framework.py 133.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

70
            import paddle.fluid as fluid
L
lujun 已提交
71 72 73 74
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
75
    return _dygraph_tracer_ is not None
76 77


L
lujun 已提交
78 79
def _dygraph_tracer():
    return _dygraph_tracer_
80

W
Wu Yi 已提交
81

M
minqiyang 已提交
82
def _current_expected_place():
L
lujun 已提交
83
    return _dygraph_current_expected_place_
M
minqiyang 已提交
84 85


S
sneaxiy 已提交
86
def _cpu_num():
87
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
88 89 90 91 92 93 94 95
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
96
        os.environ['CPU_NUM'] = str(1)
97
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
98 99 100 101 102 103 104 105 106 107
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
108 109


C
chengduo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
125
def cuda_places(device_ids=None):
L
lujun 已提交
126
    """
S
add doc  
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
146 147 148 149

    Examples:
        .. code-block:: python

150
            import paddle.fluid as fluid
L
lujun 已提交
151 152 153
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
154 155 156
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
157
        device_ids = _cuda_ids()
S
sneaxiy 已提交
158 159 160 161 162 163
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
164
    """
S
add doc  
sneaxiy 已提交
165 166 167 168
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
169 170
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
171 172 173 174 175 176

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181
            import paddle.fluid as fluid
L
lujun 已提交
182 183 184
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
185 186 187 188 189 190
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
191
    """
S
add doc  
sneaxiy 已提交
192 193 194 195 196 197 198 199 200 201 202 203
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
204 205 206 207

    Examples:
        .. code-block:: python

208
            import paddle.fluid as fluid
L
lujun 已提交
209 210 211 212 213
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
214 215 216 217 218 219 220
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
247
@signature_safe_contextmanager
248 249 250 251 252 253 254 255 256 257 258 259
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
260

261
          import paddle.fluid as fluid
262 263 264 265 266 267 268 269 270 271 272
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
273 274
    """
    # TODO(panyx0718): Only [0-9a-z].
275 276 277 278 279 280 281 282 283
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
284 285 286 287 288 289 290 291 292 293 294 295


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
296 297 298
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
299 300 301 302


def grad_var_name(var_name):
    """
303 304
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
305 306 307
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
308

309
def convert_np_dtype_to_dtype_(np_dtype):
310 311
    """
    Convert the data type in numpy to the data type in Paddle
312

313
    Args:
314
        np_dtype(np.dtype): the data type in numpy.
315

316 317
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
318 319

    """
320 321
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
322
        return core.VarDesc.VarType.FP32
323
    elif dtype == np.float64:
324
        return core.VarDesc.VarType.FP64
325
    elif dtype == np.float16:
326
        return core.VarDesc.VarType.FP16
327
    elif dtype == np.int32:
328
        return core.VarDesc.VarType.INT32
329
    elif dtype == np.int16:
330
        return core.VarDesc.VarType.INT16
331
    elif dtype == np.int64:
332
        return core.VarDesc.VarType.INT64
333
    elif dtype == np.bool:
334
        return core.VarDesc.VarType.BOOL
335 336
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
337 338
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
339 340
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
341
    else:
M
minqiyang 已提交
342
        raise ValueError("Not supported numpy dtype %s" % dtype)
343 344 345


def dtype_is_floating(dtype):
346 347 348
    """
    Check the data type is floating or not.
    Args:
349
        dtype(np.dtype|core.VarDesc.VarType): data type.
350 351 352 353 354
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
355
    if not isinstance(dtype, core.VarDesc.VarType):
356 357
        dtype = convert_np_dtype_to_dtype_(dtype)

358 359 360 361
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
362 363


Y
Yang Yang(Tony) 已提交
364
def _debug_string_(proto, throw_on_error=True):
365 366 367 368 369 370 371 372 373 374 375
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
376
    error_fields = list()
Y
Yang Yang(Tony) 已提交
377
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
378 379
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
380 381 382
    return proto.__str__()


X
Xin Pan 已提交
383
class Variable(object):
384
    """
385 386 387
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
388
    two variables in different blocks could have the same name.
389

390
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
391
    and usages. Please refer to the framework.proto for details.
392

393
    Most of a Variable's member variables can be setted to be None. It mean
394
    it is not available or will be specified later.
395 396

    Args:
397
        block(Block): The block that the variable belongs to.
398 399
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
400 401
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
402
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
403
            Some kinds of variable do not contain shape, just set it to None.
404 405 406
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
407
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
408
            series data.
409
            Default: None
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

427
            import paddle.fluid as fluid
428
            cur_program = fluid.Program()
429 430 431 432
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
433 434
    """

Y
Yu Yang 已提交
435 436
    def __init__(self,
                 block,
Y
Yu Yang 已提交
437
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
438 439 440 441
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
442
                 capacity=None,
Q
QI JUN 已提交
443
                 persistable=None,
F
fengjiayi 已提交
444
                 error_clip=None,
Y
Yu Yang 已提交
445
                 stop_gradient=False,
F
fengjiayi 已提交
446
                 is_data=False,
Y
Yu Yang 已提交
447
                 **kwargs):
Y
Yu Yang 已提交
448 449
        self.block = block
        if name is None:
Y
Yu Yang 已提交
450
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
451

Y
Yu Yang 已提交
452
        if dtype is not None:
453
            if not isinstance(dtype, core.VarDesc.VarType):
454
                dtype = convert_np_dtype_to_dtype_(dtype)
455

L
lujun 已提交
456
        if in_dygraph_mode():
M
minqiyang 已提交
457
            # record vars in tracer rather than blocks
M
minqiyang 已提交
458 459
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
460
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
461 462 463 464
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [], stop_gradient, True
X
fix  
Xin Pan 已提交
465
                    if persistable else False)
M
minqiyang 已提交
466
            if persistable:
L
lujun 已提交
467
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
468
            self.op = None
M
minqiyang 已提交
469
        else:
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
542
            self.block.vars[name] = self
543
            self.op = None
544
            self._stop_gradient = stop_gradient
545
            self.is_data = is_data
Y
Yu Yang 已提交
546

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
        
        Returns:
            Variable: The detached Variable.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

581
    def numpy(self):
M
minqiyang 已提交
582
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
583
        return np.array(new_ivar.value().get_tensor())
584

585
    def backward(self, backward_strategy=None):
J
Jiabin Yang 已提交
586 587 588 589 590
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
591

J
Jiabin Yang 已提交
592 593 594 595
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
596

597
    def gradient(self):
598 599
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
600

601
    def clear_gradient(self):
X
Xin Pan 已提交
602
        self._ivar._clear_gradient()
X
Xin Pan 已提交
603

604
    def __str__(self):
Y
Yang Yang(Tony) 已提交
605 606
        return self.to_string(True)

F
update  
fengjiayi 已提交
607
    def to_string(self, throw_on_error, with_details=False):
608 609 610 611
        """
        Get debug string.

        Args:
612 613
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
614
            with_details(bool): more details about variables and parameters
615 616
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
617

618 619
        Returns:
            str: The debug string.
620 621 622 623 624 625 626 627 628 629 630

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                new_variable.to_string(True)
631
        """
L
lujun 已提交
632
        if in_dygraph_mode():
L
lujun 已提交
633
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
634 635 636 637 638 639 640
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
641

F
update  
fengjiayi 已提交
642 643
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
644
        protostr = self.desc.serialize_to_string()
645
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
646 647 648 649
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
650 651
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
652
        return res_str
653 654 655

    __repr__ = __str__

656
    @property
657
    def stop_gradient(self):
L
lujun 已提交
658
        if in_dygraph_mode():
M
minqiyang 已提交
659 660
            return self._ivar.stop_gradient
        else:
661
            return self._stop_gradient
662

663 664
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
665
        if in_dygraph_mode():
M
minqiyang 已提交
666
            self._ivar.stop_gradient = s
667
        else:
668
            self._stop_gradient = s
669

670 671
    @property
    def persistable(self):
L
lujun 已提交
672
        if in_dygraph_mode():
673 674 675
            return self._ivar.persistable
        else:
            return self.desc.persistable()
676

Y
Yu Yang 已提交
677 678
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
679
        if in_dygraph_mode():
680 681 682
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
683

Y
Yu Yang 已提交
684 685
    @property
    def name(self):
L
lujun 已提交
686
        if in_dygraph_mode():
687 688 689
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
690

T
typhoonzero 已提交
691 692
    @name.setter
    def name(self, new_name):
L
lujun 已提交
693
        if in_dygraph_mode():
694 695 696
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
697

Y
Yu Yang 已提交
698 699 700
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
701
        if in_dygraph_mode():
702 703 704
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
705 706

    @property
F
fengjiayi 已提交
707
    def dtype(self):
L
lujun 已提交
708
        if in_dygraph_mode():
709 710 711
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
712 713 714

    @property
    def lod_level(self):
L
lujun 已提交
715
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
716 717
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
718
        return self.desc.lod_level()
Y
Yu Yang 已提交
719

Y
Yu Yang 已提交
720 721
    @property
    def type(self):
L
lujun 已提交
722
        if in_dygraph_mode():
J
Jiabin Yang 已提交
723
            return self._ivar.type
724 725
        else:
            return self.desc.type()
Y
Yu Yang 已提交
726

W
Wu Yi 已提交
727
    def _set_error_clip(self, error_clip):
728 729 730 731 732 733 734 735 736
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
737 738
        self.error_clip = error_clip

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
826
    def _cloneVar(self, copy=False):
827 828
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
829 830
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
831 832 833 834
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
835
        new_var = self._cloneVar()
836 837 838 839 840 841 842 843 844 845
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
846
        new_var = self._cloneVar()
847 848 849 850 851 852 853 854 855 856
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
857
                return self._cloneVar(True)
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
876
                return self._cloneVar(True)
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
895 896 897 898 899 900 901 902 903 904

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
944
            else:
H
Hongyu Liu 已提交
945 946 947
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1027
                inputs=inputs,
H
Hongyu Liu 已提交
1028
                outputs={'Out': [slice_out_var]},
1029
                attrs=attrs)
H
Hongyu Liu 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1047

Y
Yu Yang 已提交
1048

F
fengjiayi 已提交
1049 1050 1051
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1052

1053 1054
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1055 1056 1057 1058
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1059
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1060 1061 1062 1063 1064
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1065 1066 1067 1068
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1078
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1079 1080 1081 1082 1083 1084
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1085 1086 1087 1088 1089 1090 1091 1092
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1093 1094
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1095 1096
        return self.op_proto_map[type]

1097 1098 1099 1100
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1101
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1102 1103
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1104 1105
        }

F
fengjiayi 已提交
1106

X
Xin Pan 已提交
1107
class Operator(object):
1108
    """
1109 1110 1111 1112 1113 1114 1115
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1116
        type(str): The type of operator. Default None.
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1137
        Block.append_op or Block._prepend_op instead.
1138 1139 1140 1141

    Examples:
        .. code-block:: python

1142
            import paddle.fluid as fluid
1143
            cur_program = fluid.Program()
1144 1145 1146 1147 1148
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1149
    """
1150
    OP_WITHOUT_KERNEL_SET = {
1151 1152
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1153 1154
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1155
        'c_sync_comm_stream'
1156
    }
1157

Y
Yu Yang 已提交
1158 1159
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1160
                 desc,
Y
Yu Yang 已提交
1161 1162 1163
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1164
                 attrs=None):
L
lujun 已提交
1165
        if in_dygraph_mode():
1166 1167
            if type is None:
                raise ValueError(
1168
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1169
            self._type = type
M
minqiyang 已提交
1170
            self.attrs = attrs if attrs else {}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1185
                )] = self.block.program._op_role
1186 1187 1188

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1189 1190
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1191 1192 1193 1194 1195 1196 1197 1198

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1199
                    "`type` to initialized an Operator can not be None.")
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1231
                        for index, arg in enumerate(in_args):
1232 1233 1234 1235
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1236
                            elif isinstance(arg, Variable):
1237
                                in_arg_names.append(cpt.to_text(arg.name))
1238 1239 1240 1241
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1268
                        if not in_dygraph_mode():
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1288
    def _has_kernel(self, op_type):
1289 1290
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1291
    def to_string(self, throw_on_error):
1292
        """
1293 1294
        Get debug string.

1295
        Args:
1296 1297
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1298

1299 1300
        Returns:
            str: The debug string.
1301 1302

        """
1303
        protostr = self.desc.serialize_to_string()
1304
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1305 1306 1307 1308
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1309 1310 1311

    __repr__ = __str__

F
fengjiayi 已提交
1312 1313
    @property
    def type(self):
L
lujun 已提交
1314
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1315
            return self._type
1316 1317
        else:
            return self.desc.type()
F
fengjiayi 已提交
1318 1319

    def input(self, name):
1320
        """
1321
        Get the input arguments according to the input parameter name.
1322

1323 1324
        Args:
            name(str): The input parameter name.
1325

1326 1327 1328
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1329
        """
F
fengjiayi 已提交
1330 1331
        return self.desc.input(name)

W
Wu Yi 已提交
1332
    def _rename_input(self, old_name, new_name):
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1343
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1344

W
Wu Yi 已提交
1345
    def _rename_output(self, old_name, new_name):
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1356
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1357

F
fengjiayi 已提交
1358 1359 1360 1361
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1362 1363 1364 1365 1366 1367 1368 1369
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1370
    def output(self, name):
1371
        """
1372
        Get output arguments by the output parameter name.
1373

1374 1375
        Args:
            name(str): The output parameter name.
1376

1377 1378 1379
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1380
        """
F
fengjiayi 已提交
1381 1382 1383 1384 1385 1386
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1387 1388 1389 1390 1391 1392 1393 1394
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1395
    def has_attr(self, name):
1396
        """
1397 1398
        Whether this Operator has the attribute with name or not.

1399
        Args:
1400
            name(str): the attribute name.
1401

1402 1403
        Returns:
            bool: True if has this attribute.
1404 1405

        """
F
fengjiayi 已提交
1406 1407 1408
        return self.desc.has_attr(name)

    def attr_type(self, name):
1409
        """
1410
        Get the type of attribute by attribute's name.
1411

1412 1413
        Args:
            name(str): the attribute name.
1414

1415 1416
        Returns:
            core.AttrType: the attribute type.
1417
        """
F
fengjiayi 已提交
1418 1419
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1420
    def _set_attr(self, name, val):
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1431 1432
        self._update_desc_attr(name, val)

1433 1434 1435
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1447 1448
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1449 1450
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1451
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1452 1453 1454 1455
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1456
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1457

F
fengjiayi 已提交
1458 1459 1460 1461 1462
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1463
        """
1464 1465
        Get the attribute by name.

1466
        Args:
1467
            name(str): the attribute name.
1468

1469 1470
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1471 1472
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1473
        return self.desc.attr(name)
Y
Yu Yang 已提交
1474

W
Wu Yi 已提交
1475
    def _block_attr_id(self, name):
1476
        """
G
gongweibao 已提交
1477
        Get the block attribute's id by name.
1478

1479 1480
        Args:
            name(str): the attribute name.
1481

1482 1483
        Returns:
            int: the block index.
1484
        """
W
Wu Yi 已提交
1485
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1486

W
Wu Yi 已提交
1487
    def _block_attr(self, name):
G
gongweibao 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1498
        id = self._block_attr_id(name)
G
gongweibao 已提交
1499 1500 1501
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1502
    def _blocks_attr(self, name):
G
gongweibao 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1513
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1514 1515 1516 1517 1518
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1519
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1530
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1531

J
JiayiFeng 已提交
1532
    def all_attrs(self):
F
fengjiayi 已提交
1533
        """
1534 1535 1536
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1537
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1538 1539 1540 1541
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1542 1543
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1544
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1545 1546 1547
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1548
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1549 1550 1551 1552
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1553 1554
        return attr_map

Y
Yu Yang 已提交
1555

Y
Yu Yang 已提交
1556
class Block(object):
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1571
        use `Program._create_block()` to create a block.
1572 1573 1574 1575

    Examples:
        .. code-block:: python

1576 1577 1578
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1579 1580 1581 1582 1583 1584 1585 1586 1587
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1588
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1589
        self.desc = program.desc.block(idx)
1590
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1591
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1592
        self.program = program
1593
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1594

1595
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1596 1597
        return self.to_string(True)

F
fengjiayi 已提交
1598 1599
    def to_string(self, throw_on_error, with_details=False):
        """
1600 1601
        Get debug string.

F
fengjiayi 已提交
1602 1603
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1604
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1605
            with_details(bool): more details about variables and parameters
1606 1607
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1608

1609 1610
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1611 1612 1613 1614
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1615
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1616 1617
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1618
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1619
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1620
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1621
            for op in self.ops:
F
fengjiayi 已提交
1622 1623
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1624 1625 1626
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1627 1628
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1629 1630
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1631 1632 1633

    __repr__ = __str__

Y
Yu Yang 已提交
1634 1635
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1636
        return self.desc.parent
Y
Yu Yang 已提交
1637

Y
Yu Yang 已提交
1638 1639 1640 1641
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1642
    def _set_forward_block_idx(self, idx):
1643 1644 1645 1646 1647 1648 1649 1650 1651
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1652
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1653

Y
Yu Yang 已提交
1654 1655
    @property
    def idx(self):
Y
Yu Yang 已提交
1656
        return self.desc.id
Y
Yu Yang 已提交
1657

Q
Qiao Longfei 已提交
1658
    def var(self, name):
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1672
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1673 1674 1675
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1676 1677
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1678
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1679
        return v
Q
Qiao Longfei 已提交
1680

X
Xin Pan 已提交
1681
    def _find_var_recursive(self, name):
1682 1683 1684 1685 1686 1687 1688
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1689
            Variable: the Variable with the giving name. Or None if not found.
1690
        """
Y
Yu Yang 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1715
        return None
Y
Yu Yang 已提交
1716

X
Xin Pan 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1736

Q
Qiao Longfei 已提交
1737
    def all_parameters(self):
1738
        return list(self.iter_parameters())
1739

1740
    def iter_parameters(self):
M
minqiyang 已提交
1741
        return (item[1] for item in six.iteritems(self.vars)
1742
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1743

Y
Yu Yang 已提交
1744
    def create_var(self, *args, **kwargs):
1745
        var = Variable(block=self, *args, **kwargs)
1746 1747
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1748
        return var
Y
Yu Yang 已提交
1749

Q
Qiao Longfei 已提交
1750 1751 1752
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1753
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1754 1755
        """
        Rename variable in vars and ops' inputs and outputs
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1768
        """
M
minqiyang 已提交
1769 1770
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1771

T
typhoonzero 已提交
1772
        if not self.has_var(name):
1773
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1774 1775
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1776
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1777 1778 1779 1780 1781 1782 1783
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1784
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1785 1786 1787 1788
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1789
        orig_var_type = v.type
M
minqiyang 已提交
1790
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1791
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1792
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1793
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1794 1795 1796 1797
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1798
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1799 1800 1801 1802 1803 1804 1805
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1806
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1807 1808
            var = Variable(
                self,
T
typhoonzero 已提交
1809
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1810 1811 1812 1813
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1814
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1815 1816 1817
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1818
        self._sync_with_cpp()
1819
        return var
T
typhoonzero 已提交
1820

W
Wu Yi 已提交
1821 1822
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1823
        self.desc._remove_var(cpt.to_bytes(name))
1824 1825
        del self.vars[name]

Y
Yu Yang 已提交
1826 1827
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1828
        param = Parameter(global_block, *args, **kwargs)
1829
        if 'initializer' in kwargs:
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1850
        return param
Y
Yu Yang 已提交
1851

Y
Yu Yang 已提交
1852
    def append_op(self, *args, **kwargs):
1853 1854 1855 1856 1857 1858
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1859
        if in_dygraph_mode():
1860 1861 1862
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1863 1864 1865 1866 1867
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1868

J
Jiabin Yang 已提交
1869 1870
            type = kwargs.get("type", None)

1871 1872 1873
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
1874
                type=type,
M
minqiyang 已提交
1875 1876
                inputs=None,
                outputs=None,
1877
                attrs=attrs)
1878

M
minqiyang 已提交
1879 1880 1881
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1882
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
1883 1884

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
1885
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
1886 1887
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
1888
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1889
        else:
1890 1891 1892 1893 1894 1895 1896 1897 1898
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1899
            self.ops.append(op)
M
minqiyang 已提交
1900

1901 1902
        return op

W
Wu Yi 已提交
1903
    def _insert_op(self, index, *args, **kwargs):
1904 1905 1906 1907 1908 1909 1910 1911 1912
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1913 1914
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1915 1916 1917 1918
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1919
    def _remove_op(self, index):
1920 1921 1922 1923 1924 1925 1926 1927 1928
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1929 1930
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1931 1932
        del self.ops[index]

W
Wu Yi 已提交
1933
    def _slice_ops(self, start, end):
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1944
        return self.ops[start:end]
Y
Yancey1989 已提交
1945

W
Wu Yi 已提交
1946
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1947
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1948 1949
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
1950
            op = Operator(
J
Jiabin Yang 已提交
1951
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
1952

J
Jiabin Yang 已提交
1953
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
1954
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
1955 1956
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
1957
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1958
        else:
1959 1960 1961 1962 1963 1964 1965 1966
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1967
            self.ops.insert(0, op)
1968

Y
Yu Yang 已提交
1969 1970
        return op

W
Wu Yi 已提交
1971
    def _sync_with_cpp(self):
1972
        """
1973 1974
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1975
        """
Q
Qiao Longfei 已提交
1976 1977 1978 1979 1980
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1981
        # sync variables removed from c++ end
1982
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1983
            if not self.desc.find_var(cpt.to_bytes(var)):
1984 1985
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1986
        # sync operators from cpp
1987 1988 1989 1990
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2007 2008 2009 2010 2011

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2012
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2013 2014 2015 2016 2017 2018 2019

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2033 2034 2035 2036
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2037
    def _copy_param_info_from(self, other):
2038
        """
2039 2040
        Copy the information of parameters from the other block.

2041
        Args:
2042 2043 2044 2045 2046
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2047 2048 2049 2050 2051

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2052 2053
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2054
        for p in other.iter_parameters():
2055 2056 2057
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2058
                raise ValueError("_copy_param_info_from should be invoked with "
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2071
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2072
                error_clip=p.error_clip,
2073 2074 2075
                name=v.name)
            self.vars[new_p.name] = new_p

2076
    def _clone_variable(self, var, force_persistable=True):
2077 2078
        """
        Clone a variable into current block.
2079

2080 2081
        Args:
            var: the variable to be cloned.
2082 2083 2084
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2085 2086

        Returns:
2087
            Variable: the new  variable cloned from 'var' in current block.
2088 2089
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2090 2091 2092 2093 2094
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2095 2096
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2097
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2098 2099 2100 2101 2102 2103
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2104
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
2105
                is_data=var.is_data)
T
update  
typhoonzero 已提交
2106 2107 2108 2109 2110 2111 2112
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2113
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
2114
                is_data=var.is_data)
T
update  
typhoonzero 已提交
2115
        return ret_var
2116

Y
Yu Yang 已提交
2117

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2213
    def remove_input_by_id(self, node_id):
2214 2215 2216 2217 2218 2219
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2220
        self.node.remove_input(node_id)
2221

2222
    def remove_input(self, node):
2223 2224 2225 2226
        """
        Remove a node from inputs.

        Args:
2227
            node(IrNode): the node being removed.
2228
        """
2229
        self.node.remove_input(node.node)
2230

2231
    def append_input(self, node):
2232 2233 2234 2235
        """
        Append a node in inputs.

        Args:
2236
            node(IrNode): the node being appended.
2237
        """
2238
        self.node.append_input(node.node)
2239 2240 2241 2242 2243 2244 2245 2246

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2247
    def remove_output_by_id(self, node_id):
2248 2249 2250 2251 2252 2253
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2254
        self.node.remove_output(node_id)
2255

2256
    def remove_output(self, node):
2257 2258 2259 2260
        """
        Remove a node from outputs.

        Args:
2261
            node(IrNode): the node being removed.
2262
        """
2263
        self.node.remove_output(node.node)
2264

2265
    def append_output(self, node):
2266 2267 2268 2269
        """
        Append a node in outputs.

        Args:
2270
            node(IrNode): the node being appended.
2271
        """
2272
        self.node.append_output(node.node)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2527 2528
class IrGraph(object):
    """
2529
    Python IrGraph. Beneath it is a core.Graph, which is used for
2530
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2531 2532
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2533 2534 2535 2536
    """

    def __init__(self, graph, for_test=False):
        """
2537 2538
        Construct an IrGraph using core.Graph.

2539 2540 2541 2542 2543 2544 2545 2546 2547
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2548 2549 2550 2551
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2552 2553 2554
        Warns:
            The method only clones the graph structure, not its attributes.

2555 2556 2557
        Returns:
            IrGraph: A new and duplicated graph.
        """
2558
        g = self.graph.clone()
2559 2560
        return IrGraph(g, self._for_test)

2561
    def is_test(self):
2562 2563 2564
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2565 2566
        return self._for_test

W
WangZhen 已提交
2567
    def all_nodes(self):
2568 2569 2570
        """
        Return all nodes included in the graph as a set.
        """
2571
        return {IrNode(node) for node in self.graph.nodes()}
2572

2573
    def all_var_nodes(self):
2574 2575 2576
        """
        Return all variable nodes included in the graph as a set.
        """
2577
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2578

2579
    def all_persistable_nodes(self):
2580 2581 2582
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2583 2584 2585 2586 2587
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2588
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2589

2590
    def all_op_nodes(self):
2591 2592 2593
        """
        Return all operator nodes included in the graph as a set.
        """
2594
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2595

2596
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2608
            IrVarNode: the created persistable variable node.
2609
        """
2610 2611 2612 2613 2614
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2615
        return IrVarNode(self.graph.create_var_node(var_desc))
2616 2617

    def create_var_node(self, name, var_type, shape, var_dtype):
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2629
            IrVarNode: the created variable node.
2630 2631
        """

2632 2633 2634 2635
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2636
        return IrVarNode(self.graph.create_var_node(var_desc))
2637 2638

    def create_var_node_from_desc(self, var_desc):
2639 2640 2641 2642 2643 2644 2645 2646
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2647
            IrVarNode: the created variable node.
2648
        """
2649
        return IrVarNode(self.graph.create_var_node(var_desc))
2650 2651

    def create_op_node(self, op_type, attrs, inputs, outputs):
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2662
            IrOpNode: the created operator node.
2663
        """
2664 2665
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2666
        for attr, value in six.iteritems(attrs):
2667
            self._update_desc_attr(op_desc, attr, value)
2668
        for input_name, var_nodes in six.iteritems(inputs):
2669 2670 2671 2672
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2673
        for output_name, var_nodes in six.iteritems(outputs):
2674 2675 2676 2677
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2678
        return IrOpNode(self.graph.create_op_node(op_desc))
2679 2680

    def create_op_node_from_desc(self, op_desc):
2681 2682 2683 2684 2685 2686 2687
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2688
            IrOpNode: the created operator node.
2689
        """
2690
        return IrOpNode(self.graph.create_op_node(op_desc))
2691 2692

    def update_input_link(self, old_input_node, new_input_node, op_node):
2693 2694 2695 2696
        """
        Update the input's link of a operator node.

        Args:
2697 2698 2699
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2700
        """
2701 2702
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2703
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2704 2705 2706 2707
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2708
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2709 2710

    def link_to(self, node_in, node_out):
2711 2712 2713 2714
        """
        Connect two nodes.

        Args:
2715 2716
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2717
        """
2718
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2719
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2720 2721
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2722 2723

    def safe_remove_nodes(self, remove_nodes):
2724 2725 2726 2727 2728 2729 2730
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2731
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2732 2733 2734 2735
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2736 2737
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2738

Z
Zhen Wang 已提交
2739 2740 2741 2742 2743 2744 2745 2746
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2747
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2748 2749 2750 2751
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2752
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2753 2754 2755
                        ]
                    else:
                        var_nodes[each_var_name].append(
2756 2757
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2758 2759
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2760
    def has_circle(self):
2761 2762 2763 2764 2765 2766
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2767 2768 2769
        return core.has_circle(self.graph)

    def graph_num(self):
2770 2771 2772 2773 2774 2775
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2776 2777 2778
        return core.graph_num(self.graph)

    def topology_sort(self):
2779 2780 2781 2782 2783 2784
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2785
            list(IrNode): nodes in topology order.
2786
        """
2787
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2788
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2789 2790

    def build_adjacency_list(self):
2791 2792 2793 2794
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2795
            dict{IrNode: set(IrNode)}: the adjacency list.
2796
        """
2797 2798 2799 2800 2801
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2802

2803 2804 2805 2806 2807 2808 2809 2810
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2811
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2812 2813 2814 2815 2816
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2817 2818 2819 2820 2821 2822 2823 2824 2825
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2826
        remove_ctr_vars = set()
2827
        if remove_ctr_var:
2828
            for node in self.all_var_nodes():
2829 2830 2831
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2832 2833
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2834 2835
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2836 2837 2838 2839 2840 2841
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2842 2843 2844 2845
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
2846 2847
        if not os.path.exists(save_path):
            os.makedirs(save_path)
2848 2849 2850 2851 2852 2853 2854
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2855 2856 2857
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2858
        WARN: When the graph includes backward operator nodes, the
2859 2860 2861 2862 2863 2864
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2865
        convert_pass = core.get_pass('graph_to_program_pass')
2866 2867
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2868 2869 2870 2871
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2899
class Program(object):
D
dzhwinter 已提交
2900 2901 2902 2903 2904
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
J
Jiabin Yang 已提交
2905
    it will contain nested block.
D
dzhwinter 已提交
2906 2907
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
2917 2918 2919
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2920
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2921 2922

    Returns:
Y
yuyang18 已提交
2923
        A empty program.
D
dzhwinter 已提交
2924 2925

    Examples:
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2939 2940 2941

    """

2942 2943
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2944 2945
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2946
        self._seed = 0
Y
yuyang18 已提交
2947
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2948
        self.__op_role_var = []
T
tangwei12 已提交
2949

2950 2951
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2952
        self._is_distributed = False
2953
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2954
        self._is_chief = False
2955 2956 2957
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2958
        self._endpoints = []
2959 2960 2961
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2962
        self._trainers_endpoints = []
2963
        # the distributed lookup table names
T
tangwei12 已提交
2964
        self._distributed_lookup_table = None
2965 2966 2967

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2968 2969
        self._use_lamb = False

2970 2971 2972
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
2973

2974 2975 2976
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2977
        self._program_config = None
2978

H
hutuxian 已提交
2979 2980 2981
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2982 2983 2984
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
2985
    @property
2986
    def _op_role(self):
Y
yuyang18 已提交
2987 2988 2989 2990 2991 2992 2993 2994
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2995
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2996 2997 2998 2999
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3000 3001
        return self._current_role

3002 3003
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3004 3005 3006
        self._current_role = role

    @property
3007
    def _op_role_var(self):
Y
yuyang18 已提交
3008
        """
3009
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3010

3011
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3012 3013 3014

        Notes: This is a very low-level API. Users should not use it directly.
        """
3015
        return self.__op_role_var
Y
yuyang18 已提交
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3026
    @signature_safe_contextmanager
W
Wu Yi 已提交
3027
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3028 3029 3030 3031 3032 3033 3034
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3035
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3036 3037 3038

        Examples:

3039
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3040
            >>> p, g = backward(...)
W
Wu Yi 已提交
3041
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3042 3043
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3044
        tmp_role = self._current_role
3045
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3046

Y
yuyang18 已提交
3047 3048
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3049
        self.__op_role_var = [
3050 3051 3052
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3053
        yield
3054
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3055
        self._current_role = tmp_role
Y
Yu Yang 已提交
3056

S
rename  
sneaxiy 已提交
3057
    @signature_safe_contextmanager
X
Xin Pan 已提交
3058
    def _lr_schedule_guard(self, is_with_opt=False):
3059 3060 3061 3062 3063 3064 3065
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3066 3067 3068 3069
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3070 3071 3072

        Examples:

3073
            >>> import paddle.fluid as fluid
3074 3075 3076 3077
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3078 3079

        tmp_role = self._current_role
3080
        tmp_var = self.__op_role_var
3081

3082 3083
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3084 3085
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3086
        # TODO(typhoonzero): how to set target learning rate var
3087
        self.__op_role_var = []
3088
        yield
3089
        self.__op_role_var = tmp_var
3090
        self._current_role = tmp_role
3091

3092
    def __str__(self):
Y
yuyang18 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3102 3103
        return self.to_string(True)

F
fengjiayi 已提交
3104 3105 3106
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3107

F
fengjiayi 已提交
3108
        Args:
Y
yuyang18 已提交
3109 3110
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
3111

Y
yuyang18 已提交
3112 3113 3114 3115
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3116 3117
        Returns:
            str : The debug string.
Y
yuyang18 已提交
3118 3119 3120 3121

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3122

3123 3124 3125 3126 3127 3128 3129 3130 3131
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3132 3133 3134 3135 3136 3137 3138 3139 3140
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3141 3142
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3143 3144
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3145

W
Wu Yi 已提交
3146
    def _get_desc(self):
Y
yuyang18 已提交
3147 3148 3149 3150 3151 3152 3153
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3154 3155
        return self.desc

X
version  
Xin Pan 已提交
3156 3157 3158
    def _version(self):
        return self.desc._version()

3159
    def clone(self, for_test=False):
Y
yuyang18 已提交
3160 3161 3162
        """
        Create a new, duplicated program.

3163

Y
yuyang18 已提交
3164 3165 3166 3167
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3168

Y
yuyang18 已提交
3169
        * Set for_test to False when we want to clone the program for training.
3170
        * Set for_test to True when we want to clone the program for testing.
3171 3172 3173
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3174

3175 3176
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
3177 3178
        2. We recommend you to use :code:`clone(for_test=True)` before backward
           and optimization. E.g.
L
Luo Tao 已提交
3179

3180 3181 3182 3183 3184
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3185 3186

        Args:
Y
yuyang18 已提交
3187 3188
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3189

D
dzhwinter 已提交
3190
        Returns:
Y
yuyang18 已提交
3191 3192 3193 3194
            Program: The new, duplicated Program object.

        Examples:

3195 3196 3197 3198 3199 3200
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3238 3239 3240

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3308 3309
        """
        if for_test:
3310
            if self._appending_grad_times > 0:
3311 3312 3313 3314 3315 3316 3317
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3318 3319 3320
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3321
        else:
3322
            p = Program()
G
gongweibao 已提交
3323 3324
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3325
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3326 3327 3328
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3329 3330

            p._current_role = self._current_role
3331
            p.__op_role_var = self.__op_role_var
3332
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3333

W
Wu Yi 已提交
3334
            p._sync_with_cpp()
3335

W
Wu Yi 已提交
3336
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3337
        p._copy_data_info_from(self)
3338
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3339
        return p
3340

3341
    def _prune(self, feeded_var_names, targets):
Y
yuyang18 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3357 3358
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3359 3360
        if not isinstance(targets, list):
            targets = [targets]
3361 3362 3363 3364 3365 3366

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3367 3368 3369 3370
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3371 3372
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3373
                    # and we need to find the current op that generate this
3374 3375 3376 3377 3378 3379 3380 3381
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3382
                    t = t.op
3383 3384 3385 3386
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3387
                else:
3388 3389
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3390 3391 3392

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3393
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3394 3395 3396
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3397
        res._sync_with_cpp()
3398 3399
        return res

X
Xin Pan 已提交
3400
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3401
        """
F
fengjiayi 已提交
3402 3403 3404 3405 3406
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3407
        3. change the :code:`is_test`
Y
yuyang18 已提交
3408 3409 3410
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3411
        Args:
X
Xin Pan 已提交
3412 3413
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3414

Y
yuyang18 已提交
3415 3416 3417 3418 3419 3420
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3421
        res = Program()
3422
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3423 3424 3425 3426

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3427
        if prune_read_op:
3428 3429 3430 3431 3432 3433 3434 3435 3436
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3437
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3438 3439

        # change all `is_test` attributes to True
M
minqiyang 已提交
3440
        for i in six.moves.range(res.desc.num_blocks()):
3441
            block = res.desc.block(i)
M
minqiyang 已提交
3442
            for j in six.moves.range(block.op_size()):
3443 3444
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3445
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3446 3447 3448
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3449
        res._sync_with_cpp()
3450 3451
        return res

3452 3453
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3454 3455 3456 3457 3458 3459 3460
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3461
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3462 3463 3464 3465

        Returns:
            Program: A deserialized program desc.
        """
3466 3467
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3468
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3469
        p._sync_with_cpp()
3470
        return p
Y
Yu Yang 已提交
3471

3472
    @staticmethod
3473
    def _construct_from_desc(desc):
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3489 3490
    @property
    def random_seed(self):
Y
yuyang18 已提交
3491 3492 3493 3494 3495
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3507
        """
D
dzhwinter 已提交
3508 3509
        return self._seed

Q
qiaolongfei 已提交
3510 3511
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3512 3513
        """
        The number of blocks in this program.
3514 3515 3516 3517 3518 3519 3520 3521 3522

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3523
        """
Q
qiaolongfei 已提交
3524 3525
        return self.desc.num_blocks()

D
dzhwinter 已提交
3526 3527 3528 3529 3530 3531
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3532
    def __repr__(self):
3533
        return self.__str__()
3534

Y
Yu Yang 已提交
3535
    def global_block(self):
Y
yuyang18 已提交
3536 3537
        """
        Get the first block of this program.
3538 3539 3540 3541 3542 3543 3544 3545 3546

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3547
        """
Y
Yu Yang 已提交
3548 3549
        return self.blocks[0]

Q
Qiao Longfei 已提交
3550
    def block(self, index):
Y
yuyang18 已提交
3551 3552 3553 3554 3555 3556 3557
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3558 3559 3560 3561 3562 3563 3564 3565 3566

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3567
        """
Q
Qiao Longfei 已提交
3568 3569
        return self.blocks[index]

Y
Yu Yang 已提交
3570
    def current_block(self):
Y
yuyang18 已提交
3571 3572 3573
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3574 3575 3576 3577 3578 3579 3580 3581 3582

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3583
        """
Y
Yu Yang 已提交
3584 3585
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3586
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3597
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3598 3599 3600
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3601 3602 3603 3604
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3605
    def _rollback(self):
Y
yuyang18 已提交
3606 3607 3608 3609 3610
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3611 3612
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3613
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3624 3625 3626
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3627
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3628

W
Wu Yi 已提交
3629
    def _copy_param_info_from(self, other):
3630
        """
3631
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3632

Y
yuyang18 已提交
3633 3634 3635
        Notes: This is a very low level API. Users should not invoke it
        directly.

3636 3637 3638 3639 3640 3641 3642
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3643
            raise TypeError("_copy_param_info_from should be invoked with "
3644 3645 3646
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3647
            raise ValueError("_copy_param_info_from should be invoked with two "
3648
                             "program, with represent the same topology")
W
Wu Yi 已提交
3649
        self.global_block()._copy_param_info_from(other.global_block())
3650

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3666
        self._parameters_on_pservers = other._parameters_on_pservers
3667
        self._endpoints = other._endpoints
3668
        self._ps_endpoint = other._ps_endpoint
3669 3670
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3671
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3672 3673
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3674

Y
yuyang18 已提交
3675 3676 3677
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3678 3679 3680 3681 3682 3683 3684
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3685
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3686 3687 3688
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3689
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3690
                             "program, with represent the same topology")
3691
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3692 3693 3694
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3695
    def list_vars(self):
Y
yuyang18 已提交
3696 3697 3698 3699 3700
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3712
        """
3713
        for each_block in self.blocks:
3714
            for each_var in list(each_block.vars.values()):
3715 3716
                yield each_var

Y
Yu Yang 已提交
3717

Y
Yu Yang 已提交
3718
class Parameter(Variable):
3719
    """
3720
    Parameter is derived from Variable. A parameter is a persistable
3721
    Variable, and will be updated by optimizers after each iteration.
3722
    The training of a neural network is essentially the updating of
3723 3724
    its parameters.

3725
    Relative to a general Variable, a Parameter has several its own
3726 3727
    member variables:

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3740 3741
    """

Y
Yu Yang 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3752 3753 3754

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3755 3756 3757 3758
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3759 3760
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3761
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3762

W
wanghaoshuang 已提交
3763
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3764

3765 3766
        self.is_distributed = False

F
fengjiayi 已提交
3767 3768 3769
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3770 3771 3772
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3773

F
update  
fengjiayi 已提交
3774 3775 3776 3777 3778 3779 3780 3781
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3782 3783 3784 3785 3786 3787 3788 3789 3790
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3791 3792 3793 3794 3795 3796
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3797
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3798
            for attr_name in additional_attr:
3799 3800
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3801 3802
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3803 3804 3805 3806
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3807

Y
Yu Yang 已提交
3808
# program is a global instance.
Y
Yu Yang 已提交
3809 3810
_main_program_ = Program()
_startup_program_ = Program()
3811

3812

3813
def default_startup_program():
Y
Yu Yang 已提交
3814
    """
Y
yuyang18 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3824

Y
Yu Yang 已提交
3825 3826
    Returns:
        Program: startup program
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3842
    """
Y
Yu Yang 已提交
3843
    return _startup_program_
3844

3845

3846
def default_main_program():
Y
Yu Yang 已提交
3847
    """
Y
yuyang18 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3857

Y
Yu Yang 已提交
3858 3859
    Returns:
        Program: main program
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
3888 3889
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
3890
    """
Y
Yu Yang 已提交
3891
    return _main_program_
Y
Yu Yang 已提交
3892 3893 3894 3895 3896


def switch_main_program(program):
    """
    Switch the main program to a new program.
3897

Y
Yu Yang 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3912
    Switch the startup program to a new program
Y
Yu Yang 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3925
@signature_safe_contextmanager
Y
Yu Yang 已提交
3926 3927
def program_guard(main_program, startup_program=None):
    """
3928 3929
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3930
    variables to the new main programs.
3931

Y
Yu Yang 已提交
3932
    Examples:
3933 3934 3935
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3936

3937 3938 3939 3940 3941
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3942 3943 3944

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3945

Y
Yu Yang 已提交
3946
    Examples:
3947
       .. code-block:: python
Y
yuyang18 已提交
3948

3949 3950 3951 3952 3953 3954
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3955

Y
Yu Yang 已提交
3956
    Args:
3957 3958 3959
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3972 3973


W
Wu Yi 已提交
3974
def _get_var(name, program=None):
X
xuwei06 已提交
3975
    """
Y
yuyang18 已提交
3976
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3977

X
xuwei06 已提交
3978 3979 3980
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3981
        If None, default_global_program() will be used.
X
xuwei06 已提交
3982 3983 3984 3985 3986 3987 3988

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3989
    assert isinstance(program, Program)
X
xuwei06 已提交
3990 3991

    return program.global_block().var(name)
3992 3993


S
rename  
sneaxiy 已提交
3994
@signature_safe_contextmanager
L
lujun 已提交
3995 3996 3997 3998
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3999

4000
    yield
P
Paddle CI 已提交
4001

L
lujun 已提交
4002
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4003 4004


S
rename  
sneaxiy 已提交
4005
@signature_safe_contextmanager
L
lujun 已提交
4006 4007 4008 4009
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4010

4011
    yield
M
minqiyang 已提交
4012

L
lujun 已提交
4013
    _dygraph_current_expected_place_ = tmp_place