Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5b69242f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5b69242f
编写于
4月 14, 2020
作者:
Y
yaoxuefeng
提交者:
GitHub
4月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify datanorm op test=develop (#23030)
上级
3e1676fa
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
470 addition
and
43 deletion
+470
-43
paddle/fluid/framework/unused_var_check.cc
paddle/fluid/framework/unused_var_check.cc
+3
-1
paddle/fluid/operators/data_norm_op.cc
paddle/fluid/operators/data_norm_op.cc
+236
-11
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+39
-9
python/paddle/fluid/tests/unittests/test_data_norm_op.py
python/paddle/fluid/tests/unittests/test_data_norm_op.py
+192
-22
未找到文件。
paddle/fluid/framework/unused_var_check.cc
浏览文件 @
5b69242f
...
...
@@ -53,7 +53,9 @@ const std::unordered_set<std::string> op_has_unsed_vars_white_list = {
"precision_recall"
,
// 1
"fusion_seqpool_cvm_concat"
,
// 2
"fused_batch_norm_act"
,
// 2
"fused_batch_norm_act_grad"
// 2
"fused_batch_norm_act_grad"
,
// 2
"data_norm"
,
// 0
"data_norm_grad"
,
// 0
};
namespace
paddle
{
...
...
paddle/fluid/operators/data_norm_op.cc
浏览文件 @
5b69242f
...
...
@@ -51,6 +51,17 @@ class DataNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Means"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Scales"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
""
);
bool
enable_scale_and_shift
=
ctx
->
Attrs
().
Get
<
bool
>
(
"enable_scale_and_shift"
);
if
(
enable_scale_and_shift
)
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"scale_w"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(scale_w) of DataNormOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"bias"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(bias) of DataNormOp should not be null."
));
}
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
...
...
@@ -72,6 +83,45 @@ class DataNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSquareSum"
)[
0
],
C
);
}
if
(
enable_scale_and_shift
)
{
auto
scale_dim
=
ctx
->
GetInputDim
(
"scale_w"
);
auto
bias_dim
=
ctx
->
GetInputDim
(
"bias"
);
PADDLE_ENFORCE_EQ
(
scale_dim
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"the dimensionof scale"
"must equal to 1. But received: "
"the shape of scale is [%s], "
"the dimensionof scale is [%d]"
,
scale_dim
,
scale_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
bias_dim
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"the dimension of bias"
"must equal to 1. But received: "
"the shape of bias is [%s],"
"the dimension of bias is [%d]"
,
bias_dim
,
bias_dim
.
size
()));
bool
check
=
true
;
if
((
!
ctx
->
IsRuntime
())
&&
(
framework
::
product
(
scale_dim
)
<=
0
||
framework
::
product
(
bias_dim
)
<=
0
))
{
check
=
false
;
}
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
scale_dim
[
0
],
C
,
platform
::
errors
::
InvalidArgument
(
"the shape of scale must equal to [%d]"
"But received: the shape of scale is [%d]"
,
C
,
scale_dim
[
0
]));
PADDLE_ENFORCE_EQ
(
bias_dim
[
0
],
C
,
platform
::
errors
::
InvalidArgument
(
"the shape of bias must equal to [%d]"
"But received: the shape of bias is [%d]"
,
C
,
bias_dim
[
0
]));
}
}
ctx
->
SetOutputDim
(
"Y"
,
x_dims
);
ctx
->
SetOutputDim
(
"Means"
,
{
C
});
ctx
->
SetOutputDim
(
"Scales"
,
{
C
});
...
...
@@ -99,6 +149,17 @@ class DataNormOp : public framework::OperatorWithKernel {
ctx
,
"BatchSquareSum"
),
"BatchSquareSum input should be of float type"
);
bool
enable_scale_and_shift
=
ctx
.
Attr
<
bool
>
(
"enable_scale_and_shift"
);
if
(
enable_scale_and_shift
)
{
PADDLE_ENFORCE_EQ
(
dn_param_type
,
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"scale_w"
),
platform
::
errors
::
InvalidArgument
(
"scale_w input should be of float type"
));
PADDLE_ENFORCE_EQ
(
dn_param_type
,
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"bias"
),
platform
::
errors
::
InvalidArgument
(
"bias input should be of float type"
));
}
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
...
...
@@ -133,6 +194,19 @@ class DataNormOpMaker : public framework::OpProtoAndCheckerMaker {
"summary_decay_rate"
,
"(float, default 0.9999999) The decay rate when update the summary"
)
.
SetDefault
(
0.9999999
);
AddAttr
<
bool
>
(
"enable_scale_and_shift"
,
"(bool, default false) Set to true to enable scale and shift such as "
"batch_norm op"
)
.
SetDefault
(
false
);
AddInput
(
"scale_w"
,
"scale_w is a 1-dimensional tensor of size C "
"that is applied to the output"
)
.
AsDispensable
();
AddInput
(
"bias"
,
"bias is a 1-dimensional tensor of size C "
"that is applied to the output"
)
.
AsDispensable
();
AddAttr
<
std
::
string
>
(
"data_layout"
,
""
).
SetDefault
(
"NCHW"
);
AddAttr
<
bool
>
(
"sync_stats"
,
"(bool, default false) only used in multi-GPU"
)
.
SetDefault
(
false
);
...
...
@@ -194,7 +268,6 @@ class DataNormKernel<platform::CPUDeviceContext, T>
// alloc memory
T
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>
inv_std
(
C
);
ConstEigenVectorArrayMap
<
T
>
b_size_arr
(
ctx
.
Input
<
Tensor
>
(
"BatchSize"
)
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
b_sum_arr
(
...
...
@@ -210,6 +283,7 @@ class DataNormKernel<platform::CPUDeviceContext, T>
const
T
*
means_data
=
mean_out
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
scales_data
=
scales
->
data
<
T
>
();
const
int
slot_dim
=
ctx
.
Attr
<
int
>
(
"slot_dim"
);
T
min_precision
=
1e-7
f
;
...
...
@@ -218,7 +292,8 @@ class DataNormKernel<platform::CPUDeviceContext, T>
case
DataLayout
::
kNHWC
:
{
// if slot_dim is set and batch size is larger than zero, we choose
// to check if show number is zero, if so, skip normalization.
if
(
slot_dim
>
0
&&
N
>
0
)
{
if
(
slot_dim
>
0
&&
N
>
0
&&
(
!
ctx
.
Attr
<
bool
>
(
"enable_scale_and_shift"
)))
{
const
int
item_size
=
x
->
numel
()
/
N
;
// location of show number in one embedding
int
offset
=
0
;
...
...
@@ -239,10 +314,56 @@ class DataNormKernel<platform::CPUDeviceContext, T>
offset
+=
item_size
;
}
}
else
{
EigenArrayMap
<
T
>
(
y_data
,
C
,
N
)
=
(
ConstEigenArrayMap
<
T
>
(
x
->
data
<
T
>
(),
C
,
N
).
colwise
()
-
means_arr
)
.
colwise
()
*
scales_arr
;
if
(
!
ctx
.
Attr
<
bool
>
(
"enable_scale_and_shift"
)
&&
slot_dim
<=
0
)
{
EigenArrayMap
<
T
>
(
y_data
,
C
,
N
)
=
(
ConstEigenArrayMap
<
T
>
(
x
->
data
<
T
>
(),
C
,
N
).
colwise
()
-
means_arr
)
.
colwise
()
*
scales_arr
;
}
else
if
(
ctx
.
Attr
<
bool
>
(
"enable_scale_and_shift"
)
&&
slot_dim
<=
0
)
{
const
auto
*
scale_w
=
ctx
.
Input
<
Tensor
>
(
"scale_w"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"bias"
);
ConstEigenVectorArrayMap
<
T
>
scale_w_arr
(
scale_w
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
bias_arr
(
bias
->
data
<
T
>
(),
C
);
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>
new_scale
=
scales_arr
*
scale_w_arr
;
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>
new_bias
=
bias_arr
-
means_arr
*
scales_arr
*
scale_w_arr
;
EigenArrayMap
<
T
>
(
y_data
,
C
,
N
)
=
(
ConstEigenArrayMap
<
T
>
(
x
->
data
<
T
>
(),
C
,
N
).
colwise
()
*
new_scale
)
.
colwise
()
+
new_bias
;
}
else
{
const
int
item_size
=
x
->
numel
()
/
N
;
const
auto
*
scale_w
=
ctx
.
Input
<
Tensor
>
(
"scale_w"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"bias"
);
const
T
*
scale_w_data
=
scale_w
->
data
<
T
>
();
const
T
*
bias_data
=
bias
->
data
<
T
>
();
// location of show number in one embedding
int
offset
=
0
;
for
(
int
k
=
0
;
k
<
N
;
++
k
)
{
for
(
int
i
=
0
;
i
<
item_size
;
i
+=
slot_dim
)
{
if
(
x_data
[
offset
+
i
]
>
-
min_precision
&&
x_data
[
offset
+
i
]
<
min_precision
)
{
// show = 0
memset
(
y_data
+
offset
+
i
,
0
,
sizeof
(
T
)
*
slot_dim
);
}
else
{
for
(
int
j
=
i
;
j
<
i
+
slot_dim
;
++
j
)
{
y_data
[
offset
+
j
]
=
((
x_data
[
offset
+
j
]
-
means_data
[
j
])
*
scales_data
[
j
])
*
scale_w_data
[
j
]
+
bias_data
[
j
];
}
}
}
// end for i
offset
+=
item_size
;
}
// end for k
}
}
break
;
}
...
...
@@ -274,7 +395,8 @@ class DataNormGradOp : public framework::OperatorWithKernel {
"Output(BatchSquareSum) of DataNormGradOp should not be null."
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Means"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Scales"
),
""
);
bool
enable_scale_and_shift
=
ctx
->
Attrs
().
Get
<
bool
>
(
"enable_scale_and_shift"
);
// check output
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BatchSize"
)),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BatchSum"
)),
""
);
...
...
@@ -294,6 +416,22 @@ class DataNormGradOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BatchSize"
),
{
C
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BatchSum"
),
{
C
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BatchSquareSum"
),
{
C
});
if
(
enable_scale_and_shift
)
{
const
bool
has_scale_grad
=
ctx
->
HasOutput
(
framework
::
GradVarName
(
"scale_w"
));
const
bool
has_bias_grad
=
ctx
->
HasOutput
(
framework
::
GradVarName
(
"bias"
));
PADDLE_ENFORCE_EQ
((
has_scale_grad
==
has_bias_grad
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Scale@GRAD) and Output(Bias@GRAD)"
"must be null or not be null at same time. "
"But now, has Scale@Grad=[%d], has Bias@GRAD=[%d]"
,
has_scale_grad
,
has_bias_grad
));
if
(
has_scale_grad
)
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"scale_w"
),
{
C
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"bias"
),
{
C
});
}
}
}
protected:
...
...
@@ -353,18 +491,23 @@ class DataNormGradKernel<platform::CPUDeviceContext, T>
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
// init output
Tensor
*
d_x
=
nullptr
;
if
(
ctx
.
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
}
auto
*
d_batch_size
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BatchSize"
));
auto
*
d_batch_sum
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BatchSum"
));
auto
*
d_batch_square_sum
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BatchSquareSum"
));
const
T
*
mean_data
=
means
->
data
<
T
>
();
const
T
*
inv_var_data
=
scales
->
data
<
T
>
();
ConstEigenVectorArrayMap
<
T
>
mean_arr
(
mean_data
,
C
);
ConstEigenVectorArrayMap
<
T
>
inv_var_arr
(
inv_var_data
,
C
);
T
*
d_batch_size_data
=
d_batch_size
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
d_batch_sum_data
=
d_batch_sum
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
d_batch_square_sum_data
=
...
...
@@ -372,7 +515,6 @@ class DataNormGradKernel<platform::CPUDeviceContext, T>
EigenVectorArrayMap
<
T
>
d_batch_size_arr
(
d_batch_size_data
,
C
);
EigenVectorArrayMap
<
T
>
d_batch_sum_arr
(
d_batch_sum_data
,
C
);
EigenVectorArrayMap
<
T
>
d_batch_square_sum_arr
(
d_batch_square_sum_data
,
C
);
d_batch_size_arr
.
setZero
();
d_batch_sum_arr
.
setZero
();
d_batch_square_sum_arr
.
setZero
();
...
...
@@ -392,8 +534,86 @@ class DataNormGradKernel<platform::CPUDeviceContext, T>
if
(
d_x
!=
nullptr
)
{
EigenArrayMap
<
T
>
d_x_arr
(
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
N
);
d_x_arr
.
setZero
();
for
(
int
nc
=
0
;
nc
<
N
;
++
nc
)
{
d_x_arr
.
col
(
nc
)
=
d_y_arr
.
col
(
nc
)
*
scales_arr
;
if
(
!
ctx
.
Attr
<
bool
>
(
"enable_scale_and_shift"
))
{
for
(
int
nc
=
0
;
nc
<
N
;
++
nc
)
{
d_x_arr
.
col
(
nc
)
=
d_y_arr
.
col
(
nc
)
*
scales_arr
;
}
}
else
{
const
auto
*
scale_w
=
ctx
.
Input
<
Tensor
>
(
"scale_w"
);
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"scale_w"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"bias"
));
ConstEigenVectorArrayMap
<
T
>
scale_arr
(
scale_w
->
data
<
T
>
(),
C
);
T
*
d_bias_data
=
nullptr
;
T
*
d_scale_data
=
nullptr
;
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_scale_data
=
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenVectorArrayMap
<
T
>
d_bias_arr
(
d_bias_data
,
C
);
EigenVectorArrayMap
<
T
>
d_scale_arr
(
d_scale_data
,
C
);
Tensor
dy_sum
;
dy_sum
.
Resize
({
C
});
dy_sum
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenVectorArrayMap
<
T
>
dy_sum_arr
(
dy_sum
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
Tensor
dy_mul_x_sub_mean_mul_invstd_sum
;
dy_mul_x_sub_mean_mul_invstd_sum
.
Resize
({
C
});
dy_mul_x_sub_mean_mul_invstd_sum
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenVectorArrayMap
<
T
>
dy_mul_x_sub_mean_mul_invstd_sum_arr
(
dy_mul_x_sub_mean_mul_invstd_sum
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
dy_sum_arr
.
setZero
();
dy_mul_x_sub_mean_mul_invstd_sum_arr
.
setZero
();
if
(
slot_dim
<=
0
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
dy_sum_arr
+=
d_y_arr
.
col
(
n
);
dy_mul_x_sub_mean_mul_invstd_sum_arr
+=
((
x_arr
.
col
(
n
)
-
mean_arr
)
*
inv_var_arr
*
d_y_arr
.
col
(
n
));
}
if
(
d_scale
&&
d_bias
)
{
d_bias_arr
=
dy_sum_arr
;
d_scale_arr
=
dy_mul_x_sub_mean_mul_invstd_sum_arr
;
}
for
(
int
nc
=
0
;
nc
<
N
;
++
nc
)
{
d_x_arr
.
col
(
nc
)
=
d_y_arr
.
col
(
nc
)
*
scales_arr
*
scale_arr
;
}
}
else
{
int
offset
=
0
;
const
int
item_size
=
x
->
numel
()
/
N
;
T
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
d_scale_data
=
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
dy_data
=
d_y
->
data
<
T
>
();
const
T
*
scales_data
=
scales
->
data
<
T
>
();
const
T
*
scale_w_data
=
scale_w
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
item_size
;
i
++
)
{
d_bias_data
[
i
]
=
0
;
d_scale_data
[
i
]
=
0
;
}
for
(
int
k
=
0
;
k
<
N
;
++
k
)
{
for
(
int
i
=
0
;
i
<
item_size
;
i
+=
slot_dim
)
{
if
(
!
(
x_data
[
offset
+
i
]
>
-
min_precision
&&
x_data
[
offset
+
i
]
<
min_precision
))
{
// show != 0
for
(
int
j
=
i
;
j
<
i
+
slot_dim
;
++
j
)
{
d_x_data
[
offset
+
j
]
=
dy_data
[
offset
+
j
]
*
scales_data
[
j
]
*
scale_w_data
[
j
];
d_bias_data
[
j
]
+=
dy_data
[
offset
+
j
];
d_scale_data
[
j
]
+=
(
x_data
[
offset
+
j
]
-
mean_data
[
j
])
*
inv_var_data
[
j
]
*
dy_data
[
offset
+
j
];
}
}
}
offset
+=
item_size
;
}
}
}
}
...
...
@@ -466,6 +686,8 @@ class DataNormGradMaker : public framework::SingleGradOpMaker<T> {
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
this
->
OutputGrad
(
"Y"
));
op
->
SetInput
(
"scale_w"
,
this
->
Input
(
"scale_w"
));
op
->
SetInput
(
"bias"
,
this
->
Input
(
"bias"
));
op
->
SetOutput
(
"BatchSize"
,
this
->
Input
(
"BatchSize"
));
op
->
SetOutput
(
"BatchSum"
,
this
->
Input
(
"BatchSum"
));
op
->
SetOutput
(
"BatchSquareSum"
,
this
->
Input
(
"BatchSquareSum"
));
...
...
@@ -481,6 +703,9 @@ class DataNormGradMaker : public framework::SingleGradOpMaker<T> {
this
->
InputGrad
(
"BatchSum"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"BatchSquareSum"
),
this
->
InputGrad
(
"BatchSquareSum"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"scale_w"
),
this
->
InputGrad
(
"scale_w"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"bias"
),
this
->
InputGrad
(
"bias"
));
}
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
5b69242f
...
...
@@ -3157,7 +3157,8 @@ def data_norm(input,
do_model_average_for_mean_and_var=True,
slot_dim=-1,
sync_stats=False,
summary_decay_rate=0.9999999):
summary_decay_rate=0.9999999,
enable_scale_and_shift=False):
"""
**Data Normalization Layer**
...
...
@@ -3206,6 +3207,7 @@ def data_norm(input,
sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
summary messages.
summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
enable_scale_and_shift(bool, Default False): do scale&shift after normalization.
Returns:
Variable: A tensor variable which is the result after applying data normalization on the input.
...
...
@@ -3236,12 +3238,35 @@ def data_norm(input,
batch_size_default = 1e4
batch_sum_default = 0.0
batch_square_sum_default = 1e4
scale_w_default = 1.0
bias_default = 0.0
if param_attr and isinstance(param_attr, dict):
batch_size_default = param_attr.get("batch_size", 1e4)
batch_sum_default = param_attr.get("batch_sum", 0.0)
batch_square_sum_default = param_attr.get("batch_square", 1e4)
if enable_scale_and_shift:
scale_w_default = param_attr.get("scale_w", 1.0)
bias_default = param_attr.get("bias", 0.0)
# create scale and shift(bias) when enable_scale_and_shift is True
if name == None:
name = "dn"
if enable_scale_and_shift:
scale_w = helper.create_parameter(
attr=ParamAttr(
name=name + '.scale_w',
initializer=Constant(value=float(scale_w_default)),
trainable=True),
shape=param_shape,
dtype=input.dtype)
bias = helper.create_parameter(
attr=ParamAttr(
name=name + '.bias',
initializer=Constant(value=float(bias_default)),
trainable=True),
shape=param_shape,
dtype=input.dtype)
# create parameter
batch_size = helper.create_parameter(
attr=ParamAttr(
...
...
@@ -3272,14 +3297,18 @@ def data_norm(input,
data_norm_out = input if in_place else helper.create_variable(dtype=dtype)
inputs = {
"X": input,
"BatchSize": batch_size,
"BatchSum": batch_sum,
"BatchSquareSum": batch_square_sum
}
if enable_scale_and_shift:
inputs["scale_w"] = scale_w
inputs["bias"] = bias
helper.append_op(
type="data_norm",
inputs={
"X": input,
"BatchSize": batch_size,
"BatchSum": batch_sum,
"BatchSquareSum": batch_square_sum
},
inputs=inputs,
outputs={
"Y": data_norm_out,
"Means": means,
...
...
@@ -3292,7 +3321,8 @@ def data_norm(input,
"epsilon": epsilon,
"slot_dim": slot_dim,
"sync_stats": sync_stats,
"summary_decay_rate": summary_decay_rate
"summary_decay_rate": summary_decay_rate,
"enable_scale_and_shift": enable_scale_and_shift
})
return helper.append_activation(data_norm_out)
...
...
python/paddle/fluid/tests/unittests/test_data_norm_op.py
浏览文件 @
5b69242f
...
...
@@ -24,6 +24,7 @@ import paddle.fluid.layers as layers
import
os
from
op_test
import
OpTest
from
paddle.fluid.framework
import
grad_var_name
from
paddle.fluid
import
Program
,
program_guard
def
_reference_testing
(
x
,
batch_size
,
batch_sum
,
batch_square_sum
,
slot_dim
=-
1
):
...
...
@@ -72,7 +73,13 @@ class TestDataNormOpInference(unittest.TestCase):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
check_with_place
(
self
,
place
,
data_layout
,
dtype
,
shape
,
slot_dim
=-
1
):
def
check_with_place
(
self
,
place
,
data_layout
,
dtype
,
shape
,
slot_dim
=-
1
,
enable_scale_and_shift
=
False
):
"""
do forward and check
...
...
@@ -82,7 +89,7 @@ class TestDataNormOpInference(unittest.TestCase):
dtype(dtype): np.float32
shape(list): input shape
slot_dim(int): dimension of one slot. Refer to data_norm api.
enable_scale_and_shift(bool): if enable scale and shift after normalization.
"""
epsilon
=
0.00001
...
...
@@ -127,21 +134,49 @@ class TestDataNormOpInference(unittest.TestCase):
mean_tensor
=
create_or_get_tensor
(
scope
,
"mean"
,
None
,
place
)
scales_tensor
=
create_or_get_tensor
(
scope
,
"scales"
,
None
,
place
)
data_norm_op
=
Operator
(
"data_norm"
,
# inputs
X
=
"x_val"
,
BatchSize
=
"batch_size"
,
BatchSum
=
"batch_sum"
,
BatchSquareSum
=
"batch_square_sum"
,
# outputs
Y
=
"y_out"
,
Means
=
"mean"
,
Scales
=
"scales"
,
# attrs
epsilon
=
epsilon
,
use_mkldnn
=
self
.
use_mkldnn
,
slot_dim
=
slot_dim
)
if
not
enable_scale_and_shift
:
data_norm_op
=
Operator
(
"data_norm"
,
# inputs
X
=
"x_val"
,
BatchSize
=
"batch_size"
,
BatchSum
=
"batch_sum"
,
BatchSquareSum
=
"batch_square_sum"
,
# outputs
Y
=
"y_out"
,
Means
=
"mean"
,
Scales
=
"scales"
,
# attrs
epsilon
=
epsilon
,
use_mkldnn
=
self
.
use_mkldnn
,
slot_dim
=
slot_dim
,
enable_scale_and_shift
=
False
)
else
:
scale_w
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
bias
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
scale_w_tensor
=
create_or_get_tensor
(
scope
,
"scale_w"
,
OpTest
.
np_dtype_to_fluid_dtype
(
scale_w
),
place
)
bias_tensor
=
create_or_get_tensor
(
scope
,
"bias"
,
OpTest
.
np_dtype_to_fluid_dtype
(
bias
),
place
)
data_norm_op
=
Operator
(
"data_norm"
,
# inputs
X
=
"x_val"
,
BatchSize
=
"batch_size"
,
BatchSum
=
"batch_sum"
,
BatchSquareSum
=
"batch_square_sum"
,
scale_w
=
"scale_w"
,
bias
=
"bias"
,
# outputs
Y
=
"y_out"
,
Means
=
"mean"
,
Scales
=
"scales"
,
# attrs
epsilon
=
epsilon
,
use_mkldnn
=
self
.
use_mkldnn
,
slot_dim
=
slot_dim
,
enable_scale_and_shift
=
True
)
data_norm_op
.
run
(
scope
,
place
)
...
...
@@ -162,11 +197,13 @@ class TestDataNormOpInference(unittest.TestCase):
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
for
slot_dim
in
[
-
1
,
1
]:
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
],
slot_dim
=
slot_dim
)
for
enable_scale_and_shift
in
[
False
,
True
]:
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
],
slot_dim
=
slot_dim
,
enable_scale_and_shift
=
enable_scale_and_shift
)
class
TestDataNormOp
(
OpTest
):
...
...
@@ -220,6 +257,130 @@ class TestDataNormOp(OpTest):
self
.
check_grad
([
'X'
],
'Y'
,
no_grad_set
=
set
([]))
class
TestDataNormOpWithEnableScaleAndShift
(
OpTest
):
"""
test class for data norm op
test forward and backward
"""
def
setUp
(
self
):
"""
init data norm op test env
"""
self
.
op_type
=
'data_norm'
self
.
use_mkldnn
=
False
epsilon
=
0.00001
slot_dim
=
-
1
enable_scale_and_shitf
=
True
x_shape
=
[
2
,
50
]
scale_shape
=
[
50
]
tp
=
np
.
float32
x_val
=
np
.
random
.
uniform
(
-
1
,
1
,
x_shape
).
astype
(
tp
)
batch_size
=
np
.
ones
(
scale_shape
).
astype
(
tp
)
batch_size
*=
1e4
batch_sum
=
np
.
zeros
(
scale_shape
).
astype
(
tp
)
batch_square_sum
=
np
.
ones
(
scale_shape
).
astype
(
tp
)
batch_square_sum
*=
1e4
scale_w
=
np
.
ones
(
scale_shape
).
astype
(
tp
)
bias
=
np
.
zeros
(
scale_shape
).
astype
(
tp
)
y
=
np
.
array
(
x_val
)
mean
=
np
.
zeros
(
x_shape
).
astype
(
tp
)
scale
=
np
.
ones
(
x_shape
).
astype
(
tp
)
self
.
inputs
=
{
"X"
:
x_val
,
"BatchSize"
:
batch_size
,
"BatchSum"
:
batch_sum
,
"BatchSquareSum"
:
batch_square_sum
,
"scale_w"
:
scale_w
,
"bias"
:
bias
}
self
.
outputs
=
{
"Y"
:
y
,
"Means"
:
mean
,
"Scales"
:
scale
}
self
.
attrs
=
{
"epsilon"
:
epsilon
,
"use_mkldnn"
:
self
.
use_mkldnn
,
"slot_dim"
:
slot_dim
,
"enable_scale_and_shift"
:
True
}
def
test_check_output
(
self
):
"""
test check forward, check output
"""
self
.
check_output
()
def
test_check_grad
(
self
):
"""
test check backward, check grad
"""
self
.
check_grad
([
'X'
],
'Y'
,
no_grad_set
=
set
([]))
class
TestDataNormOpWithEnableScaleAndShift_1
(
OpTest
):
"""
test class for data norm op
test forward and backward
"""
def
setUp
(
self
):
"""
init data norm op test env
"""
self
.
op_type
=
'data_norm'
self
.
use_mkldnn
=
False
epsilon
=
0.00001
slot_dim
=
1
enable_scale_and_shitf
=
True
x_shape
=
[
2
,
50
]
scale_shape
=
[
50
]
tp
=
np
.
float32
x_val
=
np
.
random
.
uniform
(
-
1
,
1
,
x_shape
).
astype
(
tp
)
batch_size
=
np
.
ones
(
scale_shape
).
astype
(
tp
)
batch_size
*=
1e4
batch_sum
=
np
.
zeros
(
scale_shape
).
astype
(
tp
)
batch_square_sum
=
np
.
ones
(
scale_shape
).
astype
(
tp
)
batch_square_sum
*=
1e4
scale_w
=
np
.
ones
(
scale_shape
).
astype
(
tp
)
bias
=
np
.
zeros
(
scale_shape
).
astype
(
tp
)
y
=
np
.
array
(
x_val
)
mean
=
np
.
zeros
(
x_shape
).
astype
(
tp
)
scale
=
np
.
ones
(
x_shape
).
astype
(
tp
)
self
.
inputs
=
{
"X"
:
x_val
,
"BatchSize"
:
batch_size
,
"BatchSum"
:
batch_sum
,
"BatchSquareSum"
:
batch_square_sum
,
"scale_w"
:
scale_w
,
"bias"
:
bias
}
self
.
outputs
=
{
"Y"
:
y
,
"Means"
:
mean
,
"Scales"
:
scale
}
self
.
attrs
=
{
"epsilon"
:
epsilon
,
"use_mkldnn"
:
self
.
use_mkldnn
,
"slot_dim"
:
slot_dim
,
"enable_scale_and_shift"
:
True
}
def
test_check_output
(
self
):
"""
test check forward, check output
"""
self
.
check_output
()
def
test_check_grad
(
self
):
"""
test check backward, check grad
"""
self
.
check_grad
([
'X'
],
'Y'
,
no_grad_set
=
set
([]))
class
TestDataNormOpWithSlotDim
(
OpTest
):
"""
test class for data norm op
...
...
@@ -399,5 +560,14 @@ class TestDataNormOpWithSyncStats(unittest.TestCase):
os
.
remove
(
f
)
class
TestDataNormOpErrorr
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
],
dtype
=
"int32"
)
#self.assertRaises(TypeError, fluid.data_norm, x2)
fluid
.
layers
.
data_norm
(
input
=
x2
,
param_attr
=
{},
enable_scale_and_shift
=
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录