nn.py 380.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'conv2d',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
L
lvmengsi 已提交
76
    'instance_norm',
H
heqiaozhi 已提交
77
    'data_norm',
X
Xin Pan 已提交
78
    'reduce_mean',
Z
zhoukunsheng 已提交
79 80
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
91
    'group_norm',
D
dengkaipeng 已提交
92
    'spectral_norm',
X
Xin Pan 已提交
93 94 95 96 97 98
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'squeeze',
    'unsqueeze',
    'lod_reset',
99
    'lod_append',
X
Xin Pan 已提交
100 101
    'pad',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104
    'image_resize',
    'resize_bilinear',
K
Kaipeng Deng 已提交
105
    'resize_trilinear',
106
    'resize_nearest',
107
    'gather_nd',
X
Xin Pan 已提交
108 109 110
    'relu',
    'log',
    'prelu',
Z
zhoukunsheng 已提交
111
    'unique',
112
    'unique_with_counts',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'gaussian_random',
    'sampling_id',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
122
    'size',
X
Xin Pan 已提交
123 124 125 126 127
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
128
    'space_to_depth',
129
    'affine_channel',
B
barrierye 已提交
130
    'similarity_focus',
M
minqiyang 已提交
131
    'hash',
D
dengkaipeng 已提交
132
    'grid_sampler',
G
gmcather 已提交
133 134
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
135
    'bilinear_tensor_product',
C
chengduo 已提交
136 137
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
138
    'temporal_shift',
S
sneaxiy 已提交
139
    'py_func',
140
    'psroi_pool',
141
    'prroi_pool',
R
ruri 已提交
142
    'pixel_shuffle',
143
    'fsp_matrix',
H
heqiaozhi 已提交
144
    'continuous_value_model',
Z
zhoukunsheng 已提交
145
    'where',
Z
zhoukunsheng 已提交
146
    'sign',
147
    'unfold',
C
cjt222 已提交
148
    'deformable_roi_pooling',
149
    'shard_index',
H
huangjun12 已提交
150
    'hard_swish',
K
Kaipeng Deng 已提交
151
    'mish',
G
Guo Sheng 已提交
152
    'gather_tree',
153
    'uniform_random',
myq406450149's avatar
myq406450149 已提交
154
    'unbind',
Y
Yu Yang 已提交
155 156
]

157
OP_NAMEMAPPING = {
158 159 160 161 162 163 164 165
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
166
    'elementwise_mod': 'remainder',
167 168
}

Y
Yu Yang 已提交
169

170 171
def _get_reduce_dim(dim, input):
    """
172
    Internal function for reduce_sum, reduce_mean, reduce_prod.
173 174 175 176 177 178 179 180 181
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
182 183 184 185
                "The type of dim must be int, list, tuple or range, but received {}".format(
                    type(axis)
                )
            )
186 187 188 189 190 191 192 193 194 195
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


196
@dygraph_only
197 198 199
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
200 201 202 203
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
204
        op = getattr(_legacy_C_ops, op_name)
205 206 207
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
208 209
            op = getattr(
                _C_ops,
210 211
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
212 213 214
            out = op(x, y)

        if _in_legacy_dygraph():
215
            op = getattr(_legacy_C_ops, op_name)
216
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
217 218 219 220 221 222 223 224 225 226 227 228 229 230
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
231
    r"""
232 233
    :api_attr: Static Graph

234
    **Fully Connected Layer**
Y
Yu Yang 已提交
235

236 237 238
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
239
    which represents a fully connected weight matrix from each input unit to
240 241 242 243
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
244
    is not None, a bias variable will be created and added to the output.
245
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
246

247
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
248

249 250 251 252
    .. math::

        Out = Act({XW + b})

253
    When the input is a list of Tensor(or LoDTensor):
254 255 256

    .. math::

257
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
258 259 260

    In the above equation:

261 262 263
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
264
    * :math:`b`: The bias parameter created by this layer (if needed).
265
    * :math:`Act`: The activation function.
266
    * :math:`Out`: The output Tensor.
267 268 269

    .. code-block:: text

270 271 272 273 274 275 276 277 278 279 280 281 282 283
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
284 285 286 287 288 289 290 291 292 293 294 295 296
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
297
    Args:
298 299 300
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
301
        size(int): The number of output units in this layer, which also means the feature size of output
302 303
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
304
            two dimensions. If this happens, the multidimensional tensor will first be flattened
305 306
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
307
            dimensions will be flatten to form the first dimension of the final matrix (height of
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
323 324

    Raises:
325
        ValueError: If dimensions of the input Tensor is less than 2.
326 327 328 329

    Examples:
        .. code-block:: python

330
          import paddle.fluid as fluid
331 332
          import paddle
          paddle.enable_static()
333
          # when input is single tensor
334
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
335
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
336 337

          # when input are multiple tensors
338 339
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
340
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
341
    """
C
caoying03 已提交
342
    helper = LayerHelper("fc", **locals())
343
    check_type(input, 'input', (list, tuple, Variable), 'fc')
344 345
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
346
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
347
    dtype = helper.input_dtype()
348 349 350
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
351
    mul_results = []
352 353
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
354 355
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
356 357 358
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
359

360 361 362
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
363
        tmp = helper.create_variable_for_type_inference(dtype)
364 365 366 367 368 369
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
370 371 372 373
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
374
    else:
X
Xin Pan 已提交
375
        pre_bias = helper.create_variable_for_type_inference(dtype)
376 377 378 379 380 381
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
382 383 384 385
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
386 387


T
tangwei12 已提交
388
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
389 390 391 392 393 394 395 396 397
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
398
    r"""
399
    :api_attr: Static Graph
400

401 402 403 404 405 406 407 408 409 410 411 412
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

413
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
431

432 433 434 435
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
436

437
        Case 2:
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
453 454

    Args:
455 456 457 458 459 460
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
461
            affects the performance of the backwards gradient update. It is recommended to set
462
            True because sparse update is faster. But some optimizer does not support sparse update,
463
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
464 465 466 467 468
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
469
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
470 471 472 473 474 475
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
476
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
477
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
478
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
479 480 481
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
482

483
    Returns:
484
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
485

486 487
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
488

B
bdzhuxiaoning 已提交
489
          import paddle.fluid as fluid
490
          import numpy as np
491 492
          import paddle
          paddle.enable_static()
493

494 495
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
496
          # example 1
497 498 499 500 501 502 503 504 505
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
506
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
507 508 509
    """

    helper = LayerHelper('embedding', **locals())
510 511 512 513 514 515 516 517 518
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
519 520 521 522 523 524 525 526 527

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

528 529 530
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
531
    tmp = helper.create_variable_for_type_inference(dtype)
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
550 551 552
    return tmp


553 554 555 556 557 558 559 560 561 562 563
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
564
    r"""
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
610
        'is_distributed': True,
611 612
    }
    # this is only for compatible with embedding op
613 614 615 616 617 618 619 620 621
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
622 623 624 625 626
    if len(outs) == 1:
        return outs[0]
    return outs


627 628 629 630 631 632 633 634 635 636 637
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
638
    r"""
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
684
        'is_distributed': True,
685 686
    }
    # this is only for compatible with embedding op
687 688 689 690 691 692 693 694 695
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
696
    if len(outs) == 1:
Y
yaoxuefeng 已提交
697 698 699 700
        return outs[0]
    return outs


701 702 703
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
737 738 739
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
740 741 742 743 744 745
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
746 747 748 749 750 751 752 753 754 755 756 757 758
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
759
    if len(outs) == 1:
760 761 762 763
        return outs[0]
    return outs


764 765 766
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
767
    r"""
H
hutuxian 已提交
768 769 770 771 772 773 774
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
775
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
776
            contains the IDs information.
777
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
778
            each embedding vector respectively.
779
        dtype(str): The dtype refers to the data type of output tensor. Only supports
H
hutuxian 已提交
780 781 782 783 784 785 786 787 788 789 790
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
791
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
792 793 794 795
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
796 797 798
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
799 800 801 802 803 804
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
805 806 807 808 809 810 811 812 813 814 815 816 817
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
818 819 820 821 822
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
823
@templatedoc()
824
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
825
    """
826 827
    :api_attr: Static Graph

Y
yuyang18 已提交
828 829 830 831 832
    Linear Chain CRF.

    ${comment}

    Args:
833
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
834
        label(${label_type}): ${label_comment}
835
        Length(${length_type}): ${length_comment}
836
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
837 838

    Returns:
D
dzhwinter 已提交
839 840
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
841
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
842

J
JesseyXujin 已提交
843 844 845
    Examples:
        .. code-block:: python

846 847
            import paddle.fluid as fluid
            import numpy as np
848 849
            import paddle
            paddle.enable_static()
850 851 852 853 854

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
855 856
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
857 858 859 860 861 862
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
863
                    learning_rate=0.01))
864 865 866
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
867
            exe.run(startup_program)
868 869 870 871 872
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
873
            print(loss)
874 875 876 877 878

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
879 880 881
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
882 883 884 885 886 887
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
888
                     name='crfw',
889 890 891 892 893 894
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
895

896 897 898
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
899
            ll=np.array([[3],[3],[4],[2]])
900 901
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
902
            print(loss2)
903 904 905 906 907
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

908 909 910
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
911

Y
yuyang18 已提交
912
    """
913 914 915
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
916
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
917
    helper = LayerHelper('linear_chain_crf', **locals())
918
    size = input.shape[2] if length else input.shape[1]
919 920 921 922 923
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
924
    alpha = helper.create_variable_for_type_inference(
925 926
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
927
    emission_exps = helper.create_variable_for_type_inference(
928 929
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
930
    transition_exps = helper.create_variable_for_type_inference(
931 932
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
933
    log_likelihood = helper.create_variable_for_type_inference(
934 935
        dtype=helper.input_dtype()
    )
936 937 938
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
939
        "Label": [label],
940 941
    }
    if length:
942
        this_inputs['Length'] = [length]
943 944 945 946 947 948 949 950 951 952
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
953 954 955 956

    return log_likelihood


W
wopeizl 已提交
957
@templatedoc()
958
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
959
    """
960
    :api_attr: Static Graph
961

W
wopeizl 已提交
962
    ${comment}
Y
yi.wu 已提交
963

W
wopeizl 已提交
964
    Args:
965
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
966

967 968
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
969
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
970

Y
Yibing Liu 已提交
971
        label(${label_type}, optional): ${label_comment}
972

Y
Yibing Liu 已提交
973
        length(${length_type}, optional): ${length_comment}
974

W
wopeizl 已提交
975
    Returns:
976
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
977

W
wopeizl 已提交
978 979
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
980

981 982
           import paddle
           paddle.enable_static()
983 984 985

           # LoDTensor-based example
           num_labels = 10
986 987 988
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
989

990 991 992 993
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
994 995 996

           # Common tensor example
           num_labels, max_len = 10, 20
997 998 999 1000
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
1001
                                      num_flatten_dims=2)
1002

1003 1004 1005 1006
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
1007
    """
1008 1009 1010
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
1011 1012 1013
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
1014 1015
        dtype=core.VarDesc.VarType.INT64
    )
1016 1017 1018
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
1019 1020 1021 1022 1023
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
1024

W
wopeizl 已提交
1025
    return viterbi_path
Y
Yu Yang 已提交
1026 1027


Y
yi.wu 已提交
1028
@templatedoc()
F
fengjiayi 已提交
1029
def cos_sim(X, Y):
Y
Yu Yang 已提交
1030
    """
Y
yi.wu 已提交
1031 1032 1033
    ${comment}

    Args:
N
Noel 已提交
1034 1035
        X (Tensor): ${x_comment}.
        Y (Tensor): ${y_comment}.
F
fengjiayi 已提交
1036

Y
yi.wu 已提交
1037
    Returns:
N
Noel 已提交
1038
        A Tensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
1039 1040 1041 1042

    Examples:
        .. code-block:: python

N
Noel 已提交
1043 1044 1045 1046 1047 1048 1049
            import paddle

            x = paddle.rand(shape=[3, 7], dtype='float32')
            y = paddle.rand(shape=[1, 7], dtype='float32')
            out = paddle.fluid.layers.cos_sim(x, y)
            print(out)

Y
Yu Yang 已提交
1050
    """
1051 1052
    check_variable_and_dtype(X, 'X', ['float32'], 'cos_sim')
    check_variable_and_dtype(Y, 'Y', ['float32'], 'cos_sim')
F
fengjiayi 已提交
1053
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1054 1055 1056
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
1057 1058 1059 1060 1061
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X], 'Y': [Y]},
        outputs={'Out': [out], 'XNorm': [xnorm], 'YNorm': [ynorm]},
    )
Y
Yu Yang 已提交
1062 1063 1064
    return out


1065
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
1066 1067 1068 1069 1070 1071 1072 1073
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
1074
    """
1075

1076 1077 1078 1079
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1080
    training. The dropout operator randomly sets (according to the given dropout
1081 1082 1083
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1084 1085
    dropout op can be removed from the program to make the program more efficient.

1086
    Args:
L
lvmengsi 已提交
1087
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
1088
        dropout_prob (float): Probability of setting units to zero.
1089
        is_test (bool): A flag indicating whether it is in test phrase or not.
1090
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
1091 1092 1093
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
1094
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
1095 1096
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1097 1098
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1099
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1100 1101

                                           - train: out = input * mask
C
ceci3 已提交
1102
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1103 1104 1105

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1106
                                        2. upscale_in_train, upscale the outcome at training time
1107

H
haowang101779990 已提交
1108 1109
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1110

H
haowang101779990 已提交
1111 1112
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1113

M
minqiyang 已提交
1114

1115
    Returns:
L
lvmengsi 已提交
1116
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1117 1118

    Examples:
1119

1120 1121
        .. code-block:: python

1122
            import paddle
1123
            import paddle.fluid as fluid
1124

1125
            paddle.enable_static()
L
lvmengsi 已提交
1126
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1127
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1128
    """
1129 1130
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1131 1132
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1133
    # fast return for p == 0
1134
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1135
        return x
1136

J
Jiabin Yang 已提交
1137
    if _non_static_mode():
1138 1139 1140
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1141
            seed = default_main_program().random_seed
1142 1143
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1157
        return out
1158

W
wanghuancoder 已提交
1159 1160 1161
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1162 1163
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1164 1165 1166 1167
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1177
    helper = LayerHelper('dropout', **locals())
1178 1179 1180
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1181

X
Xin Pan 已提交
1182 1183
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1184 1185
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1186

1187
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1188

1189 1190 1191 1192 1193 1194
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1195 1196 1197
    return out


1198
@deprecated(since="2.0.0", update_to="paddle.nn.functional.softmax")
1199
def softmax(input, use_cudnn=True, name=None, axis=-1):
1200
    r"""
1201
    This operator implements the softmax layer. The calculation process is as follows:
1202

1203
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1204

1205 1206 1207 1208 1209 1210 1211
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1212

1213
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
1214
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1215

1216 1217 1218 1219 1220
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1221

1222
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1223

1224
    .. math::
1225

N
Noel 已提交
1226
        Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])}
1227

1228
    Example:
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
1273
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
1274

Q
qiaolongfei 已提交
1275
    Args:
N
Noel 已提交
1276
        input (Tensor): The input tensor. A multi-dimension ``Tensor`` with type float32 or float64.
1277
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
G
GaoWei8 已提交
1278
            library is installed. To improve performance, set use_cudnn to True by default.
1279
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1280
            will be named automatically. Default: None.
1281
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1282
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
N
Noel 已提交
1283
            input tensor. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1284 1285

    Returns:
N
Noel 已提交
1286
        Tensor: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1287 1288 1289 1290 1291

    Examples:

        .. code-block:: python

N
Noel 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
                                [3.0, 4.0, 5.0, 6.0],
                                [7.0, 8.0, 8.0, 9.0]],
                                [[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [6.0, 7.0, 8.0, 9.0]]], dtype='float32')
            y = F.softmax(x, axis=1)
            print(y)
            # [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
            #   [0.01786798, 0.01786798, 0.04661262, 0.04661262],
            #   [0.97555870, 0.97555870, 0.93623954, 0.93623954]],
            #  [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
            #   [0.26762316, 0.26762316, 0.26762316, 0.26762316],
            #   [0.72747517, 0.72747517, 0.72747517, 0.72747517]]]
Q
qiaolongfei 已提交
1309 1310

    """
1311

H
hong 已提交
1312
    if in_dygraph_mode():
1313
        return _C_ops.softmax(input, axis)
H
hong 已提交
1314

J
Jiabin Yang 已提交
1315
    if _non_static_mode():
1316 1317 1318
        return _legacy_C_ops.softmax(
            input, 'axis', axis, 'use_cudnn', use_cudnn
        )
1319 1320 1321

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1322

1323
    helper = LayerHelper('softmax', **locals())
1324 1325 1326
    check_variable_and_dtype(
        input, 'input/x', ['float16', 'float32', 'float64'], 'softmax'
    )
1327

1328
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1329
    softmax_out = helper.create_variable_for_type_inference(dtype)
1330 1331 1332 1333 1334 1335
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs=attrs,
    )
1336 1337 1338
    return softmax_out


1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1354
    r"""
1355 1356
    :api_attr: Static Graph

C
chengduoZH 已提交
1357
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1358
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1359
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1360
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1361 1362 1363 1364 1365 1366
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1367
    for more details.
1368 1369 1370
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1371

1372
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1373

C
chengduoZH 已提交
1374 1375
    .. math::

C
refine  
chengduoZH 已提交
1376
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1377

T
tensor-tang 已提交
1378
    Where:
C
chengduoZH 已提交
1379

L
liym27 已提交
1380
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1381 1382 1383 1384
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1385
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1386 1387 1388

    Example:

1389 1390
        - Input:

W
weixing02 已提交
1391
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1392

W
weixing02 已提交
1393
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1394

1395
        - Output:
T
tensor-tang 已提交
1396

W
weixing02 已提交
1397
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1398

C
chengduoZH 已提交
1399
        Where
1400 1401

        .. math::
C
chengduoZH 已提交
1402

W
weixing02 已提交
1403 1404
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1405 1406

    Args:
1407
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1408
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1409
        num_filters(int): The number of filter. It is as same as the output
1410
            image channel.
1411 1412
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1413 1414
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1415 1416
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1417 1418
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1419
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1420 1421
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1422 1423
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1424
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1425 1426 1427
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1428
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1429 1430
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1431
            Default: dilation = 1.
1432 1433 1434 1435
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1436 1437 1438 1439 1440
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1441
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1442 1443 1444 1445 1446
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1447 1448
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1449 1450
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1451 1452
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1453
           None by default.
1454
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1455
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1456 1457
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1458 1459

    Returns:
1460 1461 1462
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1463
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1464

1465 1466 1467 1468 1469
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1470
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1471 1472 1473 1474 1475 1476 1477
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1478 1479 1480
    Examples:
        .. code-block:: python

1481 1482
          import paddle
          paddle.enable_static()
1483

1484 1485 1486
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1487 1488
    """

1489 1490 1491
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1492
    if len(input.shape) != 4:
1493 1494 1495 1496
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1497
    num_channels = input.shape[1]
L
liym27 已提交
1498
    if not isinstance(use_cudnn, bool):
1499 1500 1501 1502
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1503 1504 1505 1506

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1507 1508
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1509

1510
    channel_last = data_format == "NHWC"
L
liym27 已提交
1511 1512 1513 1514
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1515 1516
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1517
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1518

1519 1520 1521
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1522 1523
        raise ValueError(
            "the groups of input must be greater than 0, "
1524 1525
            "but received the groups of input is {}".format(groups)
        )
1526 1527 1528 1529 1530
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1531 1532
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1533 1534
        num_filter_channels = num_channels // groups

1535
    l_type = 'conv2d'
1536 1537 1538 1539 1540
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1541
        l_type = 'depthwise_conv2d'
1542

1543 1544 1545 1546 1547
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1548 1549
        l_type = 'depthwise_conv2d'

1550 1551
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1552
        if num_channels == groups and num_channels == num_filters:
1553 1554 1555 1556
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1557 1558 1559
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1560 1561
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1562
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1563

L
liym27 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1576 1577
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1578 1579 1580 1581 1582 1583
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1584 1585
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1586 1587 1588
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1589 1590 1591
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1602 1603 1604
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1605 1606
        if padding == "VALID":
            padding_algorithm = "VALID"
1607
            padding = [0, 0]
L
liym27 已提交
1608 1609
        elif padding == "SAME":
            padding_algorithm = "SAME"
1610
            padding = [0, 0]
L
liym27 已提交
1611 1612

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1613

M
minqiyang 已提交
1614
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1615 1616

    def _get_default_param_initializer():
C
chengduo 已提交
1617
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1618 1619 1620 1621
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1622 1623 1624
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1625 1626 1627 1628 1629 1630
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1631 1632
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1633

X
Xin Pan 已提交
1634
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1635

1636 1637 1638 1639 1640 1641
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1642 1643
        use_cudnn = False

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1663

1664 1665 1666 1667
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1668 1669 1670 1671

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1672
@templatedoc()
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1686
    """
1687

F
fengjiayi 已提交
1688
    ${comment}
1689 1690

    Args:
K
Kaipeng Deng 已提交
1691 1692 1693 1694 1695
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1696
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1697 1698
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1699
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1700 1701 1702
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1703 1704 1705 1706 1707 1708 1709
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1710
            Otherwise, the pool padding size will be a square of an int.
1711 1712 1713
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1714 1715 1716
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1717
        exclusive (bool): Whether to exclude padding points in average pooling
1718
                          mode, default is `true`.
1719
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1720 1721
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1722

1723
    Returns:
K
Kaipeng Deng 已提交
1724
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1725 1726

    Raises:
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1739 1740 1741 1742 1743

    Examples:

        .. code-block:: python

1744
          import paddle.fluid as fluid
1745 1746 1747
          import paddle

          paddle.enable_static()
1748

K
Kaipeng Deng 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1792 1793 1794
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1795
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1796 1797
            str(pool_type),
        )
C
chengduoZH 已提交
1798

C
chengduoZH 已提交
1799 1800
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1801
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1802 1803
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1804 1805

    if not isinstance(use_cudnn, bool):
1806 1807 1808 1809
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1810 1811 1812 1813

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1814 1815
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1816

C
chengduoZH 已提交
1817 1818 1819
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1831 1832
                        "is not supported." % str(padding)
                    )
1833 1834 1835 1836 1837 1838
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1839 1840
                        "is not supported." % str(padding)
                    )
1841 1842 1843
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1844

1845 1846
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1858 1859
                % str(pool_padding)
            )
1860 1861
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1862
            pool_padding = [0, 0]
1863 1864 1865
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1866 1867
                    "Received ceil_mode: True."
                )
1868 1869
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1870
            pool_padding = [0, 0]
1871 1872

    pool_padding = update_padding(pool_padding, data_format)
1873
    if in_dygraph_mode():
1874
        input = input._use_cudnn(use_cudnn)
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1888 1889
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1890
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1891
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1911 1912 1913 1914

    return pool_out


D
dengkaipeng 已提交
1915
@templatedoc()
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
def pool3d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCDHW",
):
1929
    """
1930

1931
    ${comment}
1932 1933

    Args:
K
Kaipeng Deng 已提交
1934 1935
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
1936 1937 1938
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
1939
                          of the feature.
1940 1941
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
D
dengkaipeng 已提交
1942 1943 1944
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1956 1957 1958
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1959 1960 1961
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1962
        exclusive (bool): Whether to exclude padding points in average pooling
1963 1964 1965 1966
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
1967

1968
    Returns:
K
Kaipeng Deng 已提交
1969
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
1984 1985 1986 1987
    Examples:

        .. code-block:: python

1988
          import paddle.fluid as fluid
1989 1990 1991
          import paddle

          paddle.enable_static()
1992

K
Kaipeng Deng 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2041 2042 2043
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2044
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
2045 2046
            str(pool_type),
        )
C
chengduoZH 已提交
2047

C
chengduoZH 已提交
2048 2049
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2050
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
2051 2052 2053
            "and be a valid value. Received Attr(pool_size): %s."
            % str(pool_size)
        )
2054 2055

    if not isinstance(use_cudnn, bool):
2056 2057 2058 2059
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
2060 2061 2062 2063

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
2064 2065
            "Attr(data_format): %s" % str(data_format)
        )
C
chengduoZH 已提交
2066

2067 2068
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
2081 2082
                        "is not supported." % str(padding)
                    )
2083 2084 2085 2086 2087 2088
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
2089 2090
                        "is not supported." % str(padding)
                    )
2091 2092 2093
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2094 2095
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2096 2097 2098

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2099 2100
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
2112 2113
                % str(pool_padding)
            )
2114 2115
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2116
            pool_padding = [0, 0, 0]
2117 2118 2119
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
2120 2121
                    "Received ceil_mode: True."
                )
2122 2123
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2124
            pool_padding = [0, 0, 0]
2125 2126 2127 2128 2129

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2130
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2131
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2132

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
2151 2152 2153 2154

    return pool_out


2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
2171
    r"""
2172 2173
    :api_attr: Static Graph

Q
qiaolongfei 已提交
2174 2175
    **Batch Normalization Layer**

L
lvmengsi 已提交
2176
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2177
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2178

Q
qiaolongfei 已提交
2179
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2180

Q
qiaolongfei 已提交
2181 2182
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2183 2184 2185
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2198

L
lvmengsi 已提交
2199
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
2200
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
L
lvmengsi 已提交
2201

2202

L
lvmengsi 已提交
2203
    moving_mean is global mean and moving_var is global variance.
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2217
    Note:
2218
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
L
lvmengsi 已提交
2219
        sync_batch_norm automatically.
2220
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2221

2222
    Args:
2223
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
L
lvmengsi 已提交
2224
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2225
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2226 2227
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2228 2229
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
2230
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2231 2232 2233 2234 2235
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2236 2237
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2238
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
2239
	     If the Initializer of the param_attr is not set, the parameter is initialized
2240
	     with Xavier. Default: None.
C
chengduo 已提交
2241 2242
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2243 2244
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
2245
	     Default: None.
2246
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
K
Kaipeng Deng 已提交
2247 2248 2249
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
2250
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
2251 2252 2253 2254
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
2255
            will save global mean with the string.
L
lvmengsi 已提交
2256
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2257
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
2258
            will save global variance with the string.
2259 2260
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2261 2262 2263 2264 2265
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2266
    Returns:
2267
        A Tensor which is the result after applying batch normalization on the input,
2268
        has same shape and data type with input.
Q
qiaolongfei 已提交
2269 2270 2271 2272 2273

    Examples:

        .. code-block:: python

2274
            import paddle
2275

2276
            paddle.enable_static()
2277 2278 2279 2280 2281 2282 2283
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
Y
Yu Yang 已提交
2284
    """
2285 2286 2287
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2288 2289
    helper = LayerHelper('batch_norm', **locals())

2290 2291 2292
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
2293
    dtype = helper.input_dtype()
2294

W
Wu Yi 已提交
2295 2296 2297 2298
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2331 2332
    mean.stop_gradient = True

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2343
    variance.stop_gradient = True
Y
Yu Yang 已提交
2344 2345 2346 2347

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
2348
    # variance and variance_out share the same memory
Y
Yu Yang 已提交
2349
    variance_out = variance
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

    if in_dygraph_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2378
        else:
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2393
        if inputs_has_MomemtumTensor:
2394
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
2405
        else:
2406
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )
2417

2418 2419 2420
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )
2421

2422 2423 2424
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2425
    saved_variance = helper.create_variable_for_type_inference(
2426 2427
        dtype=dtype, stop_gradient=True
    )
2428
    reserve_space = None
2429
    if not is_test:
2430
        reserve_space = helper.create_variable_for_type_inference(
2431 2432
            dtype=helper.input_dtype(), stop_gradient=True
        )
2433

2434 2435 2436
    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )
Y
Yu Yang 已提交
2437

2438 2439 2440 2441 2442
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
2443 2444
        "Variance": variance,
        "MeanOut": mean_out,
2445
        "VarianceOut": variance_out,
2446 2447 2448 2449 2450 2451 2452
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
2453
        "use_global_stats": use_global_stats,
2454 2455 2456 2457 2458
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2459 2460 2461 2462 2463 2464

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
2465
        "SavedVariance": saved_variance,
2466 2467 2468 2469
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

2470 2471 2472
    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )
Y
Yu Yang 已提交
2473 2474 2475 2476

    return helper.append_activation(batch_norm_out)


2477 2478 2479
def instance_norm(
    input, epsilon=1e-05, param_attr=None, bias_attr=None, name=None
):
2480
    r"""
2481 2482
    :api_attr: Static Graph

L
lvmengsi 已提交
2483 2484
    **Instance Normalization Layer**

L
lvmengsi 已提交
2485
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2486 2487 2488 2489
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

2490
    Refer to `Instance Normalization: The Missing Ingredient for
L
lvmengsi 已提交
2491 2492 2493 2494 2495 2496 2497 2498
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2499
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2500
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2501
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2502 2503 2504 2505
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2506 2507
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2508 2509

    Args:
C
ceci3 已提交
2510
        input(Tensor): The rank of input tensor can be 2, 3, 4, 5.
L
lvmengsi 已提交
2511
            The data type is float32 or float64.
L
lvmengsi 已提交
2512 2513
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
2514
        param_attr(ParamAttr|None|bool, optional): The parameter attribute for Parameter `scale`
L
lvmengsi 已提交
2515 2516
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
2517
	     If the Initializer of the param_attr is not set, the parameter is initialized
C
ceci3 已提交
2518 2519 2520
	     with Xavier. If the param_attr is set to False, instance_norm will not create param_attr.
             Default: None.
        bias_attr(ParamAttr|None|bool, optional): The parameter attribute for the bias of instance_norm.
L
lvmengsi 已提交
2521
             If it is set to None or one attribute of ParamAttr, instance_norm
2522 2523
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
C
ceci3 已提交
2524
             If the bias_attr is set to False, instance_norm will not create bias_attr.
L
lvmengsi 已提交
2525 2526 2527 2528 2529
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
C
ceci3 已提交
2530
        A Tensor which is the result after applying instance normalization on the input,
2531
        has same shape and data type with input.
L
lvmengsi 已提交
2532 2533 2534 2535 2536

    Examples:

        .. code-block:: python

2537 2538
            import paddle
            paddle.enable_static()
C
ceci3 已提交
2539 2540 2541
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x, size=200)
            hidden2 = paddle.static.nn.instance_norm(hidden1)
L
lvmengsi 已提交
2542
    """
2543 2544 2545
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'instance_norm'
    )
C
ceci3 已提交
2546
    if param_attr is False:
2547 2548
        assert (
            bias_attr is False
2549
        ), "param_attr and bias_attr must be set to False at the same time in instance_norm"
C
ceci3 已提交
2550

L
lvmengsi 已提交
2551 2552 2553 2554 2555 2556 2557 2558
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
C
ceci3 已提交
2559 2560
    if len(input.shape) < 2 or len(input.shape) > 5:
        raise ValueError(
2561 2562 2563 2564
            'expected 2D or 3D or 4D or 5D input (got {}D input, input shape is: {})'.format(
                len(input.shape), input_shape
            )
        )
L
lvmengsi 已提交
2565 2566 2567 2568
    channel_num = input_shape[1]

    param_shape = [channel_num]

2569
    if param_attr != False and bias_attr != False:
C
ceci3 已提交
2570
        # create parameter
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=param_shape,
            dtype=dtype,
            is_bias=True,
            default_initializer=Constant(0.0),
        )
L
lvmengsi 已提交
2584 2585

    # create output
2586 2587 2588
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
L
lvmengsi 已提交
2589
    saved_variance = helper.create_variable_for_type_inference(
2590 2591
        dtype=dtype, stop_gradient=True
    )
L
lvmengsi 已提交
2592 2593 2594

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

C
ceci3 已提交
2595
    inputs = {"X": input}
2596
    if param_attr != False and bias_attr != False:
C
ceci3 已提交
2597 2598 2599
        inputs["Scale"] = scale
        inputs["Bias"] = bias

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
    helper.append_op(
        type="instance_norm",
        inputs=inputs,
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance,
        },
        attrs={
            "epsilon": epsilon,
        },
    )
L
lvmengsi 已提交
2612 2613 2614 2615

    return instance_norm_out


2616
@static_only
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
def data_norm(
    input,
    act=None,
    epsilon=1e-05,
    param_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    slot_dim=-1,
    sync_stats=False,
    summary_decay_rate=0.9999999,
    enable_scale_and_shift=False,
):
2633
    r"""
2634 2635
    :api_attr: Static Graph

H
heqiaozhi 已提交
2636 2637
    **Data Normalization Layer**

2638
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
Y
yaoxuefeng 已提交
2658
        input(Tensor): The input Tensor.
H
heqiaozhi 已提交
2659 2660 2661
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2662
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
2663 2664 2665
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2666 2667 2668 2669 2670
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2671 2672
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2673
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we
2674 2675
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
2676 2677
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate
2678 2679
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2680 2681 2682
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
2683
        enable_scale_and_shift(bool, Default False): do scale&shift after normalization.
H
heqiaozhi 已提交
2684 2685

    Returns:
Y
yaoxuefeng 已提交
2686
        Tensor: A tensor which is the result after applying data normalization on the input.
H
heqiaozhi 已提交
2687 2688 2689 2690

    Examples:

        .. code-block:: python
2691

Y
yaoxuefeng 已提交
2692
            import paddle
2693
            paddle.enable_static()
H
heqiaozhi 已提交
2694

Y
yaoxuefeng 已提交
2695 2696
            x = paddle.randn(shape=[32,100])
            hidden2 = paddle.static.nn.data_norm(input=x)
H
heqiaozhi 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4
2715 2716
    scale_w_default = 1.0
    bias_default = 0.0
H
heqiaozhi 已提交
2717 2718 2719 2720 2721

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)
2722 2723 2724 2725 2726
    if enable_scale_and_shift:
        scale_w_default = param_attr.get("scale_w", 1.0)
        bias_default = param_attr.get("bias", 0.0)

    # create scale and shift(bias) when enable_scale_and_shift is True
2727
    if name is None:
2728 2729
        name = "dn"
    if enable_scale_and_shift:
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
        scale_w = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.scale_w',
                initializer=Constant(value=float(scale_w_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
        bias = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.bias',
                initializer=Constant(value=float(bias_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
2748
    # create parameter
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )
H
heqiaozhi 已提交
2778 2779 2780 2781 2782 2783

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

2784 2785 2786 2787
    inputs = {
        "X": input,
        "BatchSize": batch_size,
        "BatchSum": batch_sum,
2788
        "BatchSquareSum": batch_square_sum,
2789
    }
2790 2791
    attrs = {
        "epsilon": epsilon,
X
XiangGao 已提交
2792
        "data_layout": data_layout,
2793 2794 2795 2796 2797 2798 2799
        "sync_stats": sync_stats,
        "summary_decay_rate": summary_decay_rate,
    }
    if slot_dim > 0:
        attrs["slot_dim"] = slot_dim
    if enable_scale_and_shift:
        attrs["enable_scale_and_shift"] = enable_scale_and_shift
2800 2801 2802
    if enable_scale_and_shift:
        inputs["scale_w"] = scale_w
        inputs["bias"] = bias
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    helper.append_op(
        type="data_norm",
        inputs=inputs,
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum,
        },
        attrs=attrs,
    )
H
heqiaozhi 已提交
2816 2817 2818 2819

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
2820
@templatedoc()
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
2832
    r"""
2833 2834
    :api_attr: Static Graph

2835 2836 2837 2838
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2839 2840 2841

    The formula is as follows:

Y
yuyang18 已提交
2842
    ..  math::
G
guosheng 已提交
2843

2844
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2845

2846
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2847

2848
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2849

2850 2851 2852 2853 2854
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2855

G
guosheng 已提交
2856
    Args:
2857
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
2858 2859 2860 2861 2862
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2863
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2864 2865 2866 2867
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2868 2869
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2870
            a default :code:`ParamAttr` would be added as scale. The
2871 2872
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2873 2874
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2875
            a default :code:`ParamAttr` would be added as bias. The
2876
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2877
        act(str, optional): Activation to be applied to the output of layer normalization.
2878 2879
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2880 2881

    Returns:
2882
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2883 2884 2885

    Examples:

2886 2887
        .. code-block:: python

2888 2889
            import paddle
            paddle.enable_static()
2890 2891 2892
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
2893
    """
2894 2895 2896
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
2897
    helper = LayerHelper('layer_norm', **locals())
2898 2899 2900
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
2901 2902 2903 2904 2905 2906 2907
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2908 2909 2910 2911 2912 2913 2914 2915 2916
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
2917
        inputs['Scale'] = scale
2918 2919
    else:
        if param_attr:
T
tianshuo78520a 已提交
2920
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
2921
    if shift:
2922 2923 2924 2925 2926 2927
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
2928
        inputs['Bias'] = bias
2929 2930
    else:
        if bias_attr:
T
tianshuo78520a 已提交
2931
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
2932 2933

    # create output
2934 2935 2936 2937 2938 2939
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2940
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
2952 2953 2954 2955

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2956
@templatedoc()
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
def group_norm(
    input,
    groups,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    data_layout='NCHW',
    name=None,
):
D
Dun 已提交
2967
    """
2968 2969
    :api_attr: Static Graph

D
Dun 已提交
2970 2971
    **Group Normalization Layer**

H
haowang101779990 已提交
2972
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
2973

2974
    Parameters:
2975
        input(Tensor): Tensor with dimension greater than 1, the data type is float32 or float64.
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
2988
        act(str, optional): Activation to be applied to the output of group normalization.
2989
        data_layout(str, optional): Specify the data format of the input, and the data format of the output
2990 2991
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
2992
            `[batch_size, input_channels, *]`.
2993 2994
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
2995 2996

    Returns:
2997
        Tensor: A Tensor has same data type and data format with `input`.
D
Dun 已提交
2998 2999

    Examples:
3000
       .. code-block:: python
D
Dun 已提交
3001

3002 3003
            import paddle
            paddle.enable_static()
3004

C
Chen Long 已提交
3005 3006 3007
            data = paddle.static.data(name='data', shape=[2, 8, 32, 32], dtype='float32')
            x = paddle.static.nn.group_norm(input=data, groups=4)
            print(x.shape) # [2, 8, 32, 32]
D
Dun 已提交
3008 3009 3010
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()
3011 3012 3013
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'group_norm'
    )
D
Dun 已提交
3014 3015 3016
    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3017 3018 3019 3020
    if len(input_shape) < 2:
        raise ValueError(
            f"The dimensions of Op(fluid.layers.group_norm)'s input should be more than 1. But received {len(input_shape)}"
        )
3021 3022 3023
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
3024 3025 3026
            + data_layout
            + " but only NCHW or NHWC supported."
        )
3027 3028
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3029
    if param_attr:
3030 3031 3032 3033 3034 3035
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
D
Dun 已提交
3036 3037
        inputs['Scale'] = scale
    if bias_attr:
3038 3039 3040
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
D
Dun 已提交
3041 3042 3043
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3044 3045
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3046 3047
    group_norm_out = helper.create_variable(dtype=dtype)

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout,
        },
    )
D
dengkaipeng 已提交
3062 3063 3064 3065 3066

    return helper.append_activation(group_norm_out)


@templatedoc()
3067
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
3068
    r"""
3069 3070
    :api_attr: Static Graph

D
dengkaipeng 已提交
3071 3072
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3073
    This operation calculates the spectral normalization value of weight parameters of
3074
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3075 3076
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3077

D
dengkaipeng 已提交
3078 3079 3080
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3081
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3082 3083

    Step 2:
T
tianshuo78520a 已提交
3084
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3085 3086
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3087

3088
    .. math::
D
dengkaipeng 已提交
3089 3090 3091 3092 3093 3094

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3095
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3096 3097 3098 3099

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3100

D
dengkaipeng 已提交
3101
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3102

3103

D
dengkaipeng 已提交
3104 3105 3106
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
3107
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
3108 3109 3110
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3111 3112 3113
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3114 3115

    Returns:
C
Chen Long 已提交
3116
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3117
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3118 3119

    Examples:
K
Kaipeng Deng 已提交
3120
       .. code-block:: python
D
dengkaipeng 已提交
3121

3122
            import paddle
K
Kaipeng Deng 已提交
3123

3124
            paddle.enable_static()
C
Chen Long 已提交
3125
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
3126
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
3127
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
3128 3129
    """
    helper = LayerHelper('spectral_norm', **locals())
3130 3131 3132
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
3133 3134 3135
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
3136
    dtype = weight.dtype
D
dengkaipeng 已提交
3137 3138

    # create intput and parameters
3139
    input_shape = weight.shape
3140
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
3141 3142 3143 3144 3145
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
3146 3147 3148
    h = input_shape[dim]
    w = np.prod(input_shape) // h

3149 3150 3151 3152 3153 3154
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
3155
    u.stop_gradient = True
3156 3157 3158 3159 3160 3161
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
3162
    v.stop_gradient = True
D
dengkaipeng 已提交
3163

3164 3165 3166 3167 3168 3169 3170
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
3171
    # create output
3172
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3173

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
3186

3187
    return out
D
Dun 已提交
3188 3189


C
caoying03 已提交
3190
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3191
    """
3192

Y
yangyaming 已提交
3193
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3194 3195

    Args:
3196 3197 3198
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3199 3200
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3201 3202
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3203
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3204
            output Tensor. The result tensor will have one fewer dimension
3205 3206 3207 3208
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
3209 3210

    Returns:
3211 3212
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
3213

3214 3215
    Raises:
        TypeError, if out data type is different with the input data type.
3216

G
guosheng 已提交
3217 3218 3219
    Examples:
        .. code-block:: python

3220
            import paddle.fluid as fluid
3221 3222
            import paddle
            paddle.enable_static()
G
guosheng 已提交
3223 3224 3225
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3226
            # Each example is followed by the corresponding output tensor.
3227
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3228 3229 3230 3231
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3232

3233
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3234 3235
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3236
            # Each example is followed by the corresponding output tensor.
3237
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3238 3239
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
3240

G
guosheng 已提交
3241
    """
3242 3243
    reduce_all, dim = _get_reduce_dim(dim, input)

3244
    if in_dygraph_mode():
3245
        return _C_ops.sum(input, dim, None, keep_dim)
3246
    elif _in_legacy_dygraph():
3247 3248 3249
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
3250
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
3251
    check_variable_and_dtype(
3252 3253 3254 3255 3256
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
3257
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3258
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3259 3260 3261 3262 3263 3264
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
3265
    return out
G
guosheng 已提交
3266 3267


3268
@deprecated(since="2.0.0", update_to="paddle.mean")
C
caoying03 已提交
3269
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3270
    """
Y
Yibing Liu 已提交
3271
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3272 3273

    Args:
3274 3275 3276
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
3277 3278
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3279
            must be in the range :math:`[-rank(input), rank(input))`. If
3280
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3281
            :math:`rank(input) + dim[i]`.
3282
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3283
            output Tensor. The result tensor will have one fewer dimension
3284
            than the :attr:`input` unless :attr:`keep_dim` is true, default
3285 3286 3287
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
3288

G
guosheng 已提交
3289
    Returns:
3290 3291
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
3292

3293 3294
    Raises:
        TypeError, if out data type is different with the input data type.
3295

G
guosheng 已提交
3296 3297 3298
    Examples:
        .. code-block:: python

3299
            import paddle
3300
            import paddle.fluid as fluid
3301 3302
            paddle.enable_static()

G
guosheng 已提交
3303 3304 3305
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
3306
            # Each example is followed by the corresponding output tensor.
3307
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3308 3309 3310
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
3311
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3312

3313
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3314 3315
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
3316
            # Each example is followed by the corresponding output tensor.
3317
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3318 3319
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3320
    """
3321

3322
    return paddle.mean(x=input, axis=dim, keepdim=keep_dim, name=name)
3323 3324


Z
zhoukunsheng 已提交
3325 3326
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
3327

3328
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
3329 3330

    Args:
3331
        input (Tensor): the input tensor, it's data type should be `bool`.
3332
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
3333 3334 3335
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
3336
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None.
Z
zhoukunsheng 已提交
3337 3338
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3339
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
3340
        name(str|None): A name for this layer(optional). If set None, the layer
3341
                       will be named automatically. The default value is None.
Z
zhoukunsheng 已提交
3342

3343
    Returns:
3344
        Tensor, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
3345 3346 3347

    Examples:
        .. code-block:: python
3348

3349
            import paddle
3350
            import paddle.fluid as fluid
3351 3352 3353
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
3354 3355 3356
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
3357 3358
            x = fluid.layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = fluid.layers.cast(x, 'bool')
3359

3360 3361 3362
            out = fluid.layers.reduce_all(x)  # False
            out = fluid.layers.reduce_all(x, dim=0)  # [True, False]
            out = fluid.layers.reduce_all(x, dim=-1)  # [False, True]
3363 3364
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

3365
            out = fluid.layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
3366
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
3367 3368

    """
3369 3370
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3371 3372

    if in_dygraph_mode():
3373
        return _C_ops.all(input, dim if dim is not None else [], keep_dim)
3374

3375
    check_variable_and_dtype(input, 'input', ('bool'), 'reduce_all')
Z
zhoukunsheng 已提交
3376 3377
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3378 3379 3380 3381 3382
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
3383
            'dim': dim if dim is not None and dim != [] else [0],
3384 3385
            'keep_dim': keep_dim,
            'reduce_all': True
3386
            if dim is None or dim == [] or len(dim) == len(input.shape)
3387 3388 3389
            else False,
        },
    )
Z
zhoukunsheng 已提交
3390 3391 3392 3393 3394
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
3395
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
3396 3397

    Args:
3398
        input (Tensor): the input tensor, it's data type should be `bool`.
3399 3400
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
3401 3402
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
3403
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None.
Z
zhoukunsheng 已提交
3404 3405
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3406
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
3407
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
3408

3409
    Returns:
3410
        Tensor, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
3411 3412 3413

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
3414

3415
            import paddle
3416
            import paddle.fluid as fluid
3417 3418 3419
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
3420 3421 3422
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
3423 3424
            x = fluid.layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = fluid.layers.cast(x, 'bool')
3425

3426 3427 3428
            out = fluid.layers.reduce_any(x)  # True
            out = fluid.layers.reduce_any(x, dim=0)  # [True, False]
            out = fluid.layers.reduce_any(x, dim=-1)  # [True, False]
3429 3430
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

3431
            out = fluid.layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
3432
                                     keep_dim=True)  # [[True], [False]]
3433
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
3434 3435

    """
3436
    check_variable_and_dtype(input, 'input', ('bool'), 'reduce_any')
Z
zhoukunsheng 已提交
3437 3438 3439 3440
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3441 3442 3443 3444 3445
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
3446
            'dim': dim if dim is not None and dim != [] else [0],
3447 3448
            'keep_dim': keep_dim,
            'reduce_all': True
3449
            if dim is None or dim == [] or len(dim) == len(input.shape)
3450 3451 3452
            else False,
        },
    )
3453 3454 3455
    return out


C
caoying03 已提交
3456
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3457
    """
3458
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
3459 3460

    Args:
3461
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
3462
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
3463
            indicates the number of equal sized sub-Tensors that the ``input``
3464
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
3465 3466 3467 3468 3469
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
3470
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
3471
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
3472 3473

    Returns:
3474
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
3475

3476
    Example:
G
guosheng 已提交
3477 3478
        .. code-block:: python

3479 3480
            import paddle.fluid as fluid

3481
            # input is a Tensor which shape is [3, 9, 5]
3482
            input = fluid.data(
3483 3484
                 name="input", shape=[3, 9, 5], dtype="float32")

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
3499

3500 3501 3502 3503 3504 3505
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
3506

G
guosheng 已提交
3507
    """
J
Jiabin Yang 已提交
3508
    if _non_static_mode():
3509 3510 3511
        num = None
        attrs = ()

S
songyouwei 已提交
3512 3513
        if isinstance(dim, Variable):
            dim = dim.numpy()
3514
            dim = dim.item(0)
W
wangzhen38 已提交
3515
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
3516
        dim = (len(input.shape) + dim) if dim < 0 else dim
3517
        attrs += ('axis', dim)
3518 3519 3520

        if isinstance(num_or_sections, int):
            num = num_or_sections
3521
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
3522
        elif isinstance(num_or_sections, (list, tuple)):
3523
            num = len(num_or_sections)
L
Leo Chen 已提交
3524
            if utils._contain_var(num_or_sections):
3525 3526
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
3527 3528 3529
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
3530
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
3531
            else:
3532
                attrs += ('sections', list(num_or_sections))
3533 3534
        else:
            raise TypeError(
3535
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
3536 3537
                "received %s." % (type(num_or_sections))
            )
3538
        if in_dygraph_mode():
C
Charles-hit 已提交
3539 3540 3541 3542
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
3543 3544
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
3545
            _legacy_C_ops.split(input, out, *attrs)
3546
            return out
L
Leo Chen 已提交
3547

3548
    check_variable_and_dtype(
3549 3550 3551 3552 3553
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
3554 3555 3556 3557
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
3558

G
guosheng 已提交
3559
    helper = LayerHelper('split', **locals())
3560

G
guosheng 已提交
3561
    input_shape = input.shape
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
3573
                assert isinstance(dim_size, int)
3574 3575 3576
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
3577 3578 3579
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
3580 3581
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
3582 3583 3584
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
3585 3586 3587 3588 3589 3590 3591
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
3592
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
3593 3594 3595
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
3596 3597
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
3598
        if isinstance(dim, int) and input_shape[dim] > 0:
3599 3600 3601 3602 3603 3604
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
3605 3606
        num = num_or_sections
    else:
3607
        if isinstance(dim, int) and input_shape[dim] > 0:
3608 3609 3610
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
3611
        num = len(num_or_sections)
3612
        attrs['sections'] = list(
3613 3614 3615 3616 3617
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
3618
        if utils._contain_var(num_or_sections):
3619
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
3620 3621
                num_or_sections
            )
3622

G
guosheng 已提交
3623
    outs = [
X
Xin Pan 已提交
3624
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3625 3626
        for i in range(num)
    ]
3627 3628 3629
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
3630
    return outs
C
caoying03 已提交
3631 3632 3633


def l2_normalize(x, axis, epsilon=1e-12, name=None):
3634
    r"""
3635

R
ruri 已提交
3636
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
3637 3638
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3639
    .. math::
3640 3641

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3642 3643 3644 3645 3646

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3647
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
3648
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3649 3650
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3651
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
3652
            the default value is 1e-12.
3653
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
3654

C
caoying03 已提交
3655
    Returns:
R
ruri 已提交
3656
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
3657 3658

    Examples:
3659

3660 3661
    .. code-block:: python
        :name: code-example1
3662

3663
        import paddle
3664

3665 3666
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
3667
        print(out)
R
ruri 已提交
3668

3669 3670 3671
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
3672

C
caoying03 已提交
3673
    """
F
fengjiayi 已提交
3674 3675
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
3676
    if _non_static_mode():
3677 3678 3679
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
3680 3681 3682
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
3683 3684 3685
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
3686

3687
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
3688 3689
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
3690 3691 3692 3693 3694 3695 3696 3697 3698
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
3699
    return out
3700 3701


S
ShenLiang 已提交
3702
@deprecated(since="2.0.0", update_to="paddle.matmul")
S
sneaxiy 已提交
3703
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3704
    """
Y
ying 已提交
3705 3706 3707 3708
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3709

C
chengduoZH 已提交
3710
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3711
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3712

3713 3714 3715 3716 3717
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3718
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3719

C
chengduoZH 已提交
3720
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3721
      performs in the following way.
G
guosheng 已提交
3722

3723
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3724
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3725
        last two dimensions and a batched matrix multiply supporting broadcast
3726
        applies on the two tensors.
G
guosheng 已提交
3727

Y
ying 已提交
3728 3729
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3730
    removed after matrix multiplication.
G
guosheng 已提交
3731 3732 3733

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3734 3735 3736
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3737
        alpha (float): The scale of output. Default 1.0.
3738
        name(str|None): A name for this layer(optional). If set None, the layer
3739
            will be named automatically.
G
guosheng 已提交
3740 3741

    Returns:
石晓伟 已提交
3742
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
3743

G
guosheng 已提交
3744 3745 3746
    Examples:
        .. code-block:: python

3747
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3748
            # x: [B, ..., M, K], y: [B, ..., K, N]
3749
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3750

3751
            # x: [B, M, K], y: [B, K, N]
3752
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3753

3754
            # x: [B, M, K], y: [K, N]
3755
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3756

3757
            # x: [M, K], y: [K, N]
3758
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3759 3760

            # x: [B, M, K], y: [K]
3761
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
3762

3763
            # x: [K], y: [K]
3764
            # fluid.layers.matmul(x, y)  # out: [1]
3765

Y
ying 已提交
3766
            # x: [M], y: [N]
3767 3768
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

3769
            import paddle
3770
            import paddle.fluid as fluid
3771 3772
            paddle.enable_static()

3773 3774 3775
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
3776
    """
J
Jiabin Yang 已提交
3777
    if _non_static_mode():
S
ShenLiang 已提交
3778
        out = _varbase_creator(dtype=x.dtype)
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
        _legacy_C_ops.matmul(
            x,
            y,
            out,
            'transpose_X',
            transpose_x,
            'transpose_Y',
            transpose_y,
            'alpha',
            float(alpha),
        )
S
ShenLiang 已提交
3790 3791 3792 3793 3794
        return out

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
3795 3796 3797
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul'
            )
S
ShenLiang 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
3811 3812 3813 3814 3815 3816
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1), (
                "After performing an optional transpose, Input X's width should be "
                "equal to Y's width for multiplication "
                "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                % (x_shape, y_shape)
            )
S
ShenLiang 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
3828 3829
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
S
ShenLiang 已提交
3830

W
wanghuancoder 已提交
3831 3832 3833 3834 3835 3836
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

S
ShenLiang 已提交
3837 3838 3839 3840
    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3841 3842 3843 3844 3845 3846
    helper.append_op(
        type='matmul',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
S
ShenLiang 已提交
3847
    return out
3848 3849


3850
def topk(input, k, name=None):
Q
qingqing01 已提交
3851
    """
3852
    :alias_main: paddle.topk
3853 3854
        :alias: paddle.topk,paddle.tensor.topk,paddle.tensor.search.topk
        :old_api: paddle.fluid.layers.topk
3855

3856
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
3857 3858
    for the last dimension.

3859 3860
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
3861 3862 3863 3864

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3865 3866
    .. code-block:: text

3867 3868 3869 3870 3871
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
3872 3873 3874 3875
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

3876
          Output:
F
fengjiayi 已提交
3877
            The first output:
3878 3879
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
3880 3881 3882 3883
                      [10, 25],
                      [6, 10]]

            The second output:
3884 3885
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
3886 3887 3888
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3889
    Args:
3890 3891 3892 3893
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
3894 3895

    Returns:
3896 3897
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
3898

F
fengjiayi 已提交
3899
    Raises:
3900
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
3901 3902 3903 3904

    Examples:
        .. code-block:: python

3905
            import paddle.fluid as fluid
3906
            import paddle.fluid.layers as layers
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
3920
    """
J
Jiabin Yang 已提交
3921
    if _non_static_mode():
3922
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
3923
        out, indices = _legacy_C_ops.top_k(input, 'k', _k)
3924 3925 3926
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
3927

3928 3929
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
3930 3931 3932 3933 3934
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

3935 3936 3937 3938
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

3939 3940 3941 3942 3943 3944
    helper.append_op(
        type="top_k",
        inputs=inputs,
        outputs={"Out": [values], "Indices": [indices]},
        attrs=attrs,
    )
Q
qingqing01 已提交
3945 3946 3947 3948 3949
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3950 3951 3952
def ctc_greedy_decoder(
    input, blank, input_length=None, padding_value=0, name=None
):
3953
    r"""
S
SunGaofeng 已提交
3954
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
3955

S
SunGaofeng 已提交
3956
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
3957 3958 3959
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3960

S
SunGaofeng 已提交
3961
    This op is implemented in two modes: lod and padding, either of them can be used.
3962
    The input can be either LoDTensor or Tensor, corresponding to lod and padding
S
SunGaofeng 已提交
3963 3964
    mode respectively.

3965 3966 3967 3968 3969
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
3970
        (1) for lod mode:
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3982
        input.lod = [[4, 4]]
M
minqiyang 已提交
3983

W
whs 已提交
3984
        Computation:
3985

W
whs 已提交
3986 3987 3988 3989 3990 3991
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
3992 3993 3994 3995 3996

        output.data = [[2],
                       [1],
                       [3]]

3997
        output.lod = [[2, 1]]
3998

S
SunGaofeng 已提交
3999
        (2) for padding mode:
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
4016
        step2: Change the argmax result to use padding mode, then argmax result is
4017 4018 4019 4020 4021 4022 4023 4024 4025
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4026
    Parameters:
4027

4028 4029
        input(Variable): the probabilities of variable-length sequences. When in lod mode,
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1]
Y
ying 已提交
4030
                         where Lp is the sum of all input sequences' length and
4031 4032
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4033
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4034
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4035
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4036
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4037 4038
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4039
        padding_value(int): padding value.
4040 4041 4042
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
4043 4044

    Returns:
S
SunGaofeng 已提交
4045 4046 4047 4048 4049
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

4050
        For padding mode, returns a tuple of (output, output_length), which was described as below:
S
SunGaofeng 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

4062 4063 4064 4065

    Examples:
        .. code-block:: python

4066
            # for lod mode
S
SunGaofeng 已提交
4067
            import paddle.fluid as fluid
S
SunGaofeng 已提交
4068
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
4069
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
4070 4071

            # for padding mode
S
SunGaofeng 已提交
4072 4073
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
4074 4075 4076
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
4077
    """
4078 4079 4080
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'ctc_greedy_decoder'
    )
4081

4082
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4083
    _, topk_indices = topk(input, k=1)
4084 4085

    # ctc align op
X
Xin Pan 已提交
4086
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4087 4088

    if input_length is None:
4089 4090 4091 4092 4093 4094
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True, "blank": blank},
        )
4095 4096 4097 4098 4099
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input], "InputLength": [input_length]},
            outputs={"Output": [ctc_out], "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value,
            },
        )
4110
        return ctc_out, ctc_out_len
4111 4112


4113 4114 4115 4116 4117 4118 4119 4120 4121
def im2sequence(
    input,
    filter_size=1,
    stride=1,
    padding=0,
    input_image_size=None,
    out_stride=1,
    name=None,
):
4122
    r"""
4123 4124
    :api_attr: Static Graph

4125
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
4126 4127 4128
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
4129 4130
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4131 4132 4133

    .. math::

L
Liufang Sang 已提交
4134 4135 4136 4137
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
4138

L
Liufang Sang 已提交
4139
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
4140

L
Liufang Sang 已提交
4141 4142
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
4143

L
Liufang Sang 已提交
4144 4145 4146
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
4147

L
Liufang Sang 已提交
4148 4149
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
4150

L
Liufang Sang 已提交
4151 4152 4153 4154 4155
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
4156
            padding_up = padding_down = padding_left = padding_right = padding.
L
Liufang Sang 已提交
4157
            Default is 0.
4158

L
Liufang Sang 已提交
4159 4160 4161 4162
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
4163
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
4164 4165 4166 4167 4168
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
4169 4170 4171

    Returns:
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \
L
Liufang Sang 已提交
4172 4173 4174
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4202 4203 4204
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4217
            output.dims = {8, 8}
4218

4219
            output.lod = [[4, 4]]
4220

T
Tink_Y 已提交
4221
    Examples:
4222 4223 4224

        .. code-block:: python

B
Bai Yifan 已提交
4225
            import paddle.fluid as fluid
4226 4227
            import paddle
            paddle.enable_static()
L
Liufang Sang 已提交
4228
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
4229
                                     dtype='float32')
4230
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
4231 4232
                input=data, stride=[1, 1], filter_size=[2, 2])

4233 4234

    """
4235 4236 4237
    assert (
        not _non_static_mode()
    ), "sequence layer is not supported in dygraph mode yet."
W
wanghaoshuang 已提交
4238

4239 4240
    check_variable_and_dtype(input, 'input', ['float32'], 'im2sequence')

W
wanghaoshuang 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4250
    inputs = {"X": input}
4251
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
4252 4253 4254 4255 4256
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4257
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4258
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4259 4260 4261
    helper.append_op(
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
4262
    return out
4263 4264


Y
yuyang18 已提交
4265
@templatedoc()
4266
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4267
    """
4268 4269
    :api_attr: Static Graph

Y
yuyang18 已提交
4270
    ${comment}
4271 4272

    Args:
Y
yuyang18 已提交
4273
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4274 4275
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4276 4277 4278 4279 4280
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4281
        ${out_comment}.
4282 4283

    Examples:
B
Bai Yifan 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
4296 4297
    """
    helper = LayerHelper('row_conv', **locals())
4298
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
4299
    dtype = helper.input_dtype()
4300
    filter_shape = [future_context_size + 1, input.shape[-1]]
4301 4302 4303
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
4304
    out = helper.create_variable_for_type_inference(dtype)
4305 4306 4307 4308 4309
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
4310
    return helper.append_activation(out)
4311 4312


Y
yuyang18 已提交
4313
@templatedoc()
4314
def multiplex(inputs, index, name=None):
4315
    """
Y
yuyang18 已提交
4316

4317
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
4318

4319
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
4320

4321
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
4322

4323
    For Example:
L
lujun 已提交
4324

4325
            .. code-block:: text
L
lujun 已提交
4326

4327
                Given:
L
lujun 已提交
4328

4329 4330 4331 4332
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
4333

4334
                index = [[3],[0],[1],[2]]
L
lujun 已提交
4335

4336 4337 4338 4339
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
4340 4341


4342
    Args:
4343 4344 4345 4346 4347
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
4348
    Returns:
4349
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
4350 4351

    Examples:
4352

X
xuezhong 已提交
4353 4354
        .. code-block:: python

4355
            import paddle
4356 4357 4358
            import numpy as np
            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
4359 4360 4361
            inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
            index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32))
            res = paddle.multiplex(inputs, index)
4362
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
4363

4364
    """
4365 4366

    if _in_legacy_dygraph():
4367
        return _legacy_C_ops.multiplex(index, inputs)
4368
    if in_dygraph_mode():
4369
        return _C_ops.multiplex(inputs, index)
4370 4371
    helper = LayerHelper('multiplex', **locals())

4372 4373 4374
    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
4375 4376
            "inputs should be a list object with at least 2 elements."
        )
4377
    for id, x in enumerate(inputs):
4378 4379 4380 4381 4382 4383
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'multiplex',
        )
4384
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')
4385 4386

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4387 4388 4389 4390 4391
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs, 'Ids': index},
        outputs={'Out': [out]},
    )
4392
    return out
X
xuezhong 已提交
4393 4394


4395 4396
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
4397

Y
Yibing Liu 已提交
4398 4399
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4400
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
4401
    and then sums all the losses. So the shape of output Variable is
4402
    [batch_size, 1].
4403

4404 4405
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4406
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4407
            A LoDTensor or Tensor with type float32.
4408
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4409
            L1 loss op with same shape as :attr:`x`.
4410
            A LoDTensor or Tensor with type float32.
4411
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4412 4413
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4414
            by this tensor element by element.
4415
            A Tensor with type float32.
4416
        outside_weight (Variable|None): A tensor with rank at least 2. This
4417 4418
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4419
            element by element.
4420
            A Tensor with type float32.
4421
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4422 4423
           scalar with default value 1.0.

4424
    Returns:
4425
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
4426 4427 4428 4429

    Examples:
        .. code-block:: python

4430
            import paddle.fluid as fluid
4431
            import numpy as np
4432 4433
            import paddle
            paddle.enable_static()
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
4445

4446 4447 4448 4449
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

4450
    """
4451 4452
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'smooth_l1_loss')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'smooth_l1_loss')
4453

4454
    helper = LayerHelper('smooth_l1_loss', **locals())
4455

X
Xin Pan 已提交
4456 4457
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight,
        },
        outputs={'Diff': diff, 'Out': loss},
        attrs={'sigma': sigma if sigma is not None else 1.0},
    )
4469
    return loss
4470 4471


4472
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
4473
def one_hot(input, depth, allow_out_of_range=False):
4474
    """
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
4513
                        [0., 1., 0., 0.],
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
4526
            The second dimension in X is 5, which is greater than depth.
4527 4528
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
4529 4530

    Args:
4531 4532 4533
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
4534
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
4535
            is word id, depth is generally the dictionary size.
4536
        allow_out_of_range(bool): A bool value indicating whether the input
4537 4538 4539 4540
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
4541 4542

    Returns:
4543
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
4544 4545

    Examples:
C
caoying03 已提交
4546
        .. code-block:: python
4547

4548
            import paddle
4549
            import paddle.fluid as fluid
4550 4551
            paddle.enable_static()

4552 4553 4554
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
4555
    """
J
Jiabin Yang 已提交
4556
    if _non_static_mode():
S
songyouwei 已提交
4557 4558 4559
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
4560 4561
                1,
            ), "depth of type Variable should have shape [1]"
4562
            depth = depth.item(0)
4563 4564 4565
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
4566 4567
        out.stop_gradient = True
        return out
4568

4569
    helper = LayerHelper("one_hot", **locals())
4570
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
4571
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
4572
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4573

4574 4575
    if not isinstance(depth, Variable):
        # user attribute
4576
        inputs = {'X': input}
Y
Yi Liu 已提交
4577
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
4578
    else:
4579 4580 4581
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
4582 4583 4584
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
4585
    one_hot_out.stop_gradient = True
4586
    return one_hot_out
Y
Yu Yang 已提交
4587 4588


Y
Yu Yang 已提交
4589
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4590
    """
4591 4592
    :api_attr: Static Graph

4593 4594
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
4595
    and the step size is 1.
Y
Yu Yang 已提交
4596 4597

    Args:
Y
Yibing Liu 已提交
4598 4599 4600
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
4601

4602
    Returns:
Y
Yibing Liu 已提交
4603
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
4604 4605 4606 4607

    Examples:
        .. code-block:: python

4608
           import paddle.fluid as fluid
4609 4610
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
4611
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
4612
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
4613 4614
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4615 4616
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4617
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
4618 4619 4620 4621
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
4622 4623
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
4624
    if is_new_var:
4625 4626 4627
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
4628
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4629 4630
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4631
            outputs={'Out': [counter]},
4632 4633
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
4634 4635 4636
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4637 4638


4639
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4640
    """
4641 4642 4643
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
4644

H
haowang101779990 已提交
4645

4646
    .. code-block:: text
H
haowang101779990 已提交
4647

4648
        Case1:
H
haowang101779990 已提交
4649

4650
          Input:
H
haowang101779990 已提交
4651 4652
            X.shape = (1, 3, 1, 5)
            axes = [0]
4653
          Output:
H
haowang101779990 已提交
4654 4655
            Out.shape = (3, 1, 5)

4656
        Case2:
H
haowang101779990 已提交
4657

4658
          Input:
H
haowang101779990 已提交
4659 4660
            X.shape = (1, 3, 1, 5)
            axes = []
4661
          Output:
H
haowang101779990 已提交
4662
            Out.shape = (3, 5)
M
minqiyang 已提交
4663

4664 4665 4666 4667 4668 4669 4670 4671
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
4672
    Args:
4673
        input (Variable): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
4674 4675 4676 4677
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
4678 4679

    Returns:
4680
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
4681 4682 4683 4684

    Examples:
        .. code-block:: python

4685
            import paddle.fluid as fluid
4686
            import paddle.fluid.layers as layers
4687 4688 4689 4690
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
4691
    """
4692
    if in_dygraph_mode():
4693
        return _C_ops.squeeze(input, axes)
4694
    if _in_legacy_dygraph():
4695
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
L
Leo Chen 已提交
4696 4697
        return out

Y
Yibing Liu 已提交
4698
    helper = LayerHelper("squeeze", **locals())
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
    check_type(axes, 'axis/axes', (list, tuple, Variable), 'squeeze')

    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes
X
Xin Pan 已提交
4726 4727
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
4728 4729 4730 4731 4732 4733
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
4734

4735 4736 4737
    return out


4738
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4739
    """
4740
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
4741 4742
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4743

M
minqiyang 已提交
4744
    For example:
H
haowang101779990 已提交
4745 4746 4747

    .. code-block:: text

M
minqiyang 已提交
4748
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4749
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4750

Y
Yibing Liu 已提交
4751
    Args:
4752
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
4753
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
4754
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4755 4756

    Returns:
4757
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
4758 4759 4760 4761

    Examples:
        .. code-block:: python

4762 4763 4764
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
4765

Y
Yibing Liu 已提交
4766
    """
J
Jiabin Yang 已提交
4767
    if _non_static_mode():
L
Leo Chen 已提交
4768 4769 4770
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
4771
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
4772 4773 4774 4775 4776
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
4777
        if _in_legacy_dygraph():
4778
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
4779
            return out
4780
        return _C_ops.unsqueeze(input, axes)
4781 4782

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
4810
        if utils._contain_var(axes):
4811
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
4812 4813 4814
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
4815 4816
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
4817 4818 4819 4820 4821 4822
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
4823

4824 4825
    return out

4826

Y
yangyaming 已提交
4827
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4828
    """
Y
Yibing Liu 已提交
4829
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4830 4831 4832 4833
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
4834
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4835 4836 4837 4838 4839 4840

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4841
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4842 4843 4844
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4845
            target_lod: [4, 2]
Y
yangyaming 已提交
4846 4847

            then we get a 1-level LoDTensor:
4848
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4849 4850 4851 4852 4853 4854
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4855
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4856 4857 4858 4859
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4860
                y.data = [[2, 4]]
Y
yangyaming 已提交
4861 4862 4863
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4864
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4865 4866 4867 4868 4869 4870
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4871
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4872 4873 4874 4875
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4876
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4877 4878 4879 4880
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4881
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4882 4883 4884 4885
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
4886
        x (Variable): Input variable which could be a Tensor or LoDTensor.
4887
                      The data type should be int32, int64, float32 or float64.
4888 4889
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
4890 4891
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
4892
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4893 4894

    Returns:
Y
Yibing Liu 已提交
4895
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4896 4897

    Raises:
Y
Yibing Liu 已提交
4898
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4899 4900 4901 4902

    Examples:
        .. code-block:: python

4903
            import paddle.fluid as fluid
4904 4905 4906
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
4907
    """
4908 4909 4910
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
4911
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
4912
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
4913
    if y is not None:
4914
        check_type(y, 'y', (Variable), 'lod_reset')
4915 4916 4917 4918
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
4919
    elif target_lod is not None:
4920 4921 4922 4923 4924 4925
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
4926
    else:
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
4952
        x (Variable): Input variable which could be a tensor or LoDTensor.
4953
                      The data type should be int32, int64, float32 or float64.
4954
        level (list|tuple|Variable, optional): The LoD level to be appended into LoD of x.
4955 4956
                                               If level is variable and its lod level>0, the data type can be any type.
                                               If level is variable and its lod level=0, the data type should be int32.
4957 4958 4959 4960 4961
    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
4962

4963 4964 4965 4966 4967 4968 4969 4970 4971
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    if x is None:
        raise ValueError("Input(x) can't be None.")
4972 4973 4974
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

4975 4976 4977
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_append'
    )
4978

4979 4980
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4981 4982 4983 4984 4985 4986

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
4987
        # TODO: check y.lod_level = 0 dtype
4988 4989
    else:
        attrs['target_lod'] = level
4990 4991 4992
    helper.append_op(
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
Y
yangyaming 已提交
4993
    return out
D
dragonwarrior 已提交
4994 4995


4996
def pad(x, paddings, pad_value=0.0, name=None):
4997
    r"""
4998
    :alias_main: paddle.nn.functional.pad
4999 5000
        :alias: paddle.nn.functional.pad,paddle.nn.functional.common.pad
        :old_api: paddle.fluid.layers.pad
5001

S
SunGaofeng 已提交
5002 5003
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
5004

S
SunGaofeng 已提交
5005 5006 5007 5008
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:
            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
5027
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
5028
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
5029
                         width before and after each dimension in turn.
5030
                         The length of :attr:`paddings` must be equal to
G
guosheng 已提交
5031 5032
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
5033 5034
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
5035
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
5036 5037

    Returns:
S
SunGaofeng 已提交
5038 5039 5040 5041
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
5042 5043 5044

    Examples:
        .. code-block:: python
G
guosheng 已提交
5045

5046
            # x is a rank 2 tensor variable
S
SunGaofeng 已提交
5047
            import paddle.fluid as fluid
5048 5049
            x = fluid.data(name='data', shape=[300, 300], dtype='float32')
            out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.)
G
guosheng 已提交
5050
    """
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        "pad",
    )
5065

5066 5067 5068 5069
    check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
    if isinstance(pad_value, int):
        pad_value = float(pad_value)

5070 5071
    helper = LayerHelper('pad', **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5072
    out = helper.create_variable_for_type_inference(dtype)
5073 5074 5075 5076 5077 5078
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings, 'pad_value': pad_value},
    )
G
guosheng 已提交
5079
    return out
5080 5081


W
wopeizl 已提交
5082
@templatedoc()
5083 5084 5085 5086 5087 5088 5089 5090 5091
def roi_pool(
    input,
    rois,
    pooled_height=1,
    pooled_width=1,
    spatial_scale=1.0,
    rois_num=None,
    name=None,
):
W
wopeizl 已提交
5092
    """
5093

5094
    This operator implements the roi_pooling layer.
5095
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
5096

5097
    The operator has three steps:
5098

5099 5100 5101
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
5102

5103
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
5104

W
wopeizl 已提交
5105
    Args:
5106 5107 5108 5109 5110
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
5111 5112 5113 5114 5115
        rois_num (Tensor): The number of RoIs in each image. Default: None
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

5116

W
wopeizl 已提交
5117
    Returns:
5118
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
5119 5120


W
wopeizl 已提交
5121
    Examples:
5122

5123
    ..  code-block:: python
5124

5125 5126
        import paddle.fluid as fluid
        import numpy as np
5127 5128
        import paddle
        paddle.enable_static()
5129

5130
        DATATYPE='float32'
5131

5132 5133
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
5134

5135 5136
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
5137
        rois_num_data = np.array([2]).astype('int32')
F
FDInSky 已提交
5138

5139 5140
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
5141
        rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32')
F
FDInSky 已提交
5142

5143
        pool_out = fluid.layers.roi_pool(
5144 5145
                input=x,
                rois=rois,
5146 5147
                pooled_height=1,
                pooled_width=1,
F
FDInSky 已提交
5148
                spatial_scale=1.0,
5149
                rois_num=rois_num)
5150

5151
        exe = fluid.Executor(place)
5152
        out, = exe.run(feed={'input':input_data ,'roi':roi_data, 'rois_num': rois_num_data}, fetch_list=[pool_out.name])
5153 5154
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
5155
    """
J
Jiabin Yang 已提交
5156
    if _non_static_mode():
5157 5158 5159
        assert (
            rois_num is not None
        ), "rois_num should not be None in dygraph mode."
5160
        pool_out, argmaxes = _legacy_C_ops.roi_pool(
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
            input,
            rois,
            rois_num,
            "pooled_height",
            pooled_height,
            "pooled_width",
            pooled_width,
            "spatial_scale",
            spatial_scale,
        )
5171 5172
        return pool_out, argmaxes

5173 5174
    check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool')
    check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool')
W
wopeizl 已提交
5175 5176 5177 5178
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5179 5180 5181 5182 5183 5184 5185

    inputs = {
        "X": input,
        "ROIs": rois,
    }
    if rois_num is not None:
        inputs['RoisNum'] = rois_num
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
    helper.append_op(
        type="roi_pool",
        inputs=inputs,
        outputs={"Out": pool_out, "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
        },
    )
W
wopeizl 已提交
5196
    return pool_out
W
whs 已提交
5197 5198


J
jerrywgz 已提交
5199
@templatedoc()
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
def roi_align(
    input,
    rois,
    pooled_height=1,
    pooled_width=1,
    spatial_scale=1.0,
    sampling_ratio=-1,
    rois_num=None,
    name=None,
):
J
jerrywgz 已提交
5210
    """
5211

J
jerrywgz 已提交
5212 5213 5214 5215
    ${comment}

    Args:
        input (Variable): ${x_comment}
5216
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
5217 5218
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...],
W
wangguanzhong 已提交
5219
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
F
FDInSky 已提交
5220
            right coordinates.
W
wangguanzhong 已提交
5221 5222 5223 5224
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
5225
        rois_num (Tensor): The number of RoIs in each image. Default: None
5226 5227 5228
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
J
jerrywgz 已提交
5229 5230

    Returns:
W
wangguanzhong 已提交
5231 5232 5233 5234 5235
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
5236 5237 5238
    Examples:
        .. code-block:: python

5239
            import paddle.fluid as fluid
5240 5241 5242
            import paddle
            paddle.enable_static()

5243 5244 5245 5246
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
5247
            rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32')
5248 5249 5250
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5251 5252
                                               pooled_width=7,
                                               spatial_scale=0.5,
F
FDInSky 已提交
5253
                                               sampling_ratio=-1,
5254
                                               rois_num=rois_num)
J
jerrywgz 已提交
5255
    """
5256
    if in_dygraph_mode():
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
        assert (
            rois_num is not None
        ), "rois_num should not be None in dygraph mode."
        return _C_ops.roi_align(
            input,
            rois,
            rois_num,
            pooled_height,
            pooled_width,
            spatial_scale,
            sampling_ratio,
            False,
        )
5270
    if _in_legacy_dygraph():
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
        assert (
            rois_num is not None
        ), "rois_num should not be None in dygraph mode."
        align_out = _legacy_C_ops.roi_align(
            input,
            rois,
            rois_num,
            "pooled_height",
            pooled_height,
            "pooled_width",
            pooled_width,
            "spatial_scale",
            spatial_scale,
            "sampling_ratio",
            sampling_ratio,
        )
5287 5288
        return align_out

5289 5290 5291
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'roi_align'
    )
5292
    check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'roi_align')
J
jerrywgz 已提交
5293 5294
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5295
    align_out = helper.create_variable_for_type_inference(dtype)
5296 5297 5298 5299 5300 5301
    inputs = {
        "X": input,
        "ROIs": rois,
    }
    if rois_num is not None:
        inputs['RoisNum'] = rois_num
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
    helper.append_op(
        type="roi_align",
        inputs=inputs,
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio,
        },
    )
J
jerrywgz 已提交
5313 5314 5315
    return align_out


5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
def image_resize(
    input,
    out_shape=None,
    scale=None,
    name=None,
    resample='BILINEAR',
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
5327
    """
5328

R
ruri 已提交
5329
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
5330

5331 5332
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
5333 5334
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
T
tianshuo78520a 已提交
5335
    and the resizing only applies on the three dimensions(depth, height and width).
5336

5337
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
5338 5339
    future and only use :attr:`out_shape` instead.

5340
    Supporting resample methods:
5341
        'LINEAR' : Linear interpolation
Q
update  
qiaolongfei 已提交
5342

5343
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
5344

K
Kaipeng Deng 已提交
5345 5346
        'TRILINEAR' : Trilinear interpolation

5347
        'NEAREST' : Nearest neighbor interpolation
5348

5349
        'BICUBIC' : Bicubic interpolation
5350 5351

    Linear interpolation is the method of using a line connecting two known quantities
5352
    to determine the value of an unknown quantity between the two known quantities.
5353

5354
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
5355
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
5356
    direction) on input tensor.
5357 5358 5359 5360 5361

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
5362 5363
    again in the other direction.

5364 5365 5366
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
5367
    The linear interpolation is performed on three directions.
5368

5369 5370 5371 5372
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
K
Kaipeng Deng 已提交
5373

5374
    Align_corners and align_mode are optional parameters,the calculation method
5375 5376 5377 5378
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
5379
    .. code-block:: text
5380

T
Tink_Y 已提交
5381
        For scale:
5382

T
Tink_Y 已提交
5383
            if align_corners = True && out_size > 1 :
5384

T
Tink_Y 已提交
5385
              scale_factor = (in_size-1.0)/(out_size-1.0)
5386

T
Tink_Y 已提交
5387
            else:
5388

T
Tink_Y 已提交
5389
              scale_factor = float(in_size/out_size)
5390 5391


T
Tink_Y 已提交
5392
        Nearest neighbor interpolation:
5393

T
Tink_Y 已提交
5394 5395
          if:
              align_corners = False
5396

T
Tink_Y 已提交
5397 5398
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5399

T
Tink_Y 已提交
5400 5401
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
5402

T
Tink_Y 已提交
5403 5404
          else:
              align_corners = True
5405

T
Tink_Y 已提交
5406 5407
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5408

T
Tink_Y 已提交
5409 5410
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
5411

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
        linear interpolation:

          if:
              align_corners = False , align_mode = 0

              input : (N,C,W_in)
              output: (N,C,W_out) where:

              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,W_in)
              output: (N,C,H_out,W_out) where:

              W_out = W_{in} * scale_{factor}

T
Tink_Y 已提交
5429 5430 5431 5432
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
5433

T
Tink_Y 已提交
5434 5435
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5436

T
Tink_Y 已提交
5437 5438
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
5439

T
Tink_Y 已提交
5440
          else:
5441

T
Tink_Y 已提交
5442 5443
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5444

T
Tink_Y 已提交
5445 5446
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
5447

K
Kaipeng Deng 已提交
5448 5449 5450 5451
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
5452

K
Kaipeng Deng 已提交
5453 5454
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
5455

K
Kaipeng Deng 已提交
5456 5457 5458 5459 5460 5461
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
5462

K
Kaipeng Deng 已提交
5463 5464 5465 5466
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
5467

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
K
Kaipeng Deng 已提交
5480 5481
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
5482

5483

5484 5485
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
5486

5487
    For details of nearest neighbor interpolation, please refer to Wikipedia:
5488
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
5489

5490
    For details of bilinear interpolation, please refer to Wikipedia:
5491
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
5492

5493
    For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
5494
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
5495

5496 5497
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
5498

R
ruri 已提交
5499
    Parameters:
5500
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
5501
                          its data format is specified by :attr:`data_format`.
5502
        out_shape (list|tuple|Variable|None): Output shape of image resize
5503 5504
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
5505
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
5506
             If a Tensor Variable, its dimensions size should be a 1.
5507 5508 5509
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
5510
             Default: None.
5511 5512
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5513
        resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR'
K
Kaipeng Deng 已提交
5514
                       and 'NEAREST' currently. Default: 'BILINEAR'
5515 5516 5517
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5518
                                :attr:`out_shape` and :attr:`scale` specifying
5519 5520
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
5521 5522 5523 5524 5525
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
5526
                                errors would be occurred in graph constructing stage.
5527
                                Default: None
5528 5529
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
5530 5531
                               corner pixels.
                               Default: True
5532 5533
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the
                            the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 ,
5534
                            can be \'1\' for src_idx = scale*dst_index.
5535
        data_format (str, optional): Specify the data format of the input, and the data format of the output
5536
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
5537
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
5538
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
5539
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
5540 5541

    Returns:
5542
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
5543 5544
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
5545

5546 5547 5548
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5549 5550
        ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR',
                    'TRILINEAR', 'BICUBIC' or 'NEAREST' currently.
5551
        ValueError: 'LINEAR' only support 3-D tensor.
5552
        ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor.
K
Kaipeng Deng 已提交
5553
        ValueError: 'TRILINEAR' only support 5-D tensor.
5554
        ValueError: One of out_shape and scale must not be None.
5555
        ValueError: out_shape length should be 1 for input 3-D tensor.
K
Kaipeng Deng 已提交
5556 5557
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
5558
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
5559
        TypeError: align_corners should be a bool value
5560
        ValueError: align_mode can only be '0' or '1'
5561
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
5562

5563 5564
    Examples:
        .. code-block:: python
5565

5566 5567 5568 5569 5570 5571
            #declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
5572

5573 5574
            #1
            output = fluid.layers.image_resize(input=input,out_shape=[12,12])
R
ruri 已提交
5575

5576 5577 5578 5579 5580
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])
R
ruri 已提交
5581

5582 5583 5584 5585 5586
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)
R
ruri 已提交
5587

5588 5589 5590 5591 5592
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.image_resize(input=input,scale=scale_tensor)
R
ruri 已提交
5593

5594 5595 5596
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
5597

5598
            input_data = np.random.rand(2,3,6,10).astype("float32")
5599

5600
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
5601 5602 5603
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5604

5605
            print(output_data[0].shape)
5606

5607 5608 5609 5610 5611 5612 5613 5614
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
5615

5616 5617
            #imperative mode
            import paddle.fluid.dygraph as dg
5618

5619 5620 5621 5622
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.image_resize(input=input, out_shape=[12,12])
                print(output.shape)
5623

5624
                # [2L, 3L, 12L, 12L]
5625

5626
    """
5627
    resample_methods = {
5628
        'LINEAR': 'linear',
5629
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
5630
        'TRILINEAR': 'trilinear',
5631
        'NEAREST': 'nearest',
5632
        'LINEAR': 'linear',
5633
    }
5634
    resample = resample.upper()
5635 5636
    if resample not in resample_methods:
        raise ValueError(
5637
            "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' "
5638 5639
            "or 'NEAREST' currently."
        )
5640
    resample_type = resample_methods[resample]
5641

5642 5643 5644
    if resample == 'LINEAR' and len(input.shape) != 3:
        raise ValueError("'LINER only support 3-D tensor.")
    elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
K
Kaipeng Deng 已提交
5645
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
5646
    elif resample == 'TRILINEAR' and len(input.shape) != 5:
K
Kaipeng Deng 已提交
5647 5648
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

5649 5650 5651 5652 5653
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

5654
    if out_shape is None and scale is None:
5655
        raise ValueError("One of out_shape and scale must not be None.")
5656
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
5657
    dtype = helper.input_dtype()
5658

5659
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
5660
        raise ValueError(
5661 5662 5663 5664
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
5665
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
5666
        raise ValueError(
5667 5668 5669 5670
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
5671 5672
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
5673 5674 5675 5676
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
5677

5678
    def _is_list_or_turple_(data):
5679
        return isinstance(data, list) or isinstance(data, tuple)
5680

5681
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
5682
        data_layout = 'NCHW'
5683
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
5684 5685
        data_layout = 'NHWC'

5686
    inputs = {"X": input}
D
dengkaipeng 已提交
5687
    attrs = {
5688 5689 5690
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
5691 5692
        "interp_method": resample_type,
        "align_corners": align_corners,
5693
        "align_mode": align_mode,
5694
        "data_layout": data_layout,
D
dengkaipeng 已提交
5695 5696
    }

5697
    if out_shape is not None:
5698
        if isinstance(out_shape, Variable) and not _non_static_mode():
5699
            out_shape.stop_gradient = True
5700
            inputs['OutSize'] = out_shape
5701
        else:
5702 5703 5704 5705 5706 5707 5708 5709
            if _non_static_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                else:
                    out_shape = list(out_shape)
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
5710
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
5711
                raise TypeError(
5712 5713
                    "out_shape should be a list or tuple or Variable."
                )
5714 5715 5716 5717 5718 5719
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
5720 5721 5722
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
5733
                        assert isinstance(dim, int)
5734
                        temp_out = helper.create_variable_for_type_inference(
5735 5736 5737 5738 5739
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
5740 5741 5742 5743
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

5744 5745
            if len(input.shape) == 3:
                if len(out_shape) != 1:
5746 5747 5748
                    raise ValueError(
                        "out_shape length should be 1 for " "input 3-D tensor."
                    )
5749 5750 5751 5752 5753 5754
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
            elif len(input.shape) == 4:
K
Kaipeng Deng 已提交
5755
                if len(out_shape) != 2:
5756 5757 5758
                    raise ValueError(
                        "out_shape length should be 2 for " "input 4-D tensor."
                    )
5759 5760 5761 5762 5763 5764 5765
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
5766 5767
            if len(input.shape) == 5:
                if len(out_shape) != 3:
5768 5769 5770
                    raise ValueError(
                        "out_shape length should be 3 for " "input 5-D tensor."
                    )
5771 5772 5773 5774 5775 5776 5777 5778 5779
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
5780

5781
    else:
5782 5783 5784
        if _non_static_mode() and isinstance(scale, Variable):
            scale = scale.numpy()
        elif isinstance(scale, Variable):
5785 5786
            scale.stop_gradient = True
            inputs["Scale"] = scale
5787
        elif isinstance(scale, float) or isinstance(scale, int):
5788
            if scale <= 0:
5789
                raise ValueError("Attr(scale) should be greater than zero.")
5790
            attrs['scale'] = float(scale)
5791 5792
        else:
            raise TypeError(
5793 5794
                "Attr(scale)'s type should be float, int or Variable."
            )
5795

5796
    if isinstance(actual_shape, Variable):
5797 5798 5799 5800 5801
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
5802 5803 5804
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")
5805 5806 5807 5808 5809 5810 5811 5812 5813

    if _non_static_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
5814
            out = _legacy_C_ops.linear_interp(input, actual_shape, *dy_attr)
5815
        elif resample_type == "bilinear":
5816
            out = _legacy_C_ops.bilinear_interp(input, actual_shape, *dy_attr)
5817
        elif resample_type == "trilinear":
5818
            out = _legacy_C_ops.trilinear_interp(input, actual_shape, *dy_attr)
5819
        elif resample_type == "nearest":
5820
            out = _legacy_C_ops.nearest_interp(input, actual_shape, *dy_attr)
5821
        elif resample_type == "bicubic":
5822
            out = _legacy_C_ops.bicubic_interp(input, actual_shape, *dy_attr)
5823 5824
        return out

X
Xin Pan 已提交
5825
    out = helper.create_variable_for_type_inference(dtype)
5826 5827 5828 5829 5830 5831
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
5832
    return out
F
stash  
fengjiayi 已提交
5833 5834


5835
@templatedoc(op_type="bilinear_interp")
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
def resize_bilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
5846
    """
5847

R
ruri 已提交
5848
    This op resizes the input by performing bilinear interpolation based on given
5849
    output shape which specified by actual_shape, out_shape and scale
5850 5851
    in priority order.

5852
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in
5853 5854
    the future and only use :attr:`out_shape` instead.

5855 5856 5857 5858
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
5859 5860
    again in the other direction.

5861
    For details of bilinear interpolation, please refer to Wikipedia:
5862
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5863

5864
    Align_corners and align_mode are optional parameters,the calculation
5865 5866 5867 5868
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
5869
    .. code-block:: text
5870

T
Tink_Y 已提交
5871
        For scale:
5872

T
Tink_Y 已提交
5873
            if align_corners = True && out_size > 1 :
5874

T
Tink_Y 已提交
5875
              scale_factor = (in_size-1.0)/(out_size-1.0)
5876

T
Tink_Y 已提交
5877
            else:
5878

5879
              scale_factor = float(in_size/out_size)
5880

T
Tink_Y 已提交
5881 5882 5883 5884
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
5885

T
Tink_Y 已提交
5886 5887
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5888

T
Tink_Y 已提交
5889 5890
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
5891

T
Tink_Y 已提交
5892
          else:
T
tink2123 已提交
5893

T
Tink_Y 已提交
5894 5895 5896 5897
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
5898

R
ruri 已提交
5899 5900
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
5901
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
5902
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
5903 5904
            layer, the shape is (out_h, out_w).Default: None. If a list, each
            element can be an integer or a Tensor Variable with shape: [1]. If a
5905
            Tensor Variable, its dimension size should be 1.
5906
        scale(float|Variable|None): The multiplier for the input height or width. At
5907 5908
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
5909
             Default: None.
5910 5911 5912
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5913
                                :attr:`out_shape` and :attr:`scale` specifying
5914 5915
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
5916 5917 5918 5919 5920
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
5921
                                errors would be occurred in graph constructing stage.
5922
                                Default: None
5923 5924
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
5925
        data_format (str, optional): Specify the data format of the input, and the data format of the output
5926 5927 5928
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
5929
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
5930 5931

    Returns:
5932
        Variable: 4-D tensor(NCHW or NHWC).
5933

5934 5935
    Examples:
        .. code-block:: python
5936

5937 5938 5939 5940 5941 5942
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
5943

5944 5945
            #1
            output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
R
ruri 已提交
5946

5947 5948 5949 5950 5951
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
R
ruri 已提交
5952

5953 5954 5955 5956 5957
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
5958

5959 5960 5961 5962 5963
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
R
ruri 已提交
5964

5965 5966 5967
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
5968

5969
            input_data = np.random.rand(2,3,6,10).astype("float32")
5970

5971
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
5972 5973 5974
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5975

5976
            print(output_data[0].shape)
5977

5978 5979 5980 5981 5982 5983 5984 5985
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
5986

5987 5988
            #imperative mode
            import paddle.fluid.dygraph as dg
5989

5990 5991 5992 5993
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
                print(output.shape)
5994

5995
                # [2L, 3L, 12L, 12L]
5996

5997 5998
    """

5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'BILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
6010 6011


K
Kaipeng Deng 已提交
6012
@templatedoc(op_type="trilinear_interp")
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
def resize_trilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCDHW',
):
K
Kaipeng Deng 已提交
6023
    """
6024

R
ruri 已提交
6025
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
6026 6027 6028
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

6029
    **Warning:** the parameter :attr:`actual_shape` will be deprecated
6030 6031
    in the future and only use :attr:`out_shape` instead.

6032 6033 6034
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
6035 6036 6037 6038 6039
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

6040
    Align_corners and align_mode are optional parameters,the calculation
K
Kaipeng Deng 已提交
6041 6042 6043 6044 6045 6046 6047
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
6048

K
Kaipeng Deng 已提交
6049 6050 6051
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
6052

K
Kaipeng Deng 已提交
6053
            else:
6054 6055

              scale_factor = float(in_size/out_size)
K
Kaipeng Deng 已提交
6056 6057 6058 6059

        Bilinear interpolation:

          if:
6060

K
Kaipeng Deng 已提交
6061
              align_corners = False , align_mode = 0
6062

K
Kaipeng Deng 已提交
6063 6064
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
6065

K
Kaipeng Deng 已提交
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
6079
    Parameters:
6080 6081
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
6082
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
6083
        scale(float|Variable|None): The multiplier for the input depth, height or width.
6084 6085
             At least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
K
Kaipeng Deng 已提交
6086
             Default: None.
R
ruri 已提交
6087
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
6088 6089 6090 6091 6092 6093
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6094 6095 6096 6097 6098
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
6099
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
6100 6101 6102
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
6103
        data_format (str, optional): Specify the data format of the input, and the data format of the output
6104 6105 6106
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
6107 6108

    Returns:
6109
        Variable: A 5-D Tensor(NCDHW or NDHWC)
K
Kaipeng Deng 已提交
6110 6111 6112

    Examples:
        .. code-block:: python
6113

6114 6115 6116 6117 6118 6119
            #declarative mode
            import paddle.fluid as fluid
            import paddle
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,8,10])
R
ruri 已提交
6120

6121 6122
            #1
            output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])
R
ruri 已提交
6123

6124 6125 6126 6127 6128
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])
R
ruri 已提交
6129

6130 6131 6132 6133 6134
            #3
            #x = np.array([3,12,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
6135

6136 6137 6138 6139 6140
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)
R
ruri 已提交
6141

6142 6143 6144
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
6145

6146
            input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
6147

6148
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
6149 6150 6151
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
6152

6153
            print(output_data[0].shape)
R
ruri 已提交
6154

6155 6156 6157 6158 6159 6160 6161 6162
            #1
            # (2, 3, 12, 12, 12)
            #2
            # (2, 3, 12, 2, 4)
            #3
            # (2, 3, 3, 12, 12)
            #4
            # (2, 3, 3, 4, 5)
R
ruri 已提交
6163

6164 6165
            #imperative mode
            import paddle.fluid.dygraph as dg
6166

6167 6168 6169 6170
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
                print(output.shape)
6171

6172
                # [2L, 3L, 12L, 12L, 12L]
6173 6174 6175



K
Kaipeng Deng 已提交
6176 6177
    """

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'TRILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
K
Kaipeng Deng 已提交
6189 6190


6191
@templatedoc(op_type="nearest_interp")
6192 6193 6194 6195 6196 6197 6198 6199 6200
def resize_nearest(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    data_format='NCHW',
):
6201
    """
6202

R
ruri 已提交
6203
    This op resizes the input by performing nearest neighbor interpolation in both the
6204
    height direction and the width direction based on given output shape
6205
    which is specified by actual_shape, out_shape and scale in priority order.
6206

6207
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6208 6209
    future and only use :attr:`out_shape` instead.

6210 6211
    Example:

T
Tink_Y 已提交
6212 6213 6214
    .. code-block:: text

        For scale:
6215

T
Tink_Y 已提交
6216 6217
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
6218

T
Tink_Y 已提交
6219
            else:
6220

T
Tink_Y 已提交
6221
              scale_factor = float(in_size/out_size)
6222

T
Tink_Y 已提交
6223
        Nearest neighbor interpolation:
6224

T
Tink_Y 已提交
6225 6226
          if:
              align_corners = False
6227

T
Tink_Y 已提交
6228 6229
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6230

T
Tink_Y 已提交
6231 6232
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
6233

T
Tink_Y 已提交
6234 6235
          else:
              align_corners = True
6236

T
Tink_Y 已提交
6237 6238
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6239

T
Tink_Y 已提交
6240 6241
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6242 6243


6244
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6245
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6246

R
ruri 已提交
6247
    Parameters:
6248 6249
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
6250
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
6251
        scale(float|Variable|None): The multiplier for the input height or width. At
6252 6253 6254
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
R
ruri 已提交
6255
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
6256
        actual_shape(Variable): An optional input to specify output shape
6257 6258
                                dynamically. If provided, image resize
                                according to this given shape rather than
6259
                                :attr:`out_shape` and :attr:`scale` specifying
6260 6261
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6262 6263 6264 6265 6266
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
6267
                                errors would be occurred in graph constructing stage.
6268
                                Default: None
6269
        align_corners(bool): ${align_corners_comment}
6270
        data_format (str, optional): Specify the data format of the input, and the data format of the output
6271 6272 6273
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
6274 6275

    Returns:
6276
        Variable: 4-D tensor(NCHW or NHWC).
6277 6278 6279

    Examples:
        .. code-block:: python
6280

6281 6282 6283 6284 6285
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
6286

6287
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
6288

6289 6290
            #1
            output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])
R
ruri 已提交
6291

6292 6293 6294 6295 6296
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])
R
ruri 已提交
6297

6298 6299 6300 6301 6302
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)
R
ruri 已提交
6303

6304 6305 6306 6307 6308
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)
R
ruri 已提交
6309

6310 6311 6312
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
6313

6314
            input_data = np.random.rand(2,3,6,10).astype("float32")
6315

6316
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
6317 6318 6319
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
6320

6321
            print(output_data[0].shape)
R
ruri 已提交
6322

6323 6324 6325 6326 6327 6328 6329 6330
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
6331

6332 6333
            #imperative mode
            import paddle.fluid.dygraph as dg
6334

6335 6336 6337 6338
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
                print(output.shape)
R
ruri 已提交
6339

6340
                # [2L, 3L, 12L, 12L]
6341 6342 6343



6344 6345
    """

6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format,
    )
6357 6358


6359
@deprecated(since="2.0.0", update_to="paddle.gather_nd")
6360 6361 6362 6363
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

6364 6365 6366 6367
    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
6390 6391 6392

                gather_nd(input, index)
                         = [input[1, :, :]]
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
6412
        input (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
6413 6414 6415 6416
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .
6417 6418

    Returns:
6419
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
6420 6421 6422 6423 6424

    Examples:

        .. code-block:: python

6425
            import paddle
6426
            import paddle.fluid as fluid
6427 6428
            paddle.enable_static()

6429 6430
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
6431 6432 6433
            output = fluid.layers.gather_nd(x, index)

    """
6434
    if in_dygraph_mode():
6435
        return _C_ops.gather_nd(input, index)
J
Jiabin Yang 已提交
6436 6437
    else:
        if _in_legacy_dygraph():
6438
            return _legacy_C_ops.gather_nd(input, index)
6439
    check_variable_and_dtype(
6440 6441 6442 6443 6444
        input,
        'input',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
6445
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
6446 6447
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
6448
    output = helper.create_variable_for_type_inference(dtype)
6449 6450 6451 6452 6453
    helper.append_op(
        type="gather_nd",
        inputs={"X": input, "Index": index},
        outputs={"Out": output},
    )
6454 6455 6456
    return output


6457
def log(x, name=None):
6458
    r"""
W
wanghaoshuang 已提交
6459 6460 6461 6462
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6463
        Out = \\ln(x)
W
wanghaoshuang 已提交
6464 6465

    Args:
S
Steffy-zxf 已提交
6466
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
W
Wilber 已提交
6467
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
6468

W
wanghaoshuang 已提交
6469 6470

    Returns:
S
Steffy-zxf 已提交
6471
        Tensor: The natural log of the input Tensor computed element-wise.
W
wanghaoshuang 已提交
6472 6473 6474 6475 6476

    Examples:

        .. code-block:: python

S
Steffy-zxf 已提交
6477
            import paddle
W
Wilber 已提交
6478

S
Steffy-zxf 已提交
6479 6480 6481 6482
            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
W
wanghaoshuang 已提交
6483
    """
6484
    if in_dygraph_mode():
W
wanghuancoder 已提交
6485
        return _C_ops.log(x)
6486 6487
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
6488

6489
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
6490
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
6491
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6492
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6493
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6494
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6495 6496 6497
    return out


6498
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
6499
def relu(x, name=None):
W
wanghaoshuang 已提交
6500
    """
Z
zhupengyang 已提交
6501
    ${comment}
W
wanghaoshuang 已提交
6502 6503

    Args:
Z
zhupengyang 已提交
6504 6505 6506 6507
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
6508 6509

    Returns:
Z
zhupengyang 已提交
6510
        Variable: ${out_comment}
W
wanghaoshuang 已提交
6511 6512 6513 6514 6515

    Examples:

        .. code-block:: python

6516
            import paddle.fluid as fluid
Z
zhupengyang 已提交
6517 6518 6519 6520 6521 6522 6523
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
6524
                #  [1.  2.6]]"""
6525 6526

    if in_dygraph_mode():
W
wanghuancoder 已提交
6527
        return _C_ops.relu(x)
6528 6529
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
6530

6531 6532
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

6533
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
6534
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6535
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6536
    out = helper.create_variable_for_type_inference(dtype)
6537 6538 6539
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
6540
    return out
6541 6542


Z
zhupengyang 已提交
6543
@deprecated(since="2.0.0", update_to="paddle.static.nn.prelu")
6544
def prelu(x, mode, param_attr=None, data_format="NCHW", name=None):
6545
    r"""
U
ustiniankw 已提交
6546

Z
zhupengyang 已提交
6547
    prelu activation.
J
jerrywgz 已提交
6548

H
haowang101779990 已提交
6549
    .. math::
S
sunzhongkai588 已提交
6550
        prelu(x) = max(0, x) + \alpha * min(0, x)
J
jerrywgz 已提交
6551

J
jerrywgz 已提交
6552 6553 6554 6555 6556 6557 6558 6559
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

Z
zhupengyang 已提交
6560 6561
    Parameters:
        x (Tensor): The input Tensor or LoDTensor with data type float32.
6562
        mode (str): The mode for weight sharing.
U
ustiniankw 已提交
6563 6564 6565
        param_attr (ParamAttr|None, optional): The parameter attribute for the learnable
            weight (alpha), it can be create by ParamAttr. None by default.
            For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
6566 6567
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
U
ustiniankw 已提交
6568 6569
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
J
jerrywgz 已提交
6570 6571

    Returns:
U
ustiniankw 已提交
6572
        Tensor, A tensor with the same shape and data type as x.
J
jerrywgz 已提交
6573 6574 6575 6576

    Examples:
        .. code-block:: python

6577
            import paddle
Z
zhupengyang 已提交
6578 6579 6580 6581 6582

            x = paddle.to_tensor([-1., 2., 3.])
            param = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.2))
            out = paddle.static.nn.prelu(x, 'all', param)
            # [-0.2, 2., 3.]
J
jerrywgz 已提交
6583

J
jerrywgz 已提交
6584
    """
G
Guoxia Wang 已提交
6585
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
6586

J
jerrywgz 已提交
6587 6588 6589
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
6590

J
jerrywgz 已提交
6591 6592
    alpha_shape = [1]
    if mode == 'channel':
6593 6594

        true_data_format = [
6595 6596 6597 6598 6599 6600 6601
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
6602 6603 6604 6605
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
6606 6607
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
6608 6609 6610

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

6611 6612 6613 6614
        assert (
            len(x.shape) >= 2
        ), "The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'"
        # NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]).
6615
        # To be consistent with Prelu, it is simplified.
6616 6617
        # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
        # NOTE(GuoxiaWang): support NHWC data format
6618
        if data_format == 'NHWC':
6619
            alpha_shape = [1, 1, 1, x.shape[-1]]
6620 6621 6622
        else:
            alpha_shape = [1, x.shape[1], 1, 1]

J
jerrywgz 已提交
6623
    elif mode == 'element':
6624 6625 6626
        assert (
            len(x.shape) >= 1
        ), "The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'"
6627
        alpha_shape = [1] + list(x.shape)[1:]
J
jerrywgz 已提交
6628
    dtype = helper.input_dtype(input_param_name='x')
6629 6630 6631 6632 6633 6634 6635
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype=dtype,
        is_bias=False,
        default_initializer=Constant(0.25),
    )
6636 6637 6638
    if in_dygraph_mode():
        return _C_ops.prelu(x, alpha, data_format, mode)

X
Xin Pan 已提交
6639
    out = helper.create_variable_for_type_inference(dtype)
6640 6641 6642 6643 6644 6645
    helper.append_op(
        type="prelu",
        inputs={"X": x, 'Alpha': alpha},
        attrs={"mode": mode, "data_format": data_format},
        outputs={"Out": out},
    )
6646 6647 6648
    return out


G
fix  
gongweibao 已提交
6649 6650 6651
from paddle.fluid.framework import convert_np_dtype_to_dtype_


6652
@deprecated(since="2.0.0", update_to="paddle.normal")
G
gongweibao 已提交
6653
@templatedoc()
6654 6655 6656
def gaussian_random(
    shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None
):
G
fix  
gongweibao 已提交
6657
    """
6658 6659
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
6660 6661

    Args:
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        mean(float|int, optional): Mean of the output tensor, default is 0.0.
        std(float|int, optional): Standard deviation of the output tensor, default
            is 1.0.
        seed(int, optional): ${seed_comment}
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
fix  
gongweibao 已提交
6677 6678

    Returns:
6679 6680
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
6681

6682
    Examples:
6683
       .. code-block:: python
6684

6685
            import paddle
6686
            import paddle.fluid as fluid
6687
            paddle.enable_static()
6688 6689

            # example 1:
6690
            # attr shape is a list which doesn't contain Tensor.
6691
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
6692 6693 6694
            # [[-0.31261674,  1.8736548,  -0.6274357,   0.96988016],
            #  [-0.12294637,  0.9554768,   1.5690808,  -1.2894802 ],
            #  [-0.60082096, -0.61138713,  1.5345167,  -0.21834975]]
6695 6696

            # example 2:
6697 6698 6699
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
6700
            result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2])
6701 6702
            # [[ 0.51398206, -0.3389769,   0.23597084],
            #  [ 1.0388143,  -1.2015356,  -1.0499583 ]]
6703 6704

            # example 3:
6705
            # attr shape is a Tensor, the data type must be int64 or int32.
6706 6707
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = fluid.layers.gaussian_random(var_shape)
6708 6709 6710 6711
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.12310527,  0.8187662,   1.923219  ]
            #  [ 0.70721835,  0.5210541,  -0.03214082]]
6712

6713
       .. code-block:: python
6714

6715 6716
           # declarative mode
           # required: skiptest
6717 6718
           import numpy as np
           from paddle import fluid
6719

6720
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
6721

6722 6723 6724 6725
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
6726

6727 6728
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
6729

6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
6740

6741 6742 6743
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
6744
               x_np = x.numpy()
6745 6746 6747
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
6748
    """
6749 6750
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
6751

6752 6753 6754
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
6755
        return _C_ops.gaussian(
6756 6757
            shape, float(mean), float(std), seed, dtype, place
        )
6758 6759

    if _in_legacy_dygraph():
6760
        shape = utils.convert_shape_to_list(shape)
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
6773 6774 6775

    check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
6776 6777

    inputs = {}
6778 6779 6780 6781
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
6782
        'dtype': dtype,
6783
        'use_mkldnn': False,
6784
    }
6785 6786 6787
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn'
    )
6788

6789 6790
    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_variable_for_type_inference(dtype)
6791 6792 6793
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
G
fix  
gongweibao 已提交
6794 6795 6796 6797

    return out


G
gongweibao 已提交
6798
@templatedoc()
G
fix  
gongweibao 已提交
6799
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6800
    """
R
ruri 已提交
6801
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
6802

R
ruri 已提交
6803 6804 6805 6806
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
6807
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time.
G
fix  
gongweibao 已提交
6808
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6809 6810

    Returns:
R
ruri 已提交
6811
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
6812

6813 6814 6815
    Examples:
        .. code-block:: python

6816
            import paddle.fluid as fluid
R
ruri 已提交
6817
            x = fluid.data(
6818 6819
                name="X",
                shape=[13, 11],
R
ruri 已提交
6820
                dtype='float32')
6821

Y
Yibing Liu 已提交
6822
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
6823 6824 6825
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6826
    out = helper.create_variable_for_type_inference(dtype)
6827 6828 6829 6830 6831 6832
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min, 'max': max, 'seed': seed},
    )
G
fix  
gongweibao 已提交
6833 6834 6835 6836

    return out


G
gongweibao 已提交
6837
@templatedoc()
X
Xin Pan 已提交
6838
def sum(x):
G
fix  
gongweibao 已提交
6839
    """
G
gongweibao 已提交
6840
    ${comment}
6841

6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
6871 6872

    Args:
6873
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
6874 6875

    Returns:
6876
        Variable: ${out_comment}
6877 6878 6879 6880

    Examples:
        .. code-block:: python

6881
            import paddle.fluid as fluid
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
6901 6902
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
6903
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
6904 6905
    """

S
Steffy-zxf 已提交
6906
    return paddle.add_n(x)
G
fix  
gongweibao 已提交
6907 6908


G
gongweibao 已提交
6909
@templatedoc()
G
fix  
gongweibao 已提交
6910 6911
def slice(input, axes, starts, ends):
    """
6912
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
6913
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
6914 6915 6916 6917 6918 6919 6920
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
6921
    For slicing to the end of a dimension with unknown size, it is recommended
6922
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
6923 6924 6925
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
6926

6927 6928 6929 6930 6931 6932 6933 6934
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
6935

6936 6937 6938 6939 6940
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
6941
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
6942
            Then:
6943
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
6944

G
fix  
gongweibao 已提交
6945
    Args:
T
Thunderbrook 已提交
6946
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
6947
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
T
Thunderbrook 已提交
6948 6949
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
6950
                It represents starting indices of corresponding axis in ``axes``.
T
Thunderbrook 已提交
6951 6952
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
6953
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
6954 6955

    Returns:
T
Thunderbrook 已提交
6956
        Tensor:  A ``Tensor``. The data type is same as ``input``.
6957 6958

    Raises:
T
Thunderbrook 已提交
6959 6960
        TypeError: The type of ``starts`` must be list, tuple or Tensor.
        TypeError: The type of ``ends`` must be list, tuple or Tensor.
G
fix  
gongweibao 已提交
6961

6962 6963 6964
    Examples:
        .. code-block:: python

T
Thunderbrook 已提交
6965
            import paddle
6966

T
Thunderbrook 已提交
6967
            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
6968
            # example 1:
T
Thunderbrook 已提交
6969
            # attr starts is a list which doesn't contain tensor.
6970 6971 6972
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
T
Thunderbrook 已提交
6973
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
6974
            # sliced_1 is input[0:3, 0:2, 2:4].
6975 6976

            # example 2:
T
Thunderbrook 已提交
6977 6978 6979
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
6980
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
6981
    """
6982
    if in_dygraph_mode():
6983 6984 6985
        attrs = ()
        starts_tensor = None
        ends_tensor = None
6986 6987

        if isinstance(axes, (list, tuple)):
6988
            axes = list(axes)
6989 6990
            if len(axes) == 0:
                raise ValueError(
6991 6992
                    "Input axes should not be an empty list/tuple."
                )
6993 6994 6995 6996 6997 6998 6999 7000
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
7001 7002 7003 7004
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
7005

7006
        infer_flags = list(1 for i in range(len(axes)))
7007

J
Jiabin Yang 已提交
7008
        tmp_tensor_type = core.eager.Tensor
7009
        if isinstance(starts, (list, tuple)):
7010
            starts = [
7011
                item.numpy().item(0)
7012 7013
                if isinstance(item, tmp_tensor_type)
                else item
7014 7015
                for item in starts
            ]
7016
        elif isinstance(starts, tmp_tensor_type):
H
hong 已提交
7017 7018
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
7019 7020

        if isinstance(ends, (list, tuple)):
7021
            ends = [
7022
                item.numpy().item(0)
7023 7024 7025
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
7026
            ]
7027
            attrs += ('ends', ends)
7028
        elif isinstance(ends, tmp_tensor_type):
H
hong 已提交
7029 7030
            tensor_t = ends.numpy()
            ends = [ele for ele in tensor_t]
7031

7032
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
J
Jiabin Yang 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
7043 7044
                        "Input axes should not be an empty list/tuple."
                    )
J
Jiabin Yang 已提交
7045 7046 7047 7048 7049 7050 7051 7052
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
7053 7054 7055 7056
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
J
Jiabin Yang 已提交
7057 7058 7059 7060 7061 7062 7063 7064

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
7065 7066
                    if isinstance(item, tmp_tensor_type)
                    else item
J
Jiabin Yang 已提交
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
7078 7079
                    if isinstance(item, tmp_tensor_type)
                    else item
J
Jiabin Yang 已提交
7080 7081 7082 7083 7084 7085 7086 7087
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
7100

7101 7102
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
7103 7104
            "Input starts must be an Variable, python list or tuple."
        )
7105 7106
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
7107 7108
            "Input ends must be an Variable, python list or tuple."
        )
7109

G
fix  
gongweibao 已提交
7110
    helper = LayerHelper('slice', **locals())
7111 7112 7113 7114 7115

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

7116 7117 7118 7119 7120 7121 7122
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
7123
        if utils._contain_var(starts):
7124
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
7125 7126 7127 7128 7129 7130
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
7131 7132
        else:
            attrs['starts'] = starts
7133 7134 7135 7136 7137 7138 7139 7140

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
7141
        if utils._contain_var(ends):
7142
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
7143 7144 7145 7146 7147 7148
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
7149 7150 7151
        else:
            attrs['ends'] = ends

7152 7153
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
7154
    out = helper.create_variable_for_type_inference(
7155 7156 7157 7158 7159
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
G
fix  
gongweibao 已提交
7160 7161 7162 7163 7164 7165

    return out


def shape(input):
    """
7166
    :alias_main: paddle.shape
7167 7168
        :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
        :old_api: paddle.fluid.layers.shape
7169

C
chengduozh 已提交
7170 7171
    **Shape Layer**

C
fix doc  
chengduozh 已提交
7172
    Get the shape of the input.
G
fix  
gongweibao 已提交
7173

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

G
fix  
gongweibao 已提交
7191
    Args:
7192
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
7193
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.
G
fix  
gongweibao 已提交
7194 7195

    Returns:
7196
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
7197

7198 7199 7200
    Examples:
        .. code-block:: python

7201
            import paddle.fluid as fluid
7202
            import numpy as np
W
Wilber 已提交
7203 7204
            import paddle
            paddle.enable_static()
7205

7206
            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
7207 7208 7209 7210 7211 7212 7213 7214 7215
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
7216
    """
7217
    if in_dygraph_mode():
7218
        out = _C_ops.shape(input)
7219 7220 7221
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
7222
        out = _legacy_C_ops.shape(input)
W
Wilber 已提交
7223 7224 7225
        out.stop_gradient = True
        return out

7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'shape',
    )
G
fix  
gongweibao 已提交
7241
    helper = LayerHelper('shape', **locals())
7242
    out = helper.create_variable_for_type_inference(dtype='int32')
7243 7244 7245 7246 7247 7248
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True,
    )
G
fix  
gongweibao 已提交
7249 7250

    return out
G
merge  
gongweibao 已提交
7251 7252


7253
@deprecated(since="2.0.0", update_to="paddle.numel")
Z
zhoukunsheng 已提交
7254 7255 7256 7257 7258 7259 7260
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
7261
        input (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
Z
zhoukunsheng 已提交
7262 7263

    Returns:
7264
        Tensor: The number of elements for the input Tensor.
Z
zhoukunsheng 已提交
7265

7266 7267
    Raises:
        TypeError: ``input`` must be a Tensor and the data type of ``input`` must be one of bool, float16, float32, float64, int32, int64.
7268

Z
zhoukunsheng 已提交
7269 7270 7271
    Examples:
        .. code-block:: python

7272
            import paddle
Z
zhoukunsheng 已提交
7273
            import paddle.fluid.layers as layers
7274
            paddle.enable_static()
Z
zhoukunsheng 已提交
7275 7276 7277 7278 7279 7280

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

H
hong 已提交
7281
    if in_dygraph_mode():
7282
        return _C_ops.numel(input)
H
hong 已提交
7283 7284

    if _in_legacy_dygraph():
7285
        return _legacy_C_ops.size(input)
H
hong 已提交
7286

7287
    check_variable_and_dtype(
7288 7289 7290 7291 7292
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        "size",
    )
Z
zhoukunsheng 已提交
7293 7294 7295 7296 7297 7298 7299
    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
7300 7301 7302 7303
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
7304

S
sneaxiy 已提交
7305 7306
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
7307
    check_variable_and_dtype(
7308 7309 7310 7311 7312
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
7313
    check_variable_and_dtype(
7314 7315 7316 7317 7318
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
7319

S
sneaxiy 已提交
7320 7321
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7322
    name = helper.kwargs.get('name', None)
7323
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7324

7325 7326 7327 7328 7329 7330
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
7331 7332 7333
    return helper.append_activation(out)


X
Xin Pan 已提交
7334
def elementwise_add(x, y, axis=-1, act=None, name=None):
7335
    """
7336

7337
    Examples:
7338

7339
        .. code-block:: python
7340

7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
7354

7355 7356 7357 7358
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7359

7360
            print(z_value) # [3., 8., 6.]
7361 7362


7363
        .. code-block:: python
7364

7365 7366 7367
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7368

7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
7379

7380 7381
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7382

7383 7384
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7385

7386
            print(z_value) # z.shape=[2,3,4,5]
7387 7388


7389
        ..  code-block:: python
7390

7391 7392 7393
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7394

7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
7405

7406 7407
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7408

7409 7410 7411
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7412 7413

    """
J
Jiabin Yang 已提交
7414
    if _non_static_mode():
7415
        return _elementwise_op_in_dygraph(
7416 7417 7418 7419 7420
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
7421 7422
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
7423

S
sneaxiy 已提交
7424 7425 7426
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


7427
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
7428
def elementwise_div(x, y, axis=-1, act=None, name=None):
7429
    """
7430

7431
    Examples:
7432

7433
        .. code-block:: python
7434

7435 7436 7437
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7438

7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
7449

7450 7451 7452 7453
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7454

7455
            print(z_value) # [2., 0.6, 2.]
7456 7457


7458
        .. code-block:: python
7459

7460 7461 7462
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7463

7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
7474

7475 7476
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7477

7478 7479
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7480

7481
            print(z_value) # z.shape=[2,3,4,5]
7482 7483


7484
        ..  code-block:: python
7485

7486 7487 7488
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7489

7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
7500

7501 7502
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7503

7504 7505 7506
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7507 7508

    """
J
Jiabin Yang 已提交
7509
    if _non_static_mode():
7510 7511 7512
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
7513

S
sneaxiy 已提交
7514 7515 7516
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7517
def elementwise_sub(x, y, axis=-1, act=None, name=None):
7518
    """
7519

7520
    Examples:
7521

7522
        .. code-block:: python
7523

7524 7525 7526
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7527

7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
7538

7539 7540 7541 7542
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7543

7544
            print(z_value) # [1., -2., 2.]
7545 7546


7547
        .. code-block:: python
7548

7549 7550 7551
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7552

7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
7563

7564 7565
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7566

7567 7568
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7569

7570
            print(z_value) # z.shape=[2,3,4,5]
7571 7572


7573
        ..  code-block:: python
7574

7575 7576 7577
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7578

7579 7580 7581 7582 7583 7584 7585 7586 7587 7588
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
7589

7590 7591
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7592

7593 7594 7595
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7596 7597

    """
J
Jiabin Yang 已提交
7598
    if _non_static_mode():
7599 7600 7601
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
7602

S
sneaxiy 已提交
7603 7604 7605
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


7606
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
7607
def elementwise_mul(x, y, axis=-1, act=None, name=None):
7608
    """
7609

7610
    Examples:
7611

7612
        .. code-block:: python
7613

7614 7615 7616
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7617

7618 7619 7620 7621 7622 7623 7624 7625 7626 7627
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
7628

7629 7630 7631 7632
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7633

7634
            print(z_value) # [2., 15., 8.]
7635 7636


7637
        .. code-block:: python
7638

7639 7640 7641
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7642

7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
7653

7654 7655
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7656

7657 7658
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7659

7660
            print(z_value) # z.shape=[2,3,4,5]
7661 7662


7663
        ..  code-block:: python
7664

7665 7666 7667
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7668

7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
7679

7680 7681
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7682

7683 7684 7685
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7686

7687
    """
J
Jiabin Yang 已提交
7688
    if _non_static_mode():
7689 7690 7691
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
7692

S
sneaxiy 已提交
7693 7694 7695 7696
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
7697 7698 7699 7700
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
7701 7702
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
7703 7704

    # insert the c++ doc string on top of python doc string
7705 7706 7707 7708 7709
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
7710 7711
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
7712
                "act (string, optional): Activation applied to the output. \
7713
            Default is None. Details: :ref:`api_guide_activations_en` ",
7714
                "name (string, optional): Name of the output. \
7715
            Default is None. It's used to print debug info for developers. Details: \
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
7732

7733 7734 7735
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
7736 7737 7738 7739 7740
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
7741 7742 7743 7744
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

7745
for func in []:
S
sneaxiy 已提交
7746 7747 7748 7749
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7750
            "act (basestring|None): Activation applied to the output.",
7751 7752 7753 7754 7755 7756
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
7757 7758 7759

Examples:
  .. code-block:: python
7760

7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
7801 7802


7803
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
7804
    if _non_static_mode():
7805
        op = getattr(_legacy_C_ops, op_name)
7806 7807 7808 7809
        if binary_op:
            return op(x, y)
        else:
            return op(x)
7810
    check_variable_and_dtype(
7811 7812
        x,
        "x",
7813
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
7814 7815
        op_name,
    )
7816
    if y is not None:
7817
        check_variable_and_dtype(
7818 7819
            y,
            "y",
7820
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
7821 7822
            op_name,
        )
7823
    if out is not None:
7824
        check_type(out, "out", Variable, op_name)
7825

M
minqiyang 已提交
7826 7827
    helper = LayerHelper(op_name, **locals())

7828 7829 7830
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
7831 7832
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
7833 7834

    if out is None:
7835
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7836 7837

    if binary_op:
7838 7839 7840
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
7841 7842 7843 7844 7845 7846
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


7847 7848 7849
@templatedoc()
def clip(x, min, max, name=None):
    """
7850
        :old_api: paddle.fluid.layers.clip
7851

7852 7853 7854 7855
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
7856 7857
        min(float): ${min_comment}
        max(float): ${max_comment}
7858 7859
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
7860
                             For more information, please refer to :ref:`api_guide_Name`
7861 7862

    Returns:
S
SunGaofeng 已提交
7863 7864 7865 7866
        ${out_comment}

    Return Type:
        ${out_type}
7867 7868 7869 7870

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
7871
            import paddle.fluid as fluid
S
SunGaofeng 已提交
7872
            input = fluid.data(
7873 7874
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
7875 7876 7877
    """

    helper = LayerHelper("clip", **locals())
7878
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
7879 7880

    if name is None:
7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
7907 7908 7909
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
7910 7911

    Returns:
7912
        Tensor:
W
wangguanzhong 已提交
7913

7914
        out(${out_type}): ${out_comment}
7915

W
wangguanzhong 已提交
7916

7917 7918 7919
    Examples:
        .. code-block:: python

7920
            import paddle
7921
            import paddle.fluid as fluid
7922

7923 7924 7925
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
7926 7927
    """

L
lyq 已提交
7928
    if in_dygraph_mode():
7929
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
7930
    if _non_static_mode():
7931
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
7932

7933
    helper = LayerHelper("clip_by_norm", **locals())
7934
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
7935
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
7936 7937

    if name is None:
7938 7939 7940
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
7941

7942 7943 7944
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
7945

7946 7947 7948 7949 7950 7951
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
7952 7953

    return out
X
Xin Pan 已提交
7954 7955


7956
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7968 7969 7970 7971

    Examples:
        .. code-block:: python

7972
            import paddle
7973
            import paddle.fluid as fluid
7974 7975
            paddle.enable_static()

7976 7977
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
7978
            mean = paddle.mean(input)
X
Xin Pan 已提交
7979
    """
7980

7981
    if _in_legacy_dygraph():
7982
        return _legacy_C_ops.mean(x)
7983
    if in_dygraph_mode():
7984
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
7985 7986

    helper = LayerHelper("mean", **locals())
7987
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
7988
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7989

7990 7991 7992
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
7993 7994 7995 7996

    return out


C
chengduo 已提交
7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8008 8009 8010 8011

    Examples:
        .. code-block:: python

8012
            import paddle.fluid as fluid
8013 8014 8015 8016 8017
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
8018
    """
8019 8020 8021
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

8022
    if _non_static_mode():
8023
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
8024 8025 8026

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8027 8028 8029 8030 8031 8032
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
8033 8034 8035
    return out


X
Xin Pan 已提交
8036 8037
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
8038 8039 8040 8041 8042 8043 8044 8045
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
8046 8047

    Args:
L
liu zhengxi 已提交
8048 8049
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
8050 8051 8052
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
8053 8054

    Returns:
L
liu zhengxi 已提交
8055
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
8056 8057

    Examples:
L
liu zhengxi 已提交
8058
        ..  code-block:: python
8059

8060
            import paddle.fluid as fluid
8061 8062
            import paddle
            paddle.enable_static()
8063 8064 8065 8066 8067
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
8068

8069

X
Xin Pan 已提交
8070
    """
J
Jiabin Yang 已提交
8071
    if _non_static_mode():
8072 8073 8074 8075 8076 8077 8078 8079
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
8080

8081 8082
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
8083
    helper = LayerHelper("mul", **locals())
8084 8085
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
8086
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8087

8088 8089 8090
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
8091 8092 8093
    return out


8094
@deprecated(since="2.0.0", update_to="paddle.nn.functional.maxout")
X
Xin Pan 已提交
8095
@templatedoc()
8096
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
8097 8098 8099 8100 8101
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
8102 8103
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
8104 8105
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
W
wangguanzhong 已提交
8106
            None by default.
X
Xin Pan 已提交
8107 8108

    Returns:
8109
        Variable: ${out_comment}
J
jerrywgz 已提交
8110

8111 8112
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
8113
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
8114

J
jerrywgz 已提交
8115 8116 8117
    Examples:
        .. code-block:: python

8118
            import paddle.fluid as fluid
8119 8120 8121
            import paddle
            paddle.enable_static()

8122
            input = fluid.data(
8123 8124
                name='data',
                shape=[None, 256, 32, 32],
J
jerrywgz 已提交
8125 8126
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
8127
    """
8128
    return paddle.nn.functional.maxout(**locals())
8129 8130


J
JiabinYang 已提交
8131
def space_to_depth(x, blocksize, name=None):
8132
    r"""
8133

J
JiabinYang 已提交
8134
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8135

8136 8137 8138
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
8139
    The attr blocksize indicates the input block size.
8140

T
tianshuo78520a 已提交
8141
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
8142 8143
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
8144

J
JiabinYang 已提交
8145 8146 8147 8148 8149
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
8167

J
JiabinYang 已提交
8168
    Args:
8169 8170 8171 8172 8173 8174
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
8175

8176
    Returns:
8177
            Tensor, The output, which should be 4 dims Tensor or LodTensor, with the shape \
8178 8179
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

J
JiabinYang 已提交
8180 8181
    Examples:
        .. code-block:: python
8182

8183 8184
            import paddle.fluid as fluid
            import numpy as np
8185 8186
            import numpy as np
            import paddle
J
JiabinYang 已提交
8187

8188
            paddle.enable_static()
8189 8190
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8191
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8192
                x=data, blocksize=2)
8193

8194
            exe = fluid.Executor(fluid.CPUPlace())
8195
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
8196 8197 8198 8199 8200 8201 8202

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

8203
            out_main = exe.run(fluid.default_main_program(),
8204 8205 8206 8207 8208 8209 8210 8211
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
8212

J
JiabinYang 已提交
8213 8214
    """

J
JiabinYang 已提交
8215
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8216

J
JiabinYang 已提交
8217 8218
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8219

8220 8221 8222 8223 8224 8225
    check_variable_and_dtype(
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'space_to_depth',
    )
X
xujiaqi01 已提交
8226

8227
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
J
JiabinYang 已提交
8228

8229 8230 8231 8232 8233 8234
    helper.append_op(
        type="space_to_depth",
        inputs={"X": x},
        attrs={"blocksize": blocksize},
        outputs={"Out": out},
    )
J
JiabinYang 已提交
8235 8236
    return out

J
JiabinYang 已提交
8237

8238 8239 8240
def affine_channel(
    x, scale=None, bias=None, data_layout='NCHW', name=None, act=None
):
8241
    """
8242

8243 8244 8245 8246
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8247

8248 8249 8250
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
8251
            is applied in the second dimension.The data type is float32 or float64.
8252 8253
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
8254
            the input.The data type is float32 or float64.
8255 8256
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
8257
            The data type is float32 or float64.
8258
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
8259 8260
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
8261
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore
8262
            data_layout.
L
LielinJiang 已提交
8263 8264
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
8265
        act (str, default None): Activation to be applied to the output of this layer.
8266 8267

    Returns:
L
LielinJiang 已提交
8268
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
8269 8270 8271

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
8272 8273

            import numpy as np
B
Bai Yifan 已提交
8274
            import paddle.fluid as fluid
8275 8276
            import paddle.fluid as fluid
            import paddle
L
LielinJiang 已提交
8277

8278
            paddle.enable_static()
L
LielinJiang 已提交
8279 8280 8281 8282 8283 8284 8285 8286 8287
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
8288
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
8289 8290 8291 8292 8293 8294 8295 8296 8297 8298
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
8299

8300 8301
    """
    helper = LayerHelper("affine_channel", **locals())
8302 8303 8304
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'affine_channel')
    check_type(scale, 'scale', (Variable, type(None)), 'affine_channel')
    check_type(bias, 'bias', (Variable, type(None)), 'affine_channel')
8305
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8306

8307 8308 8309 8310 8311 8312
    helper.append_op(
        type="affine_channel",
        inputs={"X": x, 'Scale': scale, 'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out},
    )
8313
    return helper.append_activation(out)
8314 8315


B
barrierye 已提交
8316
def similarity_focus(input, axis, indexes, name=None):
8317
    r"""
B
barrierye 已提交
8318
    SimilarityFocus Operator
B
barrierye 已提交
8319 8320

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
8321

8322 8323 8324
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8325
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8326 8327 8328 8329 8330 8331 8332
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8333
       each index.
B
barrierye 已提交
8334 8335 8336 8337
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8387
    Args:
8388
        input(Variable): The input tensor variable(default float). It should
8389
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is
Y
Yibing Liu 已提交
8390
            float32 or float64.
B
barrierye 已提交
8391
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8392
            1, 2 or 3.
B
barrierye 已提交
8393
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8394 8395

    Returns:
H
haowang101779990 已提交
8396 8397
        Variable: A tensor variable with the same shape and same type \
                  as the input.
8398

B
barrierye 已提交
8399 8400
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
8401

8402
            import paddle.fluid as fluid
8403 8404
            import paddle
            paddle.enable_static()
Y
Yibing Liu 已提交
8405
            data = fluid.data(
Y
Yibing Liu 已提交
8406 8407
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8408 8409 8410
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
8411 8412 8413
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], "similarity_focus"
    )
8414 8415
    check_type(axis, 'axis', int, "similarity_focus")
    check_type(indexes, 'indexes', list, "similarity_focus")
B
barrierye 已提交
8416 8417 8418 8419 8420
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

8421
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
8422 8423 8424 8425 8426 8427
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis, "indexes": indexes},
    )
B
barrierye 已提交
8428
    return out
B
barrierye 已提交
8429 8430


M
minqiyang 已提交
8431 8432
def hash(input, hash_size, num_hash=1, name=None):
    """
8433

Z
zhupengyang 已提交
8434
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
8435 8436
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8437 8438

    Args:
Z
zhupengyang 已提交
8439 8440 8441 8442 8443 8444
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
8445 8446

    Returns:
Z
zhupengyang 已提交
8447
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
8448 8449

    Examples:
Z
zhupengyang 已提交
8450
        .. code-block:: python
H
haowang101779990 已提交
8451

8452
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8453
            import numpy as np
8454 8455
            import paddle
            paddle.enable_static()
8456

Z
zhupengyang 已提交
8457
            place = fluid.core.CPUPlace()
8458

8459 8460
            x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4)
8461

Z
zhupengyang 已提交
8462 8463 8464 8465
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
8466
            x_i = fluid.create_lod_tensor(in1, [[0, 2]], place)
Z
zhupengyang 已提交
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
8477
    """
8478
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash')
8479 8480
    check_type(hash_size, 'hash_size', int, 'hash')
    check_type(num_hash, 'num_hash', int, 'hash')
M
minqiyang 已提交
8481
    helper = LayerHelper('hash', **locals())
8482 8483 8484 8485 8486 8487 8488 8489 8490
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash, 'mod_by': hash_size},
    )
M
minqiyang 已提交
8491
    return out
G
gmcather 已提交
8492 8493


D
dengkaipeng 已提交
8494
@templatedoc()
8495 8496
def grid_sampler(x, grid, name=None):
    """
8497

8498
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
8499
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
8500 8501
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
8502 8503
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
8504
    interpolation value of 4 nearest corner points. The output tensor
K
Kaipeng Deng 已提交
8505
    shape will be [N, C, H, W].
8506

H
haowang101779990 已提交
8507
    .. code-block:: text
8508

H
haowang101779990 已提交
8509 8510
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
8511

K
Kaipeng Deng 已提交
8512 8513 8514 8515
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
8516

H
haowang101779990 已提交
8517 8518 8519
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
8520

H
haowang101779990 已提交
8521 8522 8523 8524 8525 8526 8527 8528 8529
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
8530

H
haowang101779990 已提交
8531 8532 8533 8534
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
8535

H
haowang101779990 已提交
8536 8537 8538 8539
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
8540

H
haowang101779990 已提交
8541 8542 8543 8544
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
8545

H
haowang101779990 已提交
8546 8547
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8548 8549

    Args:
K
Kaipeng Deng 已提交
8550 8551 8552 8553 8554 8555 8556 8557 8558
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
8559 8560

    Returns:
H
haowang101779990 已提交
8561
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
8562 8563
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
8564

H
haowang101779990 已提交
8565 8566 8567 8568
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
8569
            import paddle.fluid as fluid
8570 8571
            import paddle.fluid as fluid
            import paddle
K
Kaipeng Deng 已提交
8572

8573
            paddle.enable_static()
K
Kaipeng Deng 已提交
8574 8575
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
8576 8577
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
8578
            out = fluid.layers.grid_sampler(x=x, grid=grid)
8579

D
dengkaipeng 已提交
8580 8581 8582
    """
    helper = LayerHelper("grid_sampler", **locals())

8583
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
8584 8585 8586
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'grid_sampler'
    )
D
dengkaipeng 已提交
8587 8588 8589 8590 8591 8592
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8593
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8594 8595
    ipts = {'X': x, 'Grid': grid}

8596 8597
    attrs = {'use_cudnn': False} if core.is_compiled_with_rocm() else {}

8598 8599 8600
    helper.append_op(
        type='grid_sampler', inputs=ipts, outputs={'Output': out}, attrs=attrs
    )
8601 8602 8603
    return out


G
gmcather 已提交
8604
def log_loss(input, label, epsilon=1e-4, name=None):
8605
    r"""
8606

G
gmcather 已提交
8607 8608 8609 8610 8611 8612 8613
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

8614 8615
        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}
G
gmcather 已提交
8616 8617

    Args:
8618
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
8619
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
8620
                                by the previous operator. Data type float32.
8621
        label (Tensor|list):  The ground truth which is a 2-D tensor with
8622
                                shape [N x 1], where N is the batch size.
Y
Yibing Liu 已提交
8623 8624
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
8625
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
8626
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
8627 8628

    Returns:
8629
        Tensor, which shape is [N x 1], data type is float32.
G
gmcather 已提交
8630 8631 8632 8633

    Examples:
        .. code-block:: python

8634 8635 8636 8637 8638 8639
          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
G
gmcather 已提交
8640
    """
8641
    return paddle.nn.functional.log_loss(input, label, epsilon, name)
G
gmcather 已提交
8642 8643 8644


def add_position_encoding(input, alpha, beta, name=None):
8645
    r"""
8646

G
Guo Sheng 已提交
8647 8648
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
8649

8650
    For more details of position encoding, please refer to `Attention Is All You
G
Guo Sheng 已提交
8651
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
8652

G
Guo Sheng 已提交
8653
    The formula is as follows:
G
gmcather 已提交
8654 8655

    .. math::
H
haowang101779990 已提交
8656 8657 8658
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
8659 8660

    Where:
G
Guo Sheng 已提交
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
8675 8676
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
G
Guo Sheng 已提交
8677
            None by default.
G
gmcather 已提交
8678 8679

    Returns:
G
Guo Sheng 已提交
8680
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
8681 8682 8683 8684

    Examples:
        .. code-block:: python

8685
          import paddle
8686

8687
          tensor = paddle.randn([16, 32, 64])
8688
          position_tensor = paddle.fluid.layers.add_position_encoding(
8689
                input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
8690

G
gmcather 已提交
8691
    """
J
Jiabin Yang 已提交
8692
    if _non_static_mode():
8693 8694 8695
        return _legacy_C_ops.add_position_encoding(
            input, "alpha", alpha, "beta", beta
        )
8696

G
gmcather 已提交
8697
    helper = LayerHelper('add_position_encoding', **locals())
8698 8699 8700
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], "add_position_encoding"
    )
G
gmcather 已提交
8701 8702
    dtype = helper.input_dtype()

8703
    out = helper.create_variable_for_type_inference(dtype=dtype)
G
gmcather 已提交
8704

8705 8706 8707 8708 8709 8710
    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha, "beta": beta},
    )
G
gmcather 已提交
8711
    return out
Q
Qiao Longfei 已提交
8712 8713


8714 8715 8716
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
8717
    r"""
8718 8719
    :api_attr: Static Graph

Y
Yibing Liu 已提交
8720
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8721

Q
Qiao Longfei 已提交
8722
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8723 8724 8725
    For example:

    .. math::
H
haowang101779990 已提交
8726
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8727

Q
Qiao Longfei 已提交
8728
    In this formula:
8729 8730
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
8731
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
8732
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8733 8734 8735
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8736
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type
Y
Yibing Liu 已提交
8737
            is float32 or float64.
8738
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type
Y
Yibing Liu 已提交
8739
            should be same as **x**.
Q
Qiao Longfei 已提交
8740
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
8741
        act (str|None): Activation to be applied to the output of this layer. Default None.
8742
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
8743
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
8744 8745
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
Y
Yibing Liu 已提交
8746
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
8747 8748
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
Y
Yibing Liu 已提交
8749
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
8750
    Returns:
Y
Yibing Liu 已提交
8751
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
8752 8753 8754 8755

    Examples:
        .. code-block:: python

8756 8757 8758 8759 8760
            import paddle
            paddle.enable_static()
            layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8761 8762
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8763
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8764 8765 8766

    param_shape = [size, x.shape[1], y.shape[1]]

8767 8768 8769
    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
8770
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
8771 8772 8773 8774

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
8775 8776 8777
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
Q
Qiao Longfei 已提交
8778
        inputs["Bias"] = bias
8779 8780 8781
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
Q
Qiao Longfei 已提交
8782 8783 8784

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
8785 8786 8787 8788 8789


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
8790 8791 8792 8793 8794 8795 8796 8797 8798
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

8799
        Output is LoDTensor:
8800 8801 8802 8803 8804 8805
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
8806 8807

    Args:
8808 8809 8810
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
8811 8812

    Returns:
8813
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
8814 8815 8816

    Examples:
        .. code-block:: python
8817

B
bdzhuxiaoning 已提交
8818 8819 8820 8821
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
8822 8823
    """

8824 8825 8826 8827 8828
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
8829 8830
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8831 8832 8833 8834 8835 8836
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
8837
    return out
8838 8839


8840
@templatedoc()
8841
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
8842
    """
8843

8844
    **Temporal Shift Operator**
8845

8846
    ${comment}
8847 8848

    Args:
8849
        x(Tensor): ${x_comment}
8850
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
8851
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
8852 8853 8854
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
8855 8856
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
8857 8858

    Returns:
8859
        out(Tensor): The temporal shifting result is a tensor with the
K
Kaipeng Deng 已提交
8860
        same shape and same data type as the input.
8861 8862 8863 8864 8865 8866 8867

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

8868 8869 8870 8871
            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([6, 4, 2, 2])
8872
            out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
8873
    """
8874 8875 8876
    return paddle.nn.functional.temporal_shift(
        x, seg_num, shift_ratio, name, data_format
    )
8877 8878


8879
class PyFuncRegistry:
S
sneaxiy 已提交
8880 8881 8882
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
8883
        if func is None or not callable(func):
S
sneaxiy 已提交
8884 8885 8886
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
8887
        # find named args using reflection
8888
        args = inspect.getfullargspec(self._func)
S
sneaxiy 已提交
8889 8890 8891 8892 8893 8894
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
8895 8896 8897
        '''
        Why record self here?

M
minqiyang 已提交
8898 8899
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
8900
           to find the registered function corresponding
M
minqiyang 已提交
8901
           to :code:`idx`.
S
sneaxiy 已提交
8902

M
minqiyang 已提交
8903 8904
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
8905
           whose reference count is 1 would cause
M
minqiyang 已提交
8906
           segmentation fault error in C++ side.
S
sneaxiy 已提交
8907 8908
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
8909
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
8933

S
sneaxiy 已提交
8934
        if not isinstance(func_ret, (list, tuple)):
8935
            func_ret = (func_ret,)
S
sneaxiy 已提交
8936 8937

        ret = []
S
sneaxiy 已提交
8938 8939 8940
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
8941 8942
                continue

S
sneaxiy 已提交
8943 8944
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
8945

S
sneaxiy 已提交
8946 8947 8948
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
8949

S
sneaxiy 已提交
8950
        return tuple(ret)
S
sneaxiy 已提交
8951 8952


8953
@static_only
S
sneaxiy 已提交
8954 8955 8956
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
8957 8958
    :api_attr: Static Graph

8959 8960
    This OP is used to register customized Python OP to Paddle. The design
    principe of py_func is that Tensor and numpy array can be converted to each
8961 8962
    other easily. So you can use Python and numpy API to register a python OP.

8963 8964
    The forward function of the registered OP is ``func`` and the backward function
    of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
8965
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None).
8966 8967
    ``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
    the output of ``func``, whose type can be either Tensor or numpy array.
8968

8969
    The input of the backward function ``backward_func`` is ``x``, ``out`` and
8970 8971 8972
    the gradient of ``out``. If ``out`` have no gradient, the relevant input of
    ``backward_func`` is None. If ``x`` do not have a gradient, the user should
    return None in ``backward_func``.
8973

8974 8975
    The data type and shape of ``out`` should also be set correctly before this
    API is called, and the data type and shape of the gradient of ``out`` and
8976 8977 8978 8979 8980 8981 8982
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
8983 8984
            is running, the forward output ``out`` will be calculated according to this
            function and the forward input ``x``. In ``func`` , it's suggested that we
8985
            actively convert Tensor into a numpy array, so that we can use Python and
8986
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
8987 8988 8989 8990 8991 8992 8993
        x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
            It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
            should be passed in the form of tuple(Tensor) or list[Tensor].
        out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
            T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
            cannot automatically infer the shape and type of ``out``, you must create
            ``out`` in advance.
8994 8995 8996
        backward_func (callable, optional): The backward function of the registered OP.
            Its default value is None, which means there is no reverse calculation. If
            it is not None, ``backward_func`` is called to calculate the gradient of
8997
            ``x`` when the network is at backward runtime.
8998 8999
        skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
            list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
9000
            It must belong to either ``x`` or ``out``. The default  value is None, which means
9001 9002
            that no tensors need to be removed from ``x`` and ``out``. If it is not None,
            these tensors will not be the input of ``backward_func``. This parameter is only
9003
            useful when ``backward_func`` is not None.
9004 9005

    Returns:
9006
        Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
9007 9008

    Examples:
9009
        .. code-block:: python
9010

9011
            # example 1:
9012
            import paddle
9013
            import numpy as np
9014

9015 9016 9017
            paddle.enable_static()

            # Creates a forward function, Tensor can be input directly without
9018
            # being converted into numpy array.
9019 9020 9021
            def tanh(x):
                return np.tanh(x)

9022
            # Skip x in backward function and return the gradient of x
9023
            # Tensor must be actively converted to numpy array, otherwise,
9024
            # operations such as +/- can't be used.
9025 9026
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
9027

9028
            # Creates a forward function for debugging running networks(print value)
9029 9030
            def debug_func(x):
                print(x)
9031

9032
            def create_tmp_var(name, dtype, shape):
9033
                return paddle.static.default_main_program().current_block().create_var(
9034
                    name=name, dtype=dtype, shape=shape)
9035 9036 9037

            def simple_net(img, label):
                hidden = img
9038
                for idx in range(4):
9039
                    hidden = paddle.static.nn.fc(hidden, size=200)
9040 9041 9042
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

9043
                    # User-defined forward and backward
9044
                    hidden = paddle.static.py_func(func=tanh, x=hidden,
9045 9046 9047
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

9048
                    # User-defined debug functions that print out the input Tensor
9049
                    paddle.static.py_func(func=debug_func, x=hidden, out=None)
9050

9051
                prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
9052 9053 9054 9055
                ce_loss = paddle.nn.loss.CrossEntropyLoss()
                return ce_loss(prediction, label)

            x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
9056
            y = paddle.static.data(name='y', shape=[1], dtype='int64')
9057 9058 9059 9060 9061
            res = simple_net(x, y)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            input1 = np.random.random(size=[1,4]).astype('float32')
9062
            input2 = np.random.randint(1, 10, size=[1], dtype='int64')
9063 9064 9065 9066 9067 9068
            out = exe.run(paddle.static.default_main_program(),
                          feed={'x':input1, 'y':input2},
                          fetch_list=[res.name])
            print(out)

        .. code-block:: python
9069

9070
            # example 2:
9071
            # This example shows how to turn Tensor into numpy array and
9072
            # use numpy API to register an Python OP
9073
            import paddle
9074 9075
            import numpy as np

9076 9077
            paddle.enable_static()

9078
            def element_wise_add(x, y):
9079
                # Tensor must be actively converted to numpy array, otherwise,
9080
                # numpy.shape can't be used.
9081
                x = np.array(x)
9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
9095
                return paddle.static.default_main_program().current_block().create_var(
9096 9097 9098
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
9099 9100
                start_program = paddle.static.default_startup_program()
                main_program = paddle.static.default_main_program()
9101 9102

                # Input of the forward function
9103 9104
                x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
                y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
9105

9106 9107 9108 9109
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
9110
                paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
9111

9112
                exe=paddle.static.Executor(paddle.CPUPlace())
9113 9114 9115 9116 9117
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
9118
                out = exe.run(main_program,
9119 9120 9121 9122 9123 9124 9125 9126 9127
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
9128
    """
S
sneaxiy 已提交
9129
    helper = LayerHelper('py_func', **locals())
9130
    check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
9131 9132 9133
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9134
        x = [x]
9135 9136 9137
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
9138
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
9139
    check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
9140 9141 9142
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9143
        out_list = [out]
9144 9145
    elif isinstance(out, tuple):
        out_list = list(out)
9146 9147 9148
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
9149
        raise TypeError(
9150 9151
            'Output must be Variable/list(Variable)/tuple(Variable)'
        )
S
sneaxiy 已提交
9152

S
sneaxiy 已提交
9153
    fwd_func_id = PyFuncRegistry(func).id
9154 9155 9156
    bwd_func_id = (
        PyFuncRegistry(backward_func).id if backward_func is not None else -1
    )
S
sneaxiy 已提交
9157 9158

    for each_out in out_list:
S
sneaxiy 已提交
9159 9160
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9161 9162
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9163

S
sneaxiy 已提交
9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
9176 9177 9178 9179
                    'Variable {} is not found in forward inputs and outputs'.format(
                        v.name
                    )
                )
S
sneaxiy 已提交
9180
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9181

9182 9183 9184 9185 9186 9187 9188 9189 9190 9191
    helper.append_op(
        type='py_func',
        inputs={'X': x},
        outputs={'Out': out_list},
        attrs={
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars),
        },
    )
S
sneaxiy 已提交
9192
    return out
S
sneaxiy 已提交
9193 9194 9195


# For debug usage
S
sneaxiy 已提交
9196 9197 9198 9199
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9200
@templatedoc()
9201 9202 9203 9204 9205 9206 9207 9208 9209
def psroi_pool(
    input,
    rois,
    output_channels,
    spatial_scale,
    pooled_height,
    pooled_width,
    name=None,
):
9210
    """
9211

9212 9213
    ${comment}

S
SunGaofeng 已提交
9214
    Parameters:
9215
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
9216
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
9217 9218 9219
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
9220 9221
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
9222
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
9223 9224
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
9225 9226
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
9227
                             For more information, please refer to :ref:`api_guide_Name`
9228 9229

    Returns:
S
SunGaofeng 已提交
9230 9231 9232 9233
        ${out_comment}.

    Return Type:
        Variable
9234 9235 9236 9237

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9238
            import paddle.fluid as fluid
9239 9240
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
9241 9242
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
9243
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input, 'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
        },
    )
9268
    return out
9269 9270 9271


@templatedoc()
9272 9273 9274 9275 9276 9277 9278 9279 9280
def prroi_pool(
    input,
    rois,
    spatial_scale=1.0,
    pooled_height=1,
    pooled_width=1,
    batch_roi_nums=None,
    name=None,
):
9281
    """
9282

9283
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
9284 9285

    Args:
9286
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
9287 9288 9289
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
9290 9291 9292 9293 9294
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
9295 9296 9297 9298 9299 9300
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
9301 9302
        batch_roi_nums (Variable): The number of roi for each image in batch. It
                         should be 1-D Tensor, with shape [N] and dtype int64,
9303 9304
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
9305 9306 9307
        name (str, default None): The name of this operation.

    Returns:
9308
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
9309 9310 9311 9312

    Examples:
        .. code-block:: python

9313
            ## prroi_pool without batch_roi_num
9314
            import paddle.fluid as fluid
9315 9316
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
9317
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
9318

9319 9320 9321 9322 9323 9324 9325 9326
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


9327
    """
9328 9329
    check_variable_and_dtype(input, 'input', ['float32'], 'prroi_pool')
    check_variable_and_dtype(rois, 'rois', ['float32'], 'prroi_pool')
9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
9340 9341 9342
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
9343 9344 9345 9346 9347 9348 9349 9350 9351 9352
    helper.append_op(
        type='prroi_pool',
        inputs=inputs_op,
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
        },
    )
9353
    return out
9354

M
minqiyang 已提交
9355

R
ruri 已提交
9356 9357 9358
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
9359
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
9360 9361 9362
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
9363
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
R
ruri 已提交
9364 9365 9366
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
9367
    Parameters:
R
ruri 已提交
9368

R
ruri 已提交
9369 9370
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
9371 9372

    Returns:
9373
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
9374 9375 9376 9377 9378 9379 9380

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

9381 9382 9383 9384 9385 9386 9387 9388
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            input = fluid.data(name="input", shape=[2,9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
9389

9390 9391
            input_data = np.random.rand(2,9,4,4).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
9392 9393 9394
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
9395

9396 9397
            # print(output.shape)
            # (2L, 1L, 12L, 12L)
R
ruri 已提交
9398 9399 9400

    """

R
ruri 已提交
9401
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
9402 9403 9404 9405 9406 9407 9408
    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

9409 9410 9411 9412 9413 9414
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor},
    )
R
ruri 已提交
9415 9416 9417
    return out


9418 9419 9420 9421 9422
def fsp_matrix(x, y):
    """

    **FSP matrix op**

9423
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

9435 9436 9437
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
9438
                      The y_channel can be different with the x_channel of Input(X)
9439 9440
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
9441 9442 9443 9444

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
9445 9446
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
9447 9448 9449 9450 9451

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
9452
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9453
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
9454 9455 9456 9457
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
9458 9459 9460
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
9461 9462
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fsp_matrix')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'fsp_matrix')
9463
    helper = LayerHelper('fsp_matrix', **locals())
9464 9465 9466
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(input_param_name='x')
    )
9467 9468
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
9469 9470 9471


def continuous_value_model(input, cvm, use_cvm=True):
9472
    r"""
H
fix doc  
heqiaozhi 已提交
9473

H
heqiaozhi 已提交
9474
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
9475

Z
zhoushiyu 已提交
9476
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
9477

Z
zhoushiyu 已提交
9478 9479
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
9480
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
9481 9482
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
9483

Z
zhoushiyu 已提交
9484 9485 9486 9487 9488 9489 9490
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
9491

H
heqiaozhi 已提交
9492
    Returns:
H
fix doc  
heqiaozhi 已提交
9493

Z
zhoushiyu 已提交
9494 9495
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
9496

H
heqiaozhi 已提交
9497
    Examples:
H
fix doc  
heqiaozhi 已提交
9498

H
heqiaozhi 已提交
9499
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
9500

9501
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
9502 9503
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
9504 9505 9506 9507 9508 9509 9510 9511
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
9512

H
heqiaozhi 已提交
9513 9514 9515
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
9516 9517 9518 9519 9520 9521 9522 9523 9524
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cvm'
    )
    helper.append_op(
        type='cvm',
        inputs={'X': [input], 'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm},
    )
H
heqiaozhi 已提交
9525
    return out
Z
zhoukunsheng 已提交
9526 9527 9528 9529 9530 9531 9532


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
9533
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
9534 9535

    Returns:
9536
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate.
Z
zhoukunsheng 已提交
9537 9538 9539 9540

    Examples:
        .. code-block:: python

9541
             import paddle.fluid as fluid
9542 9543 9544
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
9545
             # condition is a tensor [True, False, True]
9546 9547 9548
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
9549 9550

             # condition is a tensor [[True, False], [False, True]]
9551 9552 9553
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
9554 9555

             # condition is a tensor [False, False, False]
9556 9557 9558 9559
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
9560
    """
H
hong 已提交
9561 9562

    if in_dygraph_mode():
9563
        return _C_ops.nonzero(condition)
9564 9565
    if _in_legacy_dygraph():
        return _legacy_C_ops.where_index(condition)
9566

W
wanghuancoder 已提交
9567 9568
    helper = LayerHelper("where_index", **locals())

Z
zhoukunsheng 已提交
9569
    out = helper.create_variable_for_type_inference(
9570 9571 9572 9573 9574 9575 9576 9577
        dtype=core.VarDesc.VarType.INT64
    )

    helper.append_op(
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]},
    )
Z
zhoukunsheng 已提交
9578
    return out
Z
zhoukunsheng 已提交
9579 9580


W
WangXi 已提交
9581
@deprecated(since="2.0.0", update_to="paddle.sign")
Z
zhoukunsheng 已提交
9582
def sign(x):
9583
    r"""
9584
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
9585 9586

    Args:
9587 9588
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
9589 9590

    Returns:
9591
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
9592 9593 9594 9595

    Examples:
        .. code-block:: python

9596 9597 9598
          import paddle.fluid as fluid
          import numpy as np

9599
          # [1.0, 0.0, -1.0]
9600
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32'))
Z
zhoukunsheng 已提交
9601 9602 9603
    """

    helper = LayerHelper("sign", **locals())
9604 9605 9606 9607
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
9608 9609 9610 9611 9612
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
9613 9614


Z
zhoukunsheng 已提交
9615
def unique(x, dtype='int32'):
9616
    r"""
Z
zhoukunsheng 已提交
9617 9618 9619
    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
Z
Zhang Ting 已提交
9620 9621
        x(Tensor): A 1-D input tensor, it's data type should be float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The type of index tensor: int32, int64. Default: int32.
Z
zhoukunsheng 已提交
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
W
wawltor 已提交
9632
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
Z
zhoukunsheng 已提交
9633 9634 9635
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

9636 9637 9638
    check_variable_and_dtype(
        x, "x", ['float32', 'float64', 'int32', 'int64'], "unique"
    )
Z
zhoukunsheng 已提交
9639 9640 9641 9642 9643 9644
    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

9645 9646 9647 9648 9649 9650
    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out], 'Index': [index]},
    )
Z
zhoukunsheng 已提交
9651 9652 9653 9654

    return out, index


9655
def unique_with_counts(x, dtype='int32'):
9656
    r"""
T
tianshuo78520a 已提交
9657
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
9658
    and an index tensor pointing to this unique tensor.
9659

9660
    **NOTICE**: This op support the variable type of Tensor only.
9661 9662

    Args:
9663
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
9664
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Default value is int32.
9665

9666
    Returns:
9667 9668 9669
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
9670
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
9671
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
9672 9673 9674 9675 9676 9677 9678 9679 9680

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
9681
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
9682
    """
9683 9684 9685
    check_variable_and_dtype(
        x, "x", ['float32', 'float64', 'int32', 'int64'], "unique_with_counts"
    )
9686 9687
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
9688 9689
            "Op unique_with_counts, index dtype must be int32 or int64"
        )
9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

9704 9705 9706 9707 9708 9709
    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out], 'Index': [index], 'Count': [count]},
    )
9710 9711 9712 9713

    return out, index, count


9714
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
9715
    r"""
9716

S
SunGaofeng 已提交
9717
    This op returns a col buffer of sliding local blocks of input x, also known
9718
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
9719
    all element will be rearranged as a column. While the convolution filter sliding over
9720 9721
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
9722
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
9723 9724 9725 9726
    can be calculated as following.

    .. math::

9727
        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1
9728

9729
        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1
9730

9731
        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
9732

9733
        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
9734

9735
        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]
9736

9737
        Lout &= hout \times wout
9738 9739


S
SunGaofeng 已提交
9740
    Parameters:
9741
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
S
SunGaofeng 已提交
9742
                                  data type can be float32 or float64
9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
9755
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
9756
                                  [dilation_h, dilation_w], or an integer dilation treated as
9757
                                  [dilation, dilation]. For default, it will be [1, 1].
9758 9759
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
9760
                             For more information, please refer to :ref:`api_guide_Name`
9761

9762

9763
    Returns:
9764
        The tensor corresponding to the sliding local blocks.
9765 9766 9767
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
S
SunGaofeng 已提交
9768 9769 9770
        The data type of output is the same as the input :math:`x`

    Return Type:
9771
        Tensor
9772 9773 9774 9775 9776

    Examples:

        .. code-block:: python

9777 9778 9779 9780 9781
            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
9782 9783
    """

9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803
    return paddle.nn.functional.unfold(
        x, kernel_sizes, strides, paddings, dilations, name
    )


def deformable_roi_pooling(
    input,
    rois,
    trans,
    no_trans=False,
    spatial_scale=1.0,
    group_size=[1, 1],
    pooled_height=1,
    pooled_width=1,
    part_size=None,
    sample_per_part=1,
    trans_std=0.1,
    position_sensitive=False,
    name=None,
):
9804
    r"""
9805

9806
    Deformable ROI Pooling Layer
9807

9808
    Performs deformable region-of-interest pooling on inputs. As described
9809
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after
9810
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
9811

9812
    The operation has three steps:
9813

9814
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
9815

9816 9817
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
9818

9819
    3. Sample several points in each bin to get average values as output.
9820 9821


9822 9823 9824 9825 9826 9827 9828 9829 9830
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
9831 9832 9833
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where
                          N is number of ROIs, C is number of channels, which indicate the offset distance
                          in the x and y directions, H is pooled height, and W is pooled width.
9834 9835 9836 9837
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
9838
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels
9839
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
9840
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
9841 9842 9843 9844 9845 9846 9847
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
9848
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
9849 9850 9851 9852
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
9853 9854 9855 9856

    Examples:
      .. code-block:: python

9857 9858
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
9859
        input = fluid.data(name="input",
9860 9861
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
9862 9863
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
9864
                          dtype='float32',
C
chengjuntao 已提交
9865 9866
                          lod_level=1)
        trans = fluid.data(name="trans",
9867 9868 9869 9870 9871
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
9872
                                                no_trans=False,
9873
                                                spatial_scale=1.0,
C
chengjuntao 已提交
9874 9875 9876 9877
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
9878
                                                sample_per_part=4,
C
chengjuntao 已提交
9879 9880
                                                trans_std=0.1,
                                                position_sensitive=True)
9881

9882
        # position_sensitive=False
9883
        import paddle.fluid as fluid
C
chengjuntao 已提交
9884
        input = fluid.data(name="input",
9885 9886
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
9887 9888
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
9889
                          dtype='float32',
C
chengjuntao 已提交
9890 9891
                          lod_level=1)
        trans = fluid.data(name="trans",
9892 9893 9894 9895 9896
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
9897
                                                no_trans=False,
9898
                                                spatial_scale=1.0,
C
chengjuntao 已提交
9899 9900 9901 9902
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
9903
                                                sample_per_part=4,
C
chengjuntao 已提交
9904 9905
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
9906 9907
    """

9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_type(
        group_size, 'group_size', (list, tuple), 'deformable_roi_pooling'
    )
9920
    if part_size is not None:
9921 9922 9923
        check_type(
            part_size, 'part_size', (list, tuple), 'deformable_roi_pooling'
        )
9924

C
cjt222 已提交
9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940
    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input, "ROIs": rois, "Trans": trans},
        outputs={"Output": output, "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std,
        },
    )
C
cjt222 已提交
9957
    return output
9958 9959


9960
@deprecated(since="2.0.0", update_to="paddle.shard_index")
9961 9962
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
L
lilong12 已提交
9963 9964 9965 9966 9967 9968 9969 9970 9971
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
9972 9973
    ::

9974
        shard_size = (index_num + nshards - 1) // nshards
9975

L
lilong12 已提交
9976 9977 9978
    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
9979

L
lilong12 已提交
9980 9981 9982 9983
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.
9984 9985

    Args:
L
lilong12 已提交
9986 9987
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
9988 9989 9990
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.
9991 9992

    Returns:
L
lilong12 已提交
9993
        Tensor.
9994 9995 9996 9997

    Examples:
        .. code-block:: python

9998 9999 10000 10001 10002 10003 10004 10005
            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
10006
    """
H
hong 已提交
10007
    if in_dygraph_mode():
10008 10009 10010
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
H
hong 已提交
10011

B
Baibaifan 已提交
10012
    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
10013 10014 10015
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
10016 10017 10018
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
10019 10020

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
10033
    return out
H
huangjun12 已提交
10034 10035 10036 10037


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
10038
    r"""
10039 10040 10041
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
10042

10043
    The formula is as follows:
H
huangjun12 已提交
10044

10045
    .. math::
H
huangjun12 已提交
10046

10047
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
10048

10049 10050 10051 10052 10053 10054 10055 10056 10057
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
10058 10059
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

10060 10061
    Returns:
        Variable: The output tensor with the same shape and data type as input.
10062 10063


10064
    Examples:
10065

10066
    .. code-block:: python
10067

10068
        import paddle.fluid as fluid
10069
        import paddle
10070
        import numpy as np
10071
        paddle.enable_static()
10072

10073
        DATATYPE='float32'
10074

10075
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
10076

10077 10078
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
10079

10080 10081 10082 10083 10084
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
10085
    """
J
Jiabin Yang 已提交
10086
    if _non_static_mode():
10087 10088 10089
        return _legacy_C_ops.hard_swish(
            x, 'threshold', threshold, 'scale', scale, 'offset', offset
        )
10090

10091 10092 10093
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hard_swish'
    )
10094

H
huangjun12 已提交
10095 10096
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10097 10098 10099 10100 10101 10102
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
    )
H
huangjun12 已提交
10103
    return out
R
ruri 已提交
10104 10105


K
Kaipeng Deng 已提交
10106 10107
@templatedoc()
def mish(x, threshold=20, name=None):
10108
    r"""
K
Kaipeng Deng 已提交
10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165
    This operator implements the mish activation function.
    Refer to `Mish: A Self Regularized Non-Monotonic Neural
    Activation Function <https://arxiv.org/abs/1908.08681>`_


    The formula is as follows if :attr:`threshold` is :code:`None` or negative:

    .. math::

        out = x * \\tanh(\\ln(1 + e^{x}))

    The formula is as follows if :attr:`threshold` is set as positive value:

    .. math::

	out = \\begin{cases}
		x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\
		x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\
		x \\ast \\tanh(\\ln(1 + e^{x})),  \\text{otherwise}
	      \\end{cases}

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type
                      should be float16, float32 or float64.
        threshold (float|None): threshold for softplus in Mish operator.
                Approximate value of softplus will be used if absolute value
                of input is greater than :attr:threshold and :attr:threshold
                is set as positive value. For none or negative threshold,
                approximate value is not used. Default 20.
        name (str, optional): The default value is None. Normally there is no
                need for user to set this property. For more information, please
                refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output tensor with the same shape and data type as input.


    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        DATATYPE='float32'

        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)

        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.mish(x)

        place = fluid.CPUPlace()
        # place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667, 3., 4.]]
    """
10166
    if in_dygraph_mode():
10167
        return _C_ops.mish(x, threshold)
10168
    if _in_legacy_dygraph():
10169
        return _legacy_C_ops.mish(x, 'threshold', threshold)
10170

K
Kaipeng Deng 已提交
10171 10172
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish')
    check_type(threshold, 'threshold', (float, int), 'mish')
10173 10174 10175 10176 10177
    assert (
        threshold > 0
    ), "threshold of mish should be greater than 0, " "but got {}".format(
        threshold
    )
K
Kaipeng Deng 已提交
10178 10179 10180

    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10181 10182 10183 10184 10185 10186
    helper.append_op(
        type='mish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
K
Kaipeng Deng 已提交
10187 10188 10189
    return out


G
Guo Sheng 已提交
10190
def gather_tree(ids, parents):
10191
    r"""
G
Guo Sheng 已提交
10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

10216 10217
            Then:
                gather_tree(ids, parents)
G
Guo Sheng 已提交
10218 10219 10220 10221 10222 10223 10224 10225
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
L
liu zhengxi 已提交
10226
        ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]`
G
Guo Sheng 已提交
10227 10228
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
L
liu zhengxi 已提交
10229
        parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`,
G
Guo Sheng 已提交
10230 10231 10232 10233
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
L
liu zhengxi 已提交
10234
            A Tensor with the same shape and data type as :attr:`ids`. \
G
Guo Sheng 已提交
10235 10236 10237 10238 10239 10240
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

L
liu zhengxi 已提交
10241 10242 10243 10244 10245 10246 10247 10248
            import paddle

            ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]])

            parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]])

            final_sequences = paddle.nn.functional.gather_tree(ids, parents)
            # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]]
G
Guo Sheng 已提交
10249 10250

    """
10251
    return paddle.nn.functional.gather_tree(ids, parents)
G
Guo Sheng 已提交
10252 10253


10254
@deprecated(since="2.0.0", update_to="paddle.uniform")
10255
@templatedoc()
10256 10257 10258
def uniform_random(
    shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None
):
10259
    """
10260 10261
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
10262 10263 10264

    Examples:
    ::
10265

10266 10267
        Input:
          shape = [1, 2]
10268

10269 10270 10271 10272
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
10286 10287
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
10288
            time. Default is 0.
10289 10290 10291
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
10292

10293
    Returns:
10294 10295
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
10296

10297
    Raises:
10298 10299
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
10300

10301 10302 10303
    Examples:
        .. code-block:: python

10304
            import paddle
10305
            import paddle.fluid as fluid
10306
            paddle.enable_static()
10307 10308

            # example 1:
10309
            # attr shape is a list which doesn't contain Tensor.
10310
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
10311 10312 10313
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]
10314 10315

            # example 2:
10316 10317 10318
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
10319
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
10320 10321
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]
10322 10323

            # example 3:
10324
            # attr shape is a Tensor, the data type must be int64 or int32.
10325
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
10326
            result_3 = fluid.layers.uniform_random(var_shape)
10327 10328 10329 10330
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]
10331

10332 10333 10334
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
10335

10336 10337
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
10338
        return _C_ops.uniform(
10339 10340 10341 10342 10343 10344 10345
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
10346
    elif _in_legacy_dygraph():
10347
        shape = utils.convert_shape_to_list(shape)
10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
10360

10361
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
10362 10363 10364
    check_dtype(
        dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand'
    )
10365 10366
    check_type(min, 'min', (float, int, Variable), 'uniform_random/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform_random/rand')
10367 10368

    inputs = dict()
10369
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
10370 10371 10372
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand'
    )
10373

10374
    helper = LayerHelper("uniform_random", **locals())
10375
    out = helper.create_variable_for_type_inference(dtype)
10376 10377 10378
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
10379
    utils.try_set_static_shape_tensor(out, shape)
10380
    return out
myq406450149's avatar
myq406450149 已提交
10381 10382 10383 10384 10385 10386 10387


def unbind(input, axis=0):
    """
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
10388

myq406450149's avatar
myq406450149 已提交
10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
10414 10415 10416
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
10417
    if not isinstance(axis, (int)):
10418 10419 10420
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
10421 10422 10423 10424 10425 10426 10427 10428 10429 10430
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

10431 10432 10433 10434 10435 10436
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
10437
    return outs