Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
57e12429
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
57e12429
编写于
8月 22, 2020
作者:
Z
zhupengyang
提交者:
GitHub
8月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
var, std: input->x, adjust attr order, remove out, add docs (#26446)
上级
e966d0b6
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
297 addition
and
244 deletion
+297
-244
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-4
python/paddle/fluid/tests/unittests/test_std_layer.py
python/paddle/fluid/tests/unittests/test_std_layer.py
+95
-56
python/paddle/fluid/tests/unittests/test_variance_layer.py
python/paddle/fluid/tests/unittests/test_variance_layer.py
+95
-56
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+12
-12
python/paddle/tensor/stat.py
python/paddle/tensor/stat.py
+94
-116
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
57e12429
...
...
@@ -12301,13 +12301,10 @@ def clip_by_norm(x, max_norm, name=None):
return out
@deprecated(since="2.0.0", update_to="paddle.mean")
@templatedoc()
def mean(x, name=None):
"""
:alias_main: paddle.mean
:alias: paddle.mean,paddle.tensor.mean,paddle.tensor.stat.mean
:old_api: paddle.fluid.layers.mean
${comment}
Args:
...
...
python/paddle/fluid/tests/unittests/test_std_layer.py
浏览文件 @
57e12429
...
...
@@ -15,65 +15,104 @@
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
class
TestStdLayer
(
unittest
.
TestCase
):
def
ref_std
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
False
):
ddof
=
1
if
unbiased
else
0
if
isinstance
(
axis
,
int
):
axis
=
(
axis
,
)
if
axis
is
not
None
:
axis
=
tuple
(
axis
)
return
np
.
std
(
x
,
axis
=
axis
,
ddof
=
ddof
,
keepdims
=
keepdim
)
class
TestStdAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_dtype
=
"float64"
self
.
_input
=
np
.
random
.
random
([
2
,
3
,
4
,
5
]).
astype
(
self
.
_dtype
)
def
static
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
data
=
fluid
.
data
(
name
=
"data"
,
dtype
=
self
.
_dtype
,
shape
=
[
None
,
3
,
4
,
5
])
out
=
prog
.
current_block
().
create_var
(
dtype
=
self
.
_dtype
,
shape
=
[
2
,
3
,
4
,
5
])
paddle
.
std
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
,
out
=
out
)
exe
=
fluid
.
Executor
(
self
.
_place
)
return
exe
.
run
(
feed
=
{
"data"
:
self
.
_input
},
program
=
prog
,
fetch_list
=
[
out
])[
0
]
def
dynamic
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
with
fluid
.
dygraph
.
guard
(
self
.
_place
):
data
=
fluid
.
dygraph
.
to_variable
(
self
.
_input
)
out
=
paddle
.
std
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
)
return
out
.
numpy
()
def
numpy
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
ddof
=
1
if
unbiased
else
0
axis
=
tuple
(
axis
)
if
isinstance
(
axis
,
list
)
else
axis
return
np
.
std
(
self
.
_input
,
axis
=
axis
,
keepdims
=
keepdim
,
ddof
=
ddof
)
def
test_equal
(
self
):
places
=
[]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
_place
=
place
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(),
self
.
static
()))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
0
,
2
]),
self
.
dynamic
(
axis
=
[
0
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
1
,
3
],
keepdim
=
True
),
self
.
dynamic
(
axis
=
[
1
,
3
],
keepdim
=
True
)))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
unbiased
=
False
),
self
.
dynamic
(
unbiased
=
False
)))
self
.
dtype
=
'float64'
self
.
shape
=
[
1
,
3
,
4
,
10
]
self
.
axis
=
[
1
,
3
]
self
.
keepdim
=
False
self
.
unbiased
=
True
self
.
set_attrs
()
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
\
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
set_attrs
(
self
):
pass
def
static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
shape
,
self
.
dtype
)
out
=
paddle
.
std
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x
},
fetch_list
=
[
out
])
return
res
[
0
]
def
dygraph
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
self
.
x
)
out
=
paddle
.
std
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
paddle
.
enable_static
()
return
out
.
numpy
()
def
test_api
(
self
):
out_ref
=
ref_std
(
self
.
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
out_dygraph
=
self
.
dygraph
()
out_static
=
self
.
static
()
for
out
in
[
out_dygraph
,
out_static
]:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
out
))
self
.
assertTrue
(
np
.
equal
(
out_ref
.
shape
,
out
.
shape
).
all
())
class
TestStdAPI_dtype
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
dtype
=
'float32'
class
TestStdAPI_axis_int
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
axis
=
2
class
TestStdAPI_axis_list
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
axis
=
[
1
,
2
]
class
TestStdAPI_axis_tuple
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
axis
=
(
1
,
3
)
class
TestStdAPI_keepdim
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
keepdim
=
False
class
TestStdAPI_unbiased
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
unbiased
=
False
class
TestStdAPI_alias
(
unittest
.
TestCase
):
def
test_alias
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
np
.
array
([
10
,
12
],
'float32'
))
out1
=
paddle
.
std
(
x
).
numpy
()
out2
=
paddle
.
tensor
.
std
(
x
).
numpy
()
out3
=
paddle
.
tensor
.
stat
.
std
(
x
).
numpy
()
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
))
self
.
assertTrue
(
np
.
allclose
(
out1
,
out3
))
paddle
.
enable_static
()
class
TestStdError
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
[
2
,
3
,
4
],
'int32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
std
,
x
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_variance_layer.py
浏览文件 @
57e12429
...
...
@@ -15,65 +15,104 @@
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
class
TestVarianceLayer
(
unittest
.
TestCase
):
def
ref_var
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
False
):
ddof
=
1
if
unbiased
else
0
if
isinstance
(
axis
,
int
):
axis
=
(
axis
,
)
if
axis
is
not
None
:
axis
=
tuple
(
axis
)
return
np
.
var
(
x
,
axis
=
axis
,
ddof
=
ddof
,
keepdims
=
keepdim
)
class
TestVarAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_dtype
=
"float64"
self
.
_input
=
np
.
random
.
random
([
2
,
3
,
4
,
5
]).
astype
(
self
.
_dtype
)
def
static
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
data
=
fluid
.
data
(
name
=
"data"
,
dtype
=
self
.
_dtype
,
shape
=
[
None
,
3
,
4
,
5
])
out
=
prog
.
current_block
().
create_var
(
dtype
=
self
.
_dtype
,
shape
=
[
2
,
3
,
4
,
5
])
paddle
.
var
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
,
out
=
out
)
exe
=
fluid
.
Executor
(
self
.
_place
)
return
exe
.
run
(
feed
=
{
"data"
:
self
.
_input
},
program
=
prog
,
fetch_list
=
[
out
])[
0
]
def
dynamic
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
with
fluid
.
dygraph
.
guard
(
self
.
_place
):
data
=
fluid
.
dygraph
.
to_variable
(
self
.
_input
)
out
=
paddle
.
var
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
)
return
out
.
numpy
()
def
numpy
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
ddof
=
1
if
unbiased
else
0
axis
=
tuple
(
axis
)
if
isinstance
(
axis
,
list
)
else
axis
return
np
.
var
(
self
.
_input
,
axis
=
axis
,
keepdims
=
keepdim
,
ddof
=
ddof
)
def
test_equal
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
_place
=
place
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(),
self
.
static
()))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
0
,
2
]),
self
.
dynamic
(
axis
=
[
0
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
1
,
3
],
keepdim
=
True
),
self
.
dynamic
(
axis
=
[
1
,
3
],
keepdim
=
True
)))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
unbiased
=
False
),
self
.
dynamic
(
unbiased
=
False
)))
self
.
dtype
=
'float64'
self
.
shape
=
[
1
,
3
,
4
,
10
]
self
.
axis
=
[
1
,
3
]
self
.
keepdim
=
False
self
.
unbiased
=
True
self
.
set_attrs
()
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
\
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
set_attrs
(
self
):
pass
def
static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
shape
,
self
.
dtype
)
out
=
paddle
.
var
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x
},
fetch_list
=
[
out
])
return
res
[
0
]
def
dygraph
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
self
.
x
)
out
=
paddle
.
var
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
paddle
.
enable_static
()
return
out
.
numpy
()
def
test_api
(
self
):
out_ref
=
ref_var
(
self
.
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
out_dygraph
=
self
.
dygraph
()
out_static
=
self
.
static
()
for
out
in
[
out_dygraph
,
out_static
]:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
out
))
self
.
assertTrue
(
np
.
equal
(
out_ref
.
shape
,
out
.
shape
).
all
())
class
TestVarAPI_dtype
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
dtype
=
'float32'
class
TestVarAPI_axis_int
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
axis
=
2
class
TestVarAPI_axis_list
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
axis
=
[
1
,
2
]
class
TestVarAPI_axis_tuple
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
axis
=
(
1
,
3
)
class
TestVarAPI_keepdim
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
keepdim
=
False
class
TestVarAPI_unbiased
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
unbiased
=
False
class
TestVarAPI_alias
(
unittest
.
TestCase
):
def
test_alias
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
np
.
array
([
10
,
12
],
'float32'
))
out1
=
paddle
.
var
(
x
).
numpy
()
out2
=
paddle
.
tensor
.
var
(
x
).
numpy
()
out3
=
paddle
.
tensor
.
stat
.
var
(
x
).
numpy
()
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
))
self
.
assertTrue
(
np
.
allclose
(
out1
,
out3
))
paddle
.
enable_static
()
class
TestVarError
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
[
2
,
3
,
4
],
'int32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
var
,
x
)
if
__name__
==
'__main__'
:
...
...
python/paddle/tensor/creation.py
浏览文件 @
57e12429
...
...
@@ -361,14 +361,14 @@ def ones_like(x, dtype=None, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
"""
return
full_like
(
x
=
x
,
fill_value
=
1
,
dtype
=
dtype
,
name
=
name
)
...
...
@@ -451,14 +451,14 @@ def zeros_like(x, dtype=None, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
"""
return
full_like
(
x
=
x
,
fill_value
=
0
,
dtype
=
dtype
,
name
=
name
)
...
...
python/paddle/tensor/stat.py
浏览文件 @
57e12429
...
...
@@ -40,9 +40,9 @@ def mean(x, axis=None, keepdim=False, name=None):
should be in range [-D, D), where D is the dimensions of ``x`` . If
``axis`` or element(s) of ``axis`` is less than 0, it works the
same way as :math:`axis + D` . If ``axis`` is None, mean is
calculated
along
all elements of ``x``. Default is None.
calculated
over
all elements of ``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keep
_
dim`` is True, the dimensions of
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
...
...
@@ -67,7 +67,7 @@ def mean(x, axis=None, keepdim=False, name=None):
[[13, 14, 15, 16],
[17, 18, 19, 20],
[21, 22, 23, 24]]], 'float32')
x = paddle.to_
variable
(x)
x = paddle.to_
tensor
(x)
out1 = paddle.mean(x)
# [12.5]
out2 = paddle.mean(x, axis=-1)
...
...
@@ -111,142 +111,120 @@ def mean(x, axis=None, keepdim=False, name=None):
return
out
def
var
(
input
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
,
out
=
Non
e
,
name
=
None
):
def
var
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
Fals
e
,
name
=
None
):
"""
:alias_main: paddle.var
:alias: paddle.var,paddle.tensor.var,paddle.tensor.stat.var
Computes the variance of the input Variable's elements along the specified
axis.
Computes the variance of ``x`` along ``axis`` .
Args:
input (Variable): The input Variable to be computed variance, with data
type float32 and float64 supported.
axis (list|int, optional): The axis along which the variance is computed.
If `None`, compute the variance over all elements of :attr:`input`
and return a Variable with a single element, otherwise it must be in
the range :math:`[-rank(input), rank(input))`. If :math:`axis[i] < 0`,
the axis to compute is :math:`rank(input) + axis[i]`.
keepdim (bool, optional): Whether to reserve the reduced dimensions in
the output Variable. The dimensions in :attr:`axis` will be squeezed
and the result Variable will have :attr:`len(axis)` fewer dimensions
than the :attr:`input` unless :attr:`keepdim` is true, default False.
unbiased (bool, optional): Whether to compute variance via the unbiased
estimator, in which the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along :attr:`axis`, otherwise the divisor is :math:`N`. Default True.
out (Variable, optional): Alternate output Variable to store the result
variance. Default None.
name (str, optional): The name for this layer. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`. Default None.
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
variance calculations. ``axis`` should be int, list(int) or
tuple(int). If ``axis`` is a list/tuple of dimension(s), variance
is calculated along all element(s) of ``axis`` . ``axis`` or
element(s) of ``axis`` should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less
than 0, it works the same way as :math:`axis + D` . If ``axis`` is
None, variance is calculated over all elements of ``x``. Default
is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: The result variance with the same dtype as :attr:`input`.
If :attr:`out = None`, returns a new Variable containing the
variance, otherwise returns a reference to the output Variable.
Tensor, results of variance along ``axis`` of ``x``, with the same data
type as ``x``.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid.dygraph as dg
a = np.array([[1.0, 2.0], [3.0, 4.0]]).astype("float32")
with dg.guard():
data = dg.to_variable(a)
variance = paddle.var(data, axis=[1])
print(variance.numpy())
# [0.5 0.5]
import numpy as np
paddle.disable_static()
x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
x = paddle.to_tensor(x)
out1 = paddle.var(x)
# [2.66666667]
out2 = paddle.var(x, axis=1)
# [1. 4.33333333]
"""
dtype
=
convert_dtype
(
input
.
dtype
)
if
dtype
not
in
[
"float32"
,
"float64"
]:
raise
ValueError
(
"Layer tensor.var() only supports floating-point "
"dtypes, but received {}."
.
format
(
dtype
))
rank
=
len
(
input
.
shape
)
axes
=
axis
if
axis
!=
None
and
axis
!=
[]
else
range
(
rank
)
axes
=
[
e
if
e
>=
0
else
e
+
rank
for
e
in
axes
]
inp_shape
=
input
.
shape
if
in_dygraph_mode
()
else
layers
.
shape
(
input
)
mean
=
layers
.
reduce_mean
(
input
,
dim
=
axis
,
keep_dim
=
True
,
name
=
name
)
tmp
=
layers
.
reduce_mean
(
(
input
-
mean
)
**
2
,
dim
=
axis
,
keep_dim
=
keepdim
,
name
=
name
)
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'var'
)
u
=
mean
(
x
,
axis
,
True
,
name
)
out
=
paddle
.
sum
((
x
-
u
)
**
2
,
axis
,
keepdim
=
keepdim
,
name
=
name
)
n
=
paddle
.
cast
(
paddle
.
numel
(
x
),
x
.
dtype
)
\
/
paddle
.
cast
(
paddle
.
numel
(
out
),
x
.
dtype
)
if
unbiased
:
n
=
1
for
i
in
axes
:
n
*=
inp_shape
[
i
]
if
not
in_dygraph_mode
():
n
=
layers
.
cast
(
n
,
dtype
)
zero_const
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
dtype
,
value
=
0.0
)
factor
=
where
(
n
>
1.0
,
n
/
(
n
-
1.0
),
zero_const
)
else
:
factor
=
n
/
(
n
-
1.0
)
if
n
>
1.0
else
0.0
tmp
*=
factor
if
out
:
layers
.
assign
(
input
=
tmp
,
output
=
out
)
return
out
else
:
return
tmp
def
std
(
input
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
,
out
=
None
,
name
=
None
):
"""
:alias_main: paddle.std
:alias: paddle.std,paddle.tensor.std,paddle.tensor.stat.std
one_const
=
paddle
.
ones
([
1
],
x
.
dtype
)
n
=
where
(
n
>
one_const
,
n
-
1.
,
one_const
)
out
/=
n
return
out
Computes the standard-deviation of the input Variable's elements along the specified
axis.
def
std
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
False
,
name
=
None
):
"""
Computes the standard-deviation of ``x`` along ``axis`` .
Args:
input (Variable): The input Variable to be computed standard-deviation, with data
type float32 and float64 supported.
axis (list|int, optional): The axis along which the standard-deviation is computed.
If `None`, compute the standard-deviation over all elements of :attr:`input`
and return a Variable with a single element, otherwise it must be in
the range :math:`[-rank(input), rank(input))`. If :math:`axis[i] < 0`,
the axis to compute is :math:`rank(input) + axis[i]`.
keepdim (bool, optional): Whether to reserve the reduced dimensions in
the output Variable. The dimensions in :attr:`axis` will be squeezed
and the result Variable will have :attr:`len(axis)` fewer dimensions
than the :attr:`input` unless :attr:`keepdim` is true, default False.
unbiased (bool, optional): Whether to compute standard-deviation via the unbiased
estimator, in which the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along :attr:`axis`, otherwise the divisor is :math:`N`. Default True.
out (Variable, optional): Alternate output Variable to store the result
standard-deviation . Default None.
name (str, optional): The name for this layer. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`. Default None.
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
standard-deviation calculations. ``axis`` should be int, list(int)
or tuple(int). If ``axis`` is a list/tuple of dimension(s),
standard-deviation is calculated along all element(s) of ``axis`` .
``axis`` or element(s) of ``axis`` should be in range [-D, D),
where D is the dimensions of ``x`` . If ``axis`` or element(s) of
``axis`` is less than 0, it works the same way as :math:`axis + D` .
If ``axis`` is None, standard-deviation is calculated over all
elements of ``x``. Default is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the standard-deviation is calculated via the
unbiased estimator. If ``unbiased`` is True, the divisor used in
the computation is :math:`N - 1`, where :math:`N` represents the
number of elements along ``axis`` , otherwise the divisor is
:math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: The result standard-deviation with the same dtype as :attr:`input`.
If :attr:`out = None`, returns a new Variable containing the
standard-deviation , otherwise returns a reference to the output Variable.
Tensor, results of standard-deviation along ``axis`` of ``x``, with the
same data type as ``x``.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
paddle.std(x) # [0.28252685]
paddle.std(x, axis=[0]) # [0.0707107, 0.07071075, 0.07071064, 0.1414217]
paddle.std(x, axis=[-1]) # [0.30956957, 0.29439208]
import numpy as np
paddle.disable_static()
x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
x = paddle.to_tensor(x)
out1 = paddle.std(x)
# [1.63299316]
out2 = paddle.std(x, axis=1)
# [1. 2.081666]
"""
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'std'
)
tmp
=
var
(
input
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
,
name
=
name
)
tmp
=
layers
.
sqrt
(
tmp
)
if
out
is
not
None
:
layers
.
assign
(
input
=
tmp
,
output
=
out
)
return
out
else
:
return
tmp
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'std'
)
out
=
var
(
**
locals
())
return
paddle
.
sqrt
(
out
)
def
numel
(
x
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录