in Dygraph mode**
1092 1093 1094

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1095
        Returns:
1096
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1097 1098 1099 1100 1101 1102 1103

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1104
                # example1: return ndarray
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1132
        """
1133
        pass
1134

1135
    @dygraph_only
1136
    def clear_gradient(self):
1137
        """
J
Jiabin Yang 已提交
1138
        **Notes**:
T
tianshuo78520a 已提交
1139
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1140 1141

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1142

J
Jiabin Yang 已提交
1143
        Clear  (set to ``0`` ) the Gradient of Current Variable
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1170
        pass
X
Xin Pan 已提交
1171

1172
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1173 1174
        return self.to_string(True)

F
update  
fengjiayi 已提交
1175
    def to_string(self, throw_on_error, with_details=False):
1176 1177 1178
        """
        Get debug string.

J
Jiabin Yang 已提交
1179 1180 1181 1182 1183
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1184

1185 1186
        Returns:
            str: The debug string.
1187 1188 1189 1190 1191

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1192

1193 1194 1195 1196 1197
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1198
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1199
                print("=============with detail===============")
1200
                print(new_variable.to_string(True, True))
1201
        """
L
lujun 已提交
1202
        if in_dygraph_mode():
1203
            return
1204

F
update  
fengjiayi 已提交
1205 1206
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1207
        protostr = self.desc.serialize_to_string()
1208
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1209 1210 1211 1212
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1213 1214 1215
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1216
        return res_str
1217 1218 1219

    __repr__ = __str__

1220
    @property
1221
    def stop_gradient(self):
J
Jiabin Yang 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1237 1238
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1239 1240 1241
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1242 1243
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1244 1245 1246 1247
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1248
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1249 1250
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1251
        if in_dygraph_mode():
1252
            pass
M
minqiyang 已提交
1253
        else:
1254
            return self._stop_gradient
1255

1256 1257
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1258
        if in_dygraph_mode():
1259
            pass
1260
        else:
1261
            self._stop_gradient = s
1262

1263 1264
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1286
        if in_dygraph_mode():
1287
            pass
1288 1289
        else:
            return self.desc.persistable()
1290

Y
Yu Yang 已提交
1291 1292
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1293
        if in_dygraph_mode():
1294 1295 1296
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1297 1298
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1299

Y
Yu Yang 已提交
1300 1301
    @property
    def name(self):
J
Jiabin Yang 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1318
        if in_dygraph_mode():
1319
            pass
1320 1321
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1343 1344
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1345
        if in_dygraph_mode():
1346
            pass
1347 1348
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1349

Y
Yu Yang 已提交
1350 1351
    @property
    def shape(self):
J
Jiabin Yang 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1369
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1370
        if in_dygraph_mode():
1371
            pass
1372 1373
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1374 1375

    @property
F
fengjiayi 已提交
1376
    def dtype(self):
J
Jiabin Yang 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1393
        if in_dygraph_mode():
1394
            pass
1395 1396
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1397 1398

    @property
1399
    @dygraph_not_support
Y
Yu Yang 已提交
1400
    def lod_level(self):
J
Jiabin Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1422
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1423 1424
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1425 1426 1427 1428

        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1429
        return self.desc.lod_level()
Y
Yu Yang 已提交
1430

Y
Yu Yang 已提交
1431 1432
    @property
    def type(self):
J
Jiabin Yang 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1449
        if in_dygraph_mode():
1450
            pass
1451 1452
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1453

W
Wu Yi 已提交
1454
    def _set_error_clip(self, error_clip):
1455 1456 1457 1458 1459 1460 1461 1462 1463
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1464 1465
        self.error_clip = error_clip

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1506
            raise ValueError("slice step can not be zero")
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1582
    def _cloneVar(self, copy=False):
1583 1584
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1585 1586
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1587 1588 1589 1590
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1591
        new_var = self._cloneVar()
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1602
        new_var = self._cloneVar()
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1613
                return self._cloneVar(True)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1632
                return self._cloneVar(True)
1633
            index = int(item)
1634
            if (index > 0 and index >= self.shape[axis]) \
1635 1636 1637 1638 1639 1640 1641
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1642
        return _getitem_impl_(self, item)
1643

Y
Yu Yang 已提交
1644

F
fengjiayi 已提交
1645 1646 1647
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1648

1649 1650
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1651 1652 1653 1654
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1655
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1656 1657 1658 1659 1660
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1661 1662 1663 1664
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1674
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1675 1676 1677 1678 1679 1680
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1681 1682 1683 1684 1685 1686 1687 1688
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1689 1690
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1691 1692
        return self.op_proto_map[type]

1693 1694 1695 1696 1697 1698
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1699 1700 1701 1702
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1703
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1704
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1705 1706
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1707 1708
        }

F
fengjiayi 已提交
1709

X
Xin Pan 已提交
1710
class Operator(object):
1711
    """
1712 1713 1714 1715 1716 1717 1718
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1719
        type(str): The type of operator. Default None.
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1740
        Block.append_op or Block._prepend_op instead.
1741 1742 1743 1744

    Examples:
        .. code-block:: python

1745
            import paddle.fluid as fluid
1746
            cur_program = fluid.Program()
1747 1748 1749 1750 1751
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1752
    """
1753
    OP_WITHOUT_KERNEL_SET = {
1754 1755
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1756 1757
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1758
        'c_sync_comm_stream'
1759
    }
1760

Y
Yu Yang 已提交
1761 1762
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1763
                 desc,
Y
Yu Yang 已提交
1764 1765 1766
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1767
                 attrs=None):
L
lujun 已提交
1768
        if in_dygraph_mode():
1769 1770
            if type is None:
                raise ValueError(
1771
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1772
            self._type = type
M
minqiyang 已提交
1773
            self.attrs = attrs if attrs else {}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1788
                )] = self.block.program._op_role
1789 1790 1791

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1792 1793
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1794 1795 1796 1797 1798 1799 1800 1801

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1802
                    "`type` to initialized an Operator can not be None.")
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1852
                        for index, arg in enumerate(in_args):
1853 1854 1855 1856
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1857
                            elif isinstance(arg, Variable):
1858
                                in_arg_names.append(cpt.to_text(arg.name))
1859
                            else:
1860 1861 1862 1863
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1864 1865
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1892
                        if not in_dygraph_mode():
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1912
    def _has_kernel(self, op_type):
1913 1914
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1915
    def to_string(self, throw_on_error):
1916
        """
1917 1918
        Get debug string.

1919
        Args:
1920 1921
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1922

1923 1924
        Returns:
            str: The debug string.
1925 1926

        """
1927
        protostr = self.desc.serialize_to_string()
1928
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1929 1930 1931 1932
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1933 1934 1935

    __repr__ = __str__

F
fengjiayi 已提交
1936 1937
    @property
    def type(self):
L
lujun 已提交
1938
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1939
            return self._type
1940 1941
        else:
            return self.desc.type()
F
fengjiayi 已提交
1942 1943

    def input(self, name):
1944
        """
1945
        Get the input arguments according to the input parameter name.
1946

1947 1948
        Args:
            name(str): The input parameter name.
1949

1950 1951 1952
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1953
        """
F
fengjiayi 已提交
1954 1955
        return self.desc.input(name)

W
Wu Yi 已提交
1956
    def _rename_input(self, old_name, new_name):
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1967
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1968

W
Wu Yi 已提交
1969
    def _rename_output(self, old_name, new_name):
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1980
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1981

F
fengjiayi 已提交
1982 1983 1984 1985
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1986 1987 1988 1989 1990 1991 1992 1993
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1994
    def output(self, name):
1995
        """
1996
        Get output arguments by the output parameter name.
1997

1998 1999
        Args:
            name(str): The output parameter name.
2000

2001 2002 2003
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2004
        """
F
fengjiayi 已提交
2005 2006 2007 2008 2009 2010
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2011 2012 2013 2014 2015 2016 2017 2018
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2019
    def has_attr(self, name):
2020
        """
2021 2022
        Whether this Operator has the attribute with name or not.

2023
        Args:
2024
            name(str): the attribute name.
2025

2026 2027
        Returns:
            bool: True if has this attribute.
2028 2029

        """
F
fengjiayi 已提交
2030 2031 2032
        return self.desc.has_attr(name)

    def attr_type(self, name):
2033
        """
2034
        Get the type of attribute by attribute's name.
2035

2036 2037
        Args:
            name(str): the attribute name.
2038

2039 2040
        Returns:
            core.AttrType: the attribute type.
2041
        """
F
fengjiayi 已提交
2042 2043
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2044
    def _set_attr(self, name, val):
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2055 2056
        self._update_desc_attr(name, val)

2057 2058 2059
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2071 2072
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2073 2074
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2075
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2076 2077 2078 2079
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2080
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2081

F
fengjiayi 已提交
2082 2083 2084 2085 2086
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2087
        """
2088 2089
        Get the attribute by name.

2090
        Args:
2091
            name(str): the attribute name.
2092

2093 2094
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2095 2096
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2097
        return self.desc.attr(name)
Y
Yu Yang 已提交
2098

W
Wu Yi 已提交
2099
    def _block_attr_id(self, name):
2100
        """
G
gongweibao 已提交
2101
        Get the block attribute's id by name.
2102

2103 2104
        Args:
            name(str): the attribute name.
2105

2106 2107
        Returns:
            int: the block index.
2108
        """
W
Wu Yi 已提交
2109
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2110

W
Wu Yi 已提交
2111
    def _block_attr(self, name):
G
gongweibao 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2122
        id = self._block_attr_id(name)
G
gongweibao 已提交
2123 2124 2125
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2126
    def _blocks_attr(self, name):
G
gongweibao 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2137
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2138 2139 2140 2141 2142
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2143
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2154
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2155

J
JiayiFeng 已提交
2156
    def all_attrs(self):
F
fengjiayi 已提交
2157
        """
2158 2159 2160
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2161
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2162 2163 2164 2165
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2166 2167
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2168
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2169 2170 2171
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2172
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2173 2174 2175 2176
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2177 2178
        return attr_map

2179 2180 2181 2182 2183 2184 2185 2186 2187
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2188

Y
Yu Yang 已提交
2189
class Block(object):
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2204
        use `Program._create_block()` to create a block.
2205 2206 2207 2208

    Examples:
        .. code-block:: python

2209 2210 2211
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2212 2213 2214 2215 2216 2217 2218 2219 2220
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2221
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2222
        self.desc = program.desc.block(idx)
2223
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2224
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2225
        self.program = program
2226
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2227

2228
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2229 2230
        return self.to_string(True)

F
fengjiayi 已提交
2231 2232
    def to_string(self, throw_on_error, with_details=False):
        """
2233 2234
        Get debug string.

F
fengjiayi 已提交
2235 2236
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2237
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2238
            with_details(bool): more details about variables and parameters
2239 2240
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2241

2242 2243
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2244 2245 2246 2247
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2248
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2249 2250
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2251
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2252
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2253
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2254
            for op in self.ops:
F
fengjiayi 已提交
2255 2256
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2257 2258 2259
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2260 2261
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2262 2263
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2264 2265 2266

    __repr__ = __str__

Y
Yu Yang 已提交
2267 2268
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2269
        return self.desc.parent
Y
Yu Yang 已提交
2270

Y
Yu Yang 已提交
2271 2272 2273 2274
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2275
    def _set_forward_block_idx(self, idx):
2276 2277 2278 2279 2280 2281 2282 2283 2284
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2285
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2286

2287 2288 2289 2290 2291 2292 2293 2294
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2295 2296
    @property
    def idx(self):
Y
Yu Yang 已提交
2297
        return self.desc.id
Y
Yu Yang 已提交
2298

Q
Qiao Longfei 已提交
2299
    def var(self, name):
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2313
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2314 2315 2316
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2317 2318
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2319
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2320
        return v
Q
Qiao Longfei 已提交
2321

X
Xin Pan 已提交
2322
    def _find_var_recursive(self, name):
2323 2324 2325 2326 2327 2328 2329
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2330
            Variable: the Variable with the giving name. Or None if not found.
2331
        """
Y
Yu Yang 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2356
        return None
Y
Yu Yang 已提交
2357

X
Xin Pan 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2377

Q
Qiao Longfei 已提交
2378
    def all_parameters(self):
2379
        return list(self.iter_parameters())
2380

2381
    def iter_parameters(self):
M
minqiyang 已提交
2382
        return (item[1] for item in six.iteritems(self.vars)
2383
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2384

Y
Yu Yang 已提交
2385
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2386 2387 2388
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2389 2390 2391
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2392
        return var
Y
Yu Yang 已提交
2393

Q
Qiao Longfei 已提交
2394 2395 2396
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2397
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2398 2399
        """
        Rename variable in vars and ops' inputs and outputs
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2412
        """
M
minqiyang 已提交
2413 2414
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2415

T
typhoonzero 已提交
2416
        if not self.has_var(name):
2417
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2418 2419
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2420
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2421 2422 2423 2424 2425 2426
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2427
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2428 2429 2430 2431
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2432
        orig_var_type = v.type
M
minqiyang 已提交
2433
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2434
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2435
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2436
        if var_type == "Parameter":
L
Leo Chen 已提交
2437 2438
            if in_dygraph_mode():
                var = ParamBase(
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2449 2450
                var = Parameter(
                    self,
2451 2452 2453 2454 2455 2456 2457 2458 2459
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2460
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2461 2462
            var = Variable(
                self,
T
typhoonzero 已提交
2463
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2464 2465 2466 2467
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2468
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2469 2470 2471
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2472
        self._sync_with_cpp()
2473
        return var
T
typhoonzero 已提交
2474

W
Wu Yi 已提交
2475 2476
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2477
        self.desc._remove_var(cpt.to_bytes(name))
2478 2479
        del self.vars[name]

Y
Yu Yang 已提交
2480 2481
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2482
        param = None
L
Leo Chen 已提交
2483
        if in_dygraph_mode():
2484
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2485 2486
        else:
            param = Parameter(global_block, *args, **kwargs)
2487
        if 'initializer' in kwargs:
2488 2489 2490 2491 2492

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2493 2494 2495 2496 2497
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2509
                # TODO already inited, do nothing, should log a warning
2510 2511 2512
                pass
            else:
                initializer(param, self)
2513
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2514
        return param
Y
Yu Yang 已提交
2515

Y
Yu Yang 已提交
2516
    def append_op(self, *args, **kwargs):
2517 2518 2519 2520 2521 2522
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2523
        if in_dygraph_mode():
2524 2525 2526
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2527 2528 2529 2530 2531
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2532

J
Jiabin Yang 已提交
2533 2534
            type = kwargs.get("type", None)

2535 2536 2537
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2538
                type=type,
M
minqiyang 已提交
2539 2540
                inputs=None,
                outputs=None,
2541
                attrs=attrs)
2542

M
minqiyang 已提交
2543 2544 2545
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2546
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2547 2548

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2549
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2550 2551
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2552
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2553
        else:
2554 2555 2556 2557 2558 2559 2560 2561 2562
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2563
            self.ops.append(op)
M
minqiyang 已提交
2564

2565 2566
        return op

W
Wu Yi 已提交
2567
    def _insert_op(self, index, *args, **kwargs):
2568 2569 2570 2571 2572 2573 2574 2575 2576
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2577 2578
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2579 2580 2581 2582
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2583
    def _remove_op(self, index):
2584 2585 2586 2587 2588 2589 2590 2591 2592
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2593 2594
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2595 2596
        del self.ops[index]

W
Wu Yi 已提交
2597
    def _slice_ops(self, start, end):
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2608
        return self.ops[start:end]
Y
Yancey1989 已提交
2609

W
Wu Yi 已提交
2610
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2611
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2612 2613
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2614
            op = Operator(
J
Jiabin Yang 已提交
2615
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2616

J
Jiabin Yang 已提交
2617
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2618
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2619 2620
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2621
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2622
        else:
2623 2624 2625 2626 2627 2628 2629 2630
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2631
            self.ops.insert(0, op)
2632

Y
Yu Yang 已提交
2633 2634
        return op

W
Wu Yi 已提交
2635
    def _sync_with_cpp(self):
2636
        """
2637 2638
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2639
        """
Q
Qiao Longfei 已提交
2640 2641 2642 2643 2644
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2645
        # sync variables removed from c++ end
2646
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2647
            if not self.desc.find_var(cpt.to_bytes(var)):
2648 2649
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2650
        # sync operators from cpp
2651 2652 2653 2654
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2671 2672 2673 2674 2675

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2676
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2677 2678 2679 2680 2681 2682 2683

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2697 2698 2699 2700
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2701
    def _copy_param_info_from(self, other):
2702
        """
2703 2704
        Copy the information of parameters from the other block.

2705
        Args:
2706 2707 2708 2709 2710
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2711 2712 2713 2714 2715

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2716 2717
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2718
        for p in other.iter_parameters():
2719 2720 2721
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2722 2723
                # if the Parameter is pruned, v may be None
                continue
2724
            assert isinstance(v, Variable)
2725
            new_p = None
L
Leo Chen 已提交
2726 2727
            if in_dygraph_mode():
                new_p = ParamBase(
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2739 2740
                new_p = Parameter(
                    block=self,
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2751 2752
            self.vars[new_p.name] = new_p

2753
    def _clone_variable(self, var, force_persistable=True):
2754 2755
        """
        Clone a variable into current block.
2756

2757 2758
        Args:
            var: the variable to be cloned.
2759 2760 2761
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2762 2763

        Returns:
2764
            Variable: the new  variable cloned from 'var' in current block.
2765 2766
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2767 2768 2769 2770 2771
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2772 2773
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2774
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2775 2776 2777 2778 2779 2780
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2781
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2782 2783
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2784 2785 2786 2787 2788 2789 2790
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2791
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2792 2793
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2794
        return ret_var
2795

Y
Yu Yang 已提交
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2892
    def remove_input_by_id(self, node_id):
2893 2894 2895 2896 2897 2898
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2899
        self.node.remove_input(node_id)
2900

2901
    def remove_input(self, node):
2902 2903 2904 2905
        """
        Remove a node from inputs.

        Args:
2906
            node(IrNode): the node being removed.
2907
        """
2908
        self.node.remove_input(node.node)
2909

2910
    def append_input(self, node):
2911 2912 2913 2914
        """
        Append a node in inputs.

        Args:
2915
            node(IrNode): the node being appended.
2916
        """
2917
        self.node.append_input(node.node)
2918 2919 2920 2921 2922 2923 2924 2925

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2926
    def remove_output_by_id(self, node_id):
2927 2928 2929 2930 2931 2932
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2933
        self.node.remove_output(node_id)
2934

2935
    def remove_output(self, node):
2936 2937 2938 2939
        """
        Remove a node from outputs.

        Args:
2940
            node(IrNode): the node being removed.
2941
        """
2942
        self.node.remove_output(node.node)
2943

2944
    def append_output(self, node):
2945 2946 2947 2948
        """
        Append a node in outputs.

        Args:
2949
            node(IrNode): the node being appended.
2950
        """
2951
        self.node.append_output(node.node)
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
2999
            "The node variable description can not be None."
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3010
            "The node variable description can not be None."
3011 3012
        return self.node.var().persistable()

3013 3014 3015 3016 3017 3018 3019 3020
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3021
            "The node variable description can not be None."
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3032
            "The node variable description can not be None."
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3043
            "The node variable description can not be None."
3044 3045
        return self.node.var().shape()

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3093
            "The node operator description can not be None."
3094 3095
        self.node.op()._rename_input(old_input_name, new_input_name)

3096 3097 3098 3099 3100 3101 3102 3103 3104
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3105
            "The node operator description can not be None."
3106 3107 3108 3109
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3121
            "The node operator description can not be None."
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3135
            "The node operator description can not be None."
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3146
            "The node operator description can not be None."
3147 3148
        return self.node.op().set_type(new_type)

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3164
            "The node operator description can not be None."
3165 3166 3167 3168
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3169
                all(isinstance(v, Block) for v in val):
3170 3171
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3172
                isinstance(val, core.ProgramDesc):
3173 3174 3175 3176
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3177 3178 3179 3180 3181 3182 3183 3184
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3185
            "The node operator description can not be None."
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3196
            "The node operator description can not be None."
3197 3198
        return self.node.op().output_arg_names()

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3220 3221
class IrGraph(object):
    """
3222
    Python IrGraph. Beneath it is a core.Graph, which is used for
3223
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3224 3225
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3226 3227 3228 3229
    """

    def __init__(self, graph, for_test=False):
        """
3230 3231
        Construct an IrGraph using core.Graph.

3232 3233 3234 3235 3236 3237 3238 3239 3240
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3241 3242 3243 3244
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3245 3246 3247
        Warns:
            The method only clones the graph structure, not its attributes.

3248 3249 3250
        Returns:
            IrGraph: A new and duplicated graph.
        """
3251
        g = self.graph.clone()
3252 3253
        return IrGraph(g, self._for_test)

3254
    def is_test(self):
3255 3256 3257
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3258 3259
        return self._for_test

W
WangZhen 已提交
3260
    def all_nodes(self):
3261 3262 3263
        """
        Return all nodes included in the graph as a set.
        """
3264
        return {IrNode(node) for node in self.graph.nodes()}
3265

3266
    def all_var_nodes(self):
3267 3268 3269
        """
        Return all variable nodes included in the graph as a set.
        """
3270
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3271

3272
    def all_persistable_nodes(self):
3273 3274 3275
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3276 3277 3278 3279 3280
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3281
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3282

3283
    def all_op_nodes(self):
3284 3285 3286
        """
        Return all operator nodes included in the graph as a set.
        """
3287
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3288

3289
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3301
            IrVarNode: the created persistable variable node.
3302
        """
3303 3304 3305 3306 3307
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3308
        return IrVarNode(self.graph.create_var_node(var_desc))
3309 3310

    def create_var_node(self, name, var_type, shape, var_dtype):
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3322
            IrVarNode: the created variable node.
3323 3324
        """

3325 3326 3327 3328
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3329
        return IrVarNode(self.graph.create_var_node(var_desc))
3330 3331

    def create_var_node_from_desc(self, var_desc):
3332 3333 3334 3335 3336 3337 3338 3339
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3340
            IrVarNode: the created variable node.
3341
        """
3342
        return IrVarNode(self.graph.create_var_node(var_desc))
3343 3344

    def create_op_node(self, op_type, attrs, inputs, outputs):
3345 3346 3347 3348 3349 3350 3351
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3352
            outputs(dict): the outputs of the operator node.
3353 3354

        Returns:
3355
            IrOpNode: the created operator node.
3356
        """
3357 3358
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3359
        for attr, value in six.iteritems(attrs):
3360
            self._update_desc_attr(op_desc, attr, value)
3361
        for input_name, var_nodes in six.iteritems(inputs):
3362 3363 3364 3365
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3366
        for output_name, var_nodes in six.iteritems(outputs):
3367 3368 3369 3370
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3371
        return IrOpNode(self.graph.create_op_node(op_desc))
3372 3373

    def create_op_node_from_desc(self, op_desc):
3374 3375 3376 3377 3378 3379 3380
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3381
            IrOpNode: the created operator node.
3382
        """
3383
        return IrOpNode(self.graph.create_op_node(op_desc))
3384 3385

    def update_input_link(self, old_input_node, new_input_node, op_node):
3386 3387 3388 3389
        """
        Update the input's link of a operator node.

        Args:
3390 3391 3392
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3393
        """
3394
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3395 3396
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3397 3398 3399 3400
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3401
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3413 3414
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3415 3416 3417 3418 3419 3420
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3421
    def link_to(self, node_in, node_out):
3422 3423 3424 3425
        """
        Connect two nodes.

        Args:
3426 3427
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3428
        """
3429
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3430
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3431 3432
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3433 3434

    def safe_remove_nodes(self, remove_nodes):
3435 3436 3437 3438 3439 3440 3441
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3442
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3443 3444 3445 3446
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3447 3448
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3449

Z
Zhen Wang 已提交
3450 3451 3452 3453 3454 3455 3456 3457
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3458
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3459 3460 3461 3462
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3463
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3464 3465 3466
                        ]
                    else:
                        var_nodes[each_var_name].append(
3467 3468
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3469 3470
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3471
    def has_circle(self):
3472 3473 3474 3475 3476 3477
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3478 3479 3480
        return core.has_circle(self.graph)

    def graph_num(self):
3481 3482 3483 3484 3485 3486
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3487 3488 3489
        return core.graph_num(self.graph)

    def topology_sort(self):
3490 3491 3492
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3493
        Notes: the `graph` can not contain a circle.
3494 3495

        Returns:
Z
Zhen Wang 已提交
3496
            list(IrNode): nodes in topology order.
3497
        """
3498
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3499
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3500 3501

    def build_adjacency_list(self):
3502 3503 3504 3505
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3506
            dict{IrNode: set(IrNode)}: the adjacency list.
3507
        """
3508 3509 3510 3511 3512
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3513

3514 3515 3516 3517 3518 3519 3520 3521
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3522
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3523 3524 3525 3526 3527
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3528 3529 3530
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3531
                                          + ' -o ' + pdf_save_path, shell=True)
3532 3533 3534 3535 3536
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3537
        remove_ctr_vars = set()
3538
        if remove_ctr_var:
3539
            for node in self.all_var_nodes():
3540 3541 3542
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3543 3544
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3545 3546
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3547 3548 3549 3550 3551 3552
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3553 3554 3555 3556
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3557 3558
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3559 3560 3561 3562 3563 3564 3565
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3566 3567 3568
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3569
        WARN: When the graph includes backward operator nodes, the
3570 3571 3572 3573 3574 3575
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3576
        convert_pass = core.get_pass('graph_to_program_pass')
3577 3578
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3579 3580 3581 3582
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3610
class Program(object):
D
dzhwinter 已提交
3611
    """
3612 3613
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3614
    it will contain nested block.
3615

J
Jiabin Yang 已提交
3616 3617 3618
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3619

J
Jiabin Yang 已提交
3620
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3621
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3622 3623 3624 3625 3626 3627 3628
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3629 3630 3631 3632
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3633 3634

    Returns:
J
Jiabin Yang 已提交
3635
        Program: An empty Program.
D
dzhwinter 已提交
3636 3637

    Examples:
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3651 3652 3653

    """

3654 3655
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3656 3657
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3658 3659
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3660
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3661
        self.__op_role_var = []
T
tangwei12 已提交
3662

3663 3664
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3665
        self._is_distributed = False
3666
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3667
        self._is_chief = False
3668 3669 3670
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3671
        self._endpoints = []
3672 3673 3674
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3675
        self._trainers_endpoints = []
3676
        # the distributed lookup table names
T
tangwei12 已提交
3677
        self._distributed_lookup_table = None
3678 3679 3680

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3681 3682
        self._use_lamb = False

3683 3684 3685
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3686

3687 3688 3689
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3690
        self._program_config = None
3691

H
hutuxian 已提交
3692 3693 3694
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3695 3696 3697
        # appending gradients times
        self._appending_grad_times = 0

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3725
    @property
3726
    def _op_role(self):
Y
yuyang18 已提交
3727 3728 3729 3730 3731 3732 3733 3734
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3735
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3736 3737 3738 3739
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3740 3741
        return self._current_role

3742 3743
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3744 3745 3746
        self._current_role = role

    @property
3747
    def _op_role_var(self):
Y
yuyang18 已提交
3748
        """
3749
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3750

3751
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3752 3753 3754

        Notes: This is a very low-level API. Users should not use it directly.
        """
3755
        return self.__op_role_var
Y
yuyang18 已提交
3756

3757 3758 3759 3760 3761 3762 3763 3764 3765
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3766
    @signature_safe_contextmanager
W
Wu Yi 已提交
3767
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3768 3769 3770 3771 3772 3773 3774
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3775
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3776 3777 3778

        Examples:

3779
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3780
            >>> p, g = backward(...)
W
Wu Yi 已提交
3781
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3782 3783
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3784
        tmp_role = self._current_role
3785
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3786

Y
yuyang18 已提交
3787 3788
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3789
        self.__op_role_var = [
3790 3791 3792
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3793
        yield
3794
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3795
        self._current_role = tmp_role
Y
Yu Yang 已提交
3796

S
rename  
sneaxiy 已提交
3797
    @signature_safe_contextmanager
X
Xin Pan 已提交
3798
    def _lr_schedule_guard(self, is_with_opt=False):
3799 3800 3801 3802 3803 3804 3805
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3806 3807 3808 3809
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3810 3811 3812

        Examples:

3813
            >>> import paddle.fluid as fluid
3814 3815 3816 3817
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3818 3819

        tmp_role = self._current_role
3820
        tmp_var = self.__op_role_var
3821

3822 3823
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3824 3825
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3826
        # TODO(typhoonzero): how to set target learning rate var
3827
        self.__op_role_var = []
3828
        yield
3829
        self.__op_role_var = tmp_var
3830
        self._current_role = tmp_role
3831

3832
    def __str__(self):
Y
yuyang18 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3842 3843
        return self.to_string(True)

F
fengjiayi 已提交
3844 3845 3846
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3847

J
Jiabin Yang 已提交
3848 3849 3850
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3851

J
Jiabin Yang 已提交
3852
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3853

H
haowang101779990 已提交
3854
        Returns:
J
Jiabin Yang 已提交
3855
            str: The debug string describe current Program.
Y
yuyang18 已提交
3856 3857

        Raises:
J
Jiabin Yang 已提交
3858
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3859

3860 3861 3862 3863 3864 3865
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
3866 3867
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
3868
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3869
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
3870
                print("program string without detail: {}".format(prog_string))
3871
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
3872
        """
3873 3874 3875 3876 3877 3878 3879 3880 3881
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
3882 3883 3884 3885 3886 3887
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3888 3889
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3890 3891
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3892

W
Wu Yi 已提交
3893
    def _get_desc(self):
Y
yuyang18 已提交
3894 3895 3896 3897 3898 3899 3900
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3901 3902
        return self.desc

X
version  
Xin Pan 已提交
3903 3904 3905
    def _version(self):
        return self.desc._version()

3906
    @dygraph_not_support
3907
    def clone(self, for_test=False):
Y
yuyang18 已提交
3908
        """
3909
        **Notes**:
J
Jiabin Yang 已提交
3910 3911 3912 3913
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3914
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3915

3916
        Create a new Program with forward content of original one when ``for_test=True``.
3917
        Create a new Program as same as the original one when ``for_test=False``.
3918

J
Jiabin Yang 已提交
3919
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3920 3921 3922
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3923

3924 3925
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
3926 3927
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3928
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3929

J
Jiabin Yang 已提交
3930
        For Example:
3931
          ::
L
Luo Tao 已提交
3932

3933 3934 3935 3936 3937 3938 3939 3940
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
3941

J
Jiabin Yang 已提交
3942
        Args:
3943

3944 3945
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
3946

J
Jiabin Yang 已提交
3947
        Returns:
3948
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
3949

Y
yuyang18 已提交
3950 3951 3952

        Examples:

J
Jiabin Yang 已提交
3953
        **Notes: The Program's order maybe different after** :code:`clone` **and
3954
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3955
        example we give you an simple method** :code:`print_prog(program)` **to
3956
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3957
        after** :code:`clone`:
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3994 3995 3996

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3997 3998 3999 4000 4001 4002 4003 4004 4005
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4006
                            test_program = train_program.clone(for_test=True)
4007
                    print_prog(test_program)
J
Jiabin Yang 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4039 4040
                    
                    def network():
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4055 4056 4057
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4058
                    # the test startup program is not used.
4059
                    with fluid.program_guard(test_program_2, startup_program_2):
4060
                        with fluid.unique_name.guard():
4061 4062
                            avg_loss = network()
                    print_prog(test_program_2)
4063 4064

        The two code snippets above will generate and print same programs.
4065
        """
4066 4067 4068 4069 4070

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4071
        pruned_origin_block_id_map = None
4072
        if for_test:
4073 4074 4075 4076 4077 4078 4079 4080 4081
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4082
        else:
4083
            p = Program()
G
gongweibao 已提交
4084 4085
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4086
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4087 4088 4089
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4090 4091

            p._current_role = self._current_role
4092
            p.__op_role_var = self.__op_role_var
4093
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4094

4095 4096
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4097
            p._sync_with_cpp()
4098

W
Wu Yi 已提交
4099
        p._copy_param_info_from(self)
4100
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4101
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4102
        return p
4103

4104
    def _prune(self, targets):
Y
yuyang18 已提交
4105 4106 4107 4108 4109 4110 4111 4112
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4113
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4114 4115 4116 4117
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4118
        """
4119
        return self._prune_with_input([], targets)
4120 4121

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4122
        """
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4133
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4134 4135 4136 4137 4138 4139
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4140 4141 4142 4143
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4144 4145
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4146 4147
        if not isinstance(targets, list):
            targets = [targets]
4148 4149 4150

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4151 4152 4153
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4154

4155 4156 4157 4158
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4159 4160 4161
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4162
                else:
4163 4164 4165
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
                t = target_op
                if t is None:
                    raise ValueError("The target variable must have an "
                                     "associated operator that generates it.")
4186
            targets_idx.append([t.block.idx, t.idx])
4187

4188
        res = Program()
4189 4190 4191
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4192 4193 4194
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4195
        res._sync_with_cpp()
4196 4197 4198 4199 4200

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4201 4202
        return res

X
Xin Pan 已提交
4203
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4204
        """
F
fengjiayi 已提交
4205 4206 4207 4208 4209
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4210
        3. change the :code:`is_test`
Y
yuyang18 已提交
4211 4212 4213
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4214
        Args:
X
Xin Pan 已提交
4215 4216
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4217

Y
yuyang18 已提交
4218 4219 4220 4221 4222 4223
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4224
        res = Program()
4225
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4226 4227 4228 4229

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4230
        if prune_read_op:
4231 4232 4233 4234 4235 4236 4237 4238 4239
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4240
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4241 4242

        # change all `is_test` attributes to True
M
minqiyang 已提交
4243
        for i in six.moves.range(res.desc.num_blocks()):
4244
            block = res.desc.block(i)
M
minqiyang 已提交
4245
            for j in six.moves.range(block.op_size()):
4246 4247
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4248
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4249 4250 4251
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4252
        res._sync_with_cpp()
4253 4254
        return res

4255 4256
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4257
        """
J
Jiabin Yang 已提交
4258 4259 4260 4261
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4262

4263 4264
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4265

J
Jiabin Yang 已提交
4266
        Args:
Y
yuyang18 已提交
4267

J
Jiabin Yang 已提交
4268
            binary_str_type (str): the binary prootbuf string.
4269

J
Jiabin Yang 已提交
4270 4271
        Returns:
            Program: A deserialized Program.
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4294
        """
4295 4296
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4297
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4298
        p._sync_with_cpp()
4299
        return p
Y
Yu Yang 已提交
4300

4301
    @staticmethod
4302
    def _construct_from_desc(desc):
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4318 4319
    @property
    def random_seed(self):
Y
yuyang18 已提交
4320
        """
J
Jiabin Yang 已提交
4321
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4322 4323
        the random seed from random device.

J
Jiabin Yang 已提交
4324 4325 4326 4327
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4328

4329 4330 4331 4332 4333 4334 4335 4336

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4337
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4338 4339 4340
                print(random_seed)
                ## 0
                ## the default random seed is 0
4341 4342

                # Here we need to set random seed before we use fluid.layers.dropout
4343
                prog.random_seed = 1
4344 4345
                z_var = fluid.layers.dropout(x_var, 0.7)

4346
                print(prog.random_seed)
4347 4348
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4349
        """
D
dzhwinter 已提交
4350 4351
        return self._seed

Q
qiaolongfei 已提交
4352 4353
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4354
        """
4355 4356
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4357 4358 4359 4360
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4361

4362 4363 4364 4365 4366 4367 4368 4369 4370

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4371 4372


Y
yuyang18 已提交
4373
        """
Q
qiaolongfei 已提交
4374 4375
        return self.desc.num_blocks()

D
dzhwinter 已提交
4376 4377 4378
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4379 4380 4381
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4382 4383
        self._seed = seed

Y
Yu Yang 已提交
4384
    def __repr__(self):
4385
        return self.__str__()
4386

Y
Yu Yang 已提交
4387
    def global_block(self):
Y
yuyang18 已提交
4388
        """
J
Jiabin Yang 已提交
4389 4390
        **Notes**:
            **This API has no effect in Dygraph mode**
4391 4392 4393

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4394 4395
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4396

4397 4398 4399 4400 4401 4402 4403 4404 4405

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4406

Y
yuyang18 已提交
4407
        """
Y
Yu Yang 已提交
4408 4409
        return self.blocks[0]

Q
Qiao Longfei 已提交
4410
    def block(self, index):
Y
yuyang18 已提交
4411
        """
J
Jiabin Yang 已提交
4412 4413
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4414

4415 4416
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4417 4418
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4419

J
Jiabin Yang 已提交
4420 4421
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4422 4423 4424 4425 4426 4427 4428 4429 4430

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4431
        """
Q
Qiao Longfei 已提交
4432 4433
        return self.blocks[index]

Y
Yu Yang 已提交
4434
    def current_block(self):
Y
yuyang18 已提交
4435
        """
J
Jiabin Yang 已提交
4436 4437
        **Notes**:
            **This API has no effect in Dygraph mode**
4438

J
Jiabin Yang 已提交
4439 4440
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4441

J
Jiabin Yang 已提交
4442 4443
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4444

4445 4446 4447 4448 4449 4450 4451 4452
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4453
        """
Y
Yu Yang 已提交
4454 4455
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4456
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4457 4458 4459 4460 4461
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4462

Y
yuyang18 已提交
4463 4464 4465 4466 4467
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4468
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4469 4470 4471
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4472 4473 4474 4475
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4476
    def _rollback(self):
Y
yuyang18 已提交
4477 4478 4479 4480 4481
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4482 4483
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4484
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4495 4496 4497
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4498
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4499

W
Wu Yi 已提交
4500
    def _copy_param_info_from(self, other):
4501
        """
4502
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4503

Y
yuyang18 已提交
4504 4505 4506
        Notes: This is a very low level API. Users should not invoke it
        directly.

4507 4508 4509 4510 4511 4512 4513
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4514 4515 4516
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4517

W
Wu Yi 已提交
4518
        self.global_block()._copy_param_info_from(other.global_block())
4519

4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4531 4532 4533
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4534 4535
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4536
        self._parameters_on_pservers = other._parameters_on_pservers
4537
        self._endpoints = other._endpoints
4538
        self._ps_endpoint = other._ps_endpoint
4539 4540
        self._distributed_lookup_table = other._distributed_lookup_table

4541
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4542 4543
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4544

Y
yuyang18 已提交
4545 4546 4547
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4548 4549
        Args:
            other(Program): Other program
4550 4551 4552 4553
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4554 4555 4556 4557 4558

        Returns:
            None
        """
        if not isinstance(other, Program):
4559 4560 4561
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4562

4563 4564 4565 4566 4567
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4568 4569 4570

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4571 4572
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4573
            for var in list(block.vars.values()):
4574 4575 4576 4577 4578 4579 4580
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4581

4582
    @dygraph_not_support
4583
    def list_vars(self):
Y
yuyang18 已提交
4584
        """
J
Jiabin Yang 已提交
4585
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4586

J
Jiabin Yang 已提交
4587 4588
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4600
        """
4601
        for each_block in self.blocks:
4602
            for each_var in list(each_block.vars.values()):
4603 4604
                yield each_var

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
    @dygraph_not_support
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4664

4665
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4666
class Parameter(Variable):
4667
    """
4668
    Parameter is derived from Variable. A parameter is a persistable
4669
    Variable, and will be updated by optimizers after each iteration.
4670
    The training of a neural network is essentially the updating of
4671 4672
    its parameters.

4673
    Relative to a general Variable, a Parameter has several its own
4674 4675
    member variables:

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4686 4687
    """

4688 4689 4690 4691 4692 4693
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4694 4695 4696 4697 4698
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4699
        if len(shape) == 0:
4700 4701
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4702 4703 4704

        for each in shape:
            if each < 0:
4705 4706 4707
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4708 4709

        Variable.__init__(
4710 4711 4712 4713 4714 4715 4716
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4717 4718 4719 4720
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4721 4722
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
4723
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4724

4725 4726
        self.is_distributed = False

F
fengjiayi 已提交
4727 4728 4729
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4730 4731 4732
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4733

F
update  
fengjiayi 已提交
4734 4735 4736 4737 4738 4739 4740 4741
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4742 4743 4744 4745 4746 4747 4748 4749 4750
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4751 4752 4753 4754 4755 4756
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
4757
                               "do_model_average")
F
update  
fengjiayi 已提交
4758
            for attr_name in additional_attr:
4759 4760
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4761 4762
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4763 4764 4765 4766
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4767

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4828
        # self.block = default_main_program().global_block()
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4867
# program is a global instance.
Y
Yu Yang 已提交
4868 4869
_main_program_ = Program()
_startup_program_ = Program()
4870

4871

4872
def default_startup_program():
Y
Yu Yang 已提交
4873
    """
Y
yuyang18 已提交
4874 4875
    Get default/global startup program.

J
Jiabin Yang 已提交
4876 4877 4878
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4879 4880 4881
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4882
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4883

J
Jiabin Yang 已提交
4884
    Returns: current default startup :ref:`api_fluid_Program`
4885

J
Jiabin Yang 已提交
4886
    Returns type: :ref:`api_fluid_Program`
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4902
    """
Y
Yu Yang 已提交
4903
    return _startup_program_
4904

4905

4906
def default_main_program():
Y
Yu Yang 已提交
4907
    """
4908 4909 4910 4911 4912
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4913

4914 4915
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4916
    :code:`default_main_program` when the program is not specified.
4917

4918 4919
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4920
    Returns:
4921
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4922 4923 4924 4925 4926

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4927

4928
            # Sample Network:
4929 4930
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4950
            #print the number of blocks in the program, 1 in this case
4951
            print(fluid.default_main_program().num_blocks)
4952 4953

            #print the description of variable 'image'
4954
            print(fluid.default_main_program().blocks[0].var('image'))
4955

Y
Yu Yang 已提交
4956
    """
Y
Yu Yang 已提交
4957
    return _main_program_
Y
Yu Yang 已提交
4958 4959 4960 4961 4962


def switch_main_program(program):
    """
    Switch the main program to a new program.
4963

Y
Yu Yang 已提交
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4978
    Switch the startup program to a new program
Y
Yu Yang 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4991
@signature_safe_contextmanager
Y
Yu Yang 已提交
4992 4993
def program_guard(main_program, startup_program=None):
    """
4994 4995
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4996
    variables to the new main programs.
4997

G
guofei 已提交
4998 4999 5000 5001 5002 5003 5004
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5005
    Examples:
5006 5007 5008
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5009

5010 5011 5012
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5013
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5014
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5015 5016 5017

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5018

Y
Yu Yang 已提交
5019
    Examples:
5020
       .. code-block:: python
Y
yuyang18 已提交
5021

5022 5023 5024 5025 5026
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5027 5028
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5029
    """
5030 5031
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5032 5033
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5034 5035
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5036 5037 5038 5039 5040
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
5041 5042


W
Wu Yi 已提交
5043
def _get_var(name, program=None):
X
xuwei06 已提交
5044
    """
Y
yuyang18 已提交
5045
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5046

X
xuwei06 已提交
5047 5048 5049
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5050
        If None, default_global_program() will be used.
X
xuwei06 已提交
5051 5052 5053 5054 5055 5056 5057

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5058
    assert isinstance(program, Program)
X
xuwei06 已提交
5059 5060

    return program.global_block().var(name)
5061 5062


S
rename  
sneaxiy 已提交
5063
@signature_safe_contextmanager
L
lujun 已提交
5064 5065 5066 5067
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5068
    core._switch_tracer(tracer)
M
minqiyang 已提交
5069

5070
    yield
P
Paddle CI 已提交
5071

5072
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5073
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5074 5075


S
rename  
sneaxiy 已提交
5076
@signature_safe_contextmanager
L
lujun 已提交
5077 5078 5079 5080
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5081

5082
    yield
M
minqiyang 已提交
5083

L
lujun 已提交
5084
    _dygraph_current_expected_place_ = tmp_place
5085 5086 5087 5088 5089 5090 5091


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5092
    Please note, the type of custom operators can't have the same type
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
    yield
    switch_device(pre_device)
G
guofei 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value