nn.py 352.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
sneaxiy 已提交
182
    'py_func',
183
    'psroi_pool',
H
heqiaozhi 已提交
184
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
185
    'huber_loss',
Y
Yu Yang 已提交
186 187
]

J
jerrywgz 已提交
188 189
kIgnoreIndex = -100

Y
Yu Yang 已提交
190 191 192 193 194 195 196

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
197
       is_test=False,
198
       name=None):
Y
Yu Yang 已提交
199
    """
200
    **Fully Connected Layer**
Y
Yu Yang 已提交
201

202 203 204 205 206 207 208 209
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
210
    to the output as well.
C
caoying03 已提交
211

C
caoying03 已提交
212
    This process can be formulated as follows:
213 214 215

    .. math::

216
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
217 218 219

    In the above equation:

C
caoying03 已提交
220 221 222 223
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
224
    * :math:`Act`: The activation function.
C
caoying03 已提交
225
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
226 227

    Args:
R
ranqiu 已提交
228 229 230 231 232 233 234 235 236 237
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
238
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
239 240 241 242
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
243 244
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
245
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
246
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
247
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
248

249
    Returns:
F
fengjiayi 已提交
250
        Variable: The transformation result.
251 252

    Raises:
C
caoying03 已提交
253
        ValueError: If rank of the input tensor is less than 2.
254 255 256 257

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
258
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
259
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
260
    """
C
caoying03 已提交
261

C
caoying03 已提交
262
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
263 264 265 266

    dtype = helper.input_dtype()

    mul_results = []
267 268
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
269 270 271
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
272

Y
Yu Yang 已提交
273
        w = helper.create_parameter(
274
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
275
        tmp = helper.create_variable_for_type_inference(dtype)
276
        helper.append_op(
277 278 279
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
280
            outputs={"Out": tmp},
M
mozga-intel 已提交
281 282
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
283 284 285 286
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
287
    else:
X
Xin Pan 已提交
288
        pre_bias = helper.create_variable_for_type_inference(dtype)
289
        helper.append_op(
290 291 292
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
293
            attrs={"use_mkldnn": False})
294 295 296 297
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
298 299


300 301 302
def embedding(input,
              size,
              is_sparse=False,
303
              is_distributed=False,
304 305 306
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
307
    """
308 309
    **Embedding Layer**

310
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
311 312
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
313 314 315

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
316 317

    Args:
318 319 320 321 322
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
323
        is_distributed(bool): Whether to run lookup table from remote parameter server.
324 325
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
326
            with zeros whenever lookup encounters it in :attr:`input`. If
327
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
328 329
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
330
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
331

332 333 334
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
335

336 337
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
338

C
chengduoZH 已提交
339
          dict_size = len(dataset.ids)
340
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
341
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
342 343 344
    """

    helper = LayerHelper('embedding', **locals())
345
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
346 347
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
348 349
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
350
    tmp = helper.create_variable_for_type_inference(dtype)
351 352
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
353 354 355 356 357
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
358 359 360
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
361
            'remote_prefetch': remote_prefetch,
362 363
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
364 365 366
    return tmp


W
wopeizl 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
383

W
wopeizl 已提交
384 385 386 387 388 389 390 391 392 393 394
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
395

W
wopeizl 已提交
396 397 398 399
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
487 488


P
phlrain 已提交
489 490 491 492 493 494
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
495
         dropout_prob=0.0,
P
phlrain 已提交
496 497 498 499 500
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
501
    """
P
phlrain 已提交
502
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
503 504

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
505
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
506 507
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
508
    .. math::
M
minqiyang 已提交
509 510 511 512 513 514 515

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
516
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
517 518 519 520

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
521 522

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
523 524 525 526 527 528
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
529 530 531
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
532
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
533

M
minqiyang 已提交
534
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
535 536 537 538 539
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
540
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
541 542 543 544 545
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
546
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
547 548
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
549 550
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
551 552 553 554 555 556
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
557
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
558

L
liuhongyu 已提交
559 560

    Returns:
M
minqiyang 已提交
561 562
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
563
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
564

H
haowang101779990 已提交
565 566 567 568
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
569
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
570 571
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
572
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
588
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
589 590 591 592 593 594
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
595 596 597
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
657 658 659 660 661 662 663 664 665 666 667
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
668 669
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
670 671 672
    """
    **Dynamic LSTMP Layer**

673 674 675 676 677 678
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
679 680 681 682 683

    The formula is as follows:

    .. math::

684
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
685

686
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
687

688
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
689

690
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
691

692
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
693

694
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
695

696
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
697

Y
Yibing Liu 已提交
698 699 700 701 702 703
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
704
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
705
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
706
          bias vector).
Y
Yibing Liu 已提交
707 708 709
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
710
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
711
    * :math:`h`: The hidden state.
712
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
713 714
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
715
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
716
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
717
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
718 719
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
720 721 722 723

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
724

Y
Yibing Liu 已提交
725 726 727 728 729 730 731 732 733 734 735 736
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
737
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
738 739
                               hidden-hidden weight and projection weight.

740 741
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
742 743
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
744 745
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
746
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
747 748 749 750 751

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
752
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
753 754 755 756 757 758
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
759
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
760 761 762
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
763
                                - The shape is (1 x 7D).
C
chengduo 已提交
764 765 766 767 768

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
769 770 771 772 773 774 775 776 777
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
778
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
779 780
                              default "tanh".
        proj_activation(str): The activation for projection output.
781
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
782 783
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
784 785
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
786 787

    Returns:
788 789 790 791
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
792 793

    Examples:
794

Y
Yibing Liu 已提交
795 796
        .. code-block:: python

797 798 799 800
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
801
            hidden_dim, proj_dim = 512, 256
802
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
803
                                     act=None, bias_attr=None)
804 805 806
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
807 808 809 810
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
811
    """
812

C
chengduo 已提交
813
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
814
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
815
    size = size // 4
Y
Yibing Liu 已提交
816 817 818 819 820 821 822 823 824 825
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
826 827 828 829 830 831
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
860 861 862 863 864 865 866 867 868
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
869
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
870

871
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
872
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
873

G
guosheng 已提交
874 875 876 877 878 879 880 881 882
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
883

G
guosheng 已提交
884
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
885

G
guosheng 已提交
886
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
887 888
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
889 890 891 892
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
893
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
894 895

    Args:
896 897
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
898
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
899
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
900 901
            is the hidden size.
        size(int): The dimension of the gru cell.
902
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
903 904
            hidden-hidden weight matrix. Note:

905
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
906
              :math:`D` is the hidden size.
907
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
908
              The first part are weights of the update gate and reset gate with
909
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
910
              candidate hidden state with shape :math:`(D \\times D)`.
911 912 913 914 915

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
916
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
917
            the bias in the update gate, reset gate and candidate calculations.
918 919 920
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
921 922
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
923
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
924 925 926
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
927
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
928
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
929 930 931 932
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
933 934

    Returns:
G
guosheng 已提交
935
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
936
            and sequence length is the same with the input.
937

G
guosheng 已提交
938
    Examples:
939

G
guosheng 已提交
940 941
        .. code-block:: python

942 943 944 945
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
946
            hidden_dim = 512
947
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
948
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
949 950 951 952 953 954 955 956 957
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
958
    batch_size = input.shape[0]
G
guosheng 已提交
959
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
960
    if h_0:
G
guosheng 已提交
961
        assert h_0.shape == (
Y
Yancey 已提交
962 963 964
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
965

X
Xin Pan 已提交
966 967 968 969
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
988 989 990
def gru_unit(input,
             hidden,
             size,
991 992
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
993
             activation='tanh',
994
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
995
    """
996
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
997

998 999
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1000

1001
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1002

1003
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1004

1005
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
1006 1007

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1008 1009 1010
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1011 1012
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1013 1014
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1015 1016 1017
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1018 1019 1020

    Args:
        input (Variable): The fc transformed input value of current step.
1021
        hidden (Variable): The hidden value of gru unit from previous step.
1022
        size (integer): The input dimension value.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1037
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1038
            the bias in the update gate, reset gate and candidate calculations.
1039 1040 1041
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1042 1043
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1044 1045 1046 1047
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1048

1049 1050 1051 1052 1053 1054
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1055

1056
             # assuming we have x_t_data and prev_hidden of size=10
1057
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1058 1059
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1072
    size = size // 3
Y
Yu Yang 已提交
1073 1074

    # create weight
1075 1076
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1077

X
Xin Pan 已提交
1078 1079 1080
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1081
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1082
    # create bias
1083
    if helper.bias_attr:
Y
Yu Yang 已提交
1084 1085 1086
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1087
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1088 1089 1090

    helper.append_op(
        type='gru_unit',
1091
        inputs=inputs,
Y
Yu Yang 已提交
1092 1093 1094 1095 1096 1097
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1098 1099
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1100 1101 1102 1103 1104
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1105
@templatedoc()
1106
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1107 1108 1109 1110 1111 1112 1113
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1114
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1115 1116 1117 1118
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1119 1120 1121
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1122 1123

    """
Y
Yu Yang 已提交
1124 1125 1126 1127 1128 1129
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1130 1131 1132 1133 1134 1135 1136 1137
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1153 1154 1155 1156
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1157

W
wopeizl 已提交
1158 1159
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1160

W
wopeizl 已提交
1161
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1162

W
wopeizl 已提交
1163
        label(${label_type}): ${label_comment}
1164

W
wopeizl 已提交
1165 1166
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1167

W
wopeizl 已提交
1168 1169
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1170

W
wopeizl 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1181
                "Transition": transition,
W
wopeizl 已提交
1182 1183
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1184

W
wopeizl 已提交
1185
    return viterbi_path
Y
Yu Yang 已提交
1186 1187


Y
yi.wu 已提交
1188
@templatedoc()
F
fengjiayi 已提交
1189
def cos_sim(X, Y):
Y
Yu Yang 已提交
1190
    """
Y
yi.wu 已提交
1191 1192 1193
    ${comment}

    Args:
1194 1195
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1196

Y
yi.wu 已提交
1197
    Returns:
1198
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1199
    """
F
fengjiayi 已提交
1200
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1201 1202 1203
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1214 1215 1216 1217 1218
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1219
            dropout_implementation="downgrade_in_infer"):
1220 1221 1222 1223 1224
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1225
    training. The dropout operator randomly sets (according to the given dropout
1226 1227 1228
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1229 1230
    dropout op can be removed from the program to make the program more efficient.

1231
    Args:
1232 1233
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1234 1235 1236 1237 1238 1239 1240
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1241 1242
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1243
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1244 1245 1246 1247 1248 1249

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1250
                                        2. upscale_in_train, upscale the outcome at training time
1251

H
haowang101779990 已提交
1252 1253
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1254

H
haowang101779990 已提交
1255 1256
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1257

M
minqiyang 已提交
1258

1259
    Returns:
1260
        Variable: A tensor variable is the shape with `x`.
1261 1262

    Examples:
1263

1264 1265
        .. code-block:: python

1266 1267
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1268 1269
    """

F
fengjiayi 已提交
1270
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1271 1272 1273
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1274 1275 1276 1277

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1278 1279 1280 1281 1282
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1283 1284 1285 1286
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1287 1288
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1289
        })
1290 1291 1292
    return out


J
jerrywgz 已提交
1293
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1294
    """
Y
Yibing Liu 已提交
1295 1296
    **Cross Entropy Layer**

1297 1298 1299
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1300 1301

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1302
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1303

Y
Yibing Liu 已提交
1304
        .. math::
Y
yangyaming 已提交
1305

Y
Yibing Liu 已提交
1306 1307 1308
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1309 1310
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1311 1312 1313 1314 1315

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1316
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1317 1318 1319
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1320 1321
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1322
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1323

Y
Yibing Liu 已提交
1324
    Args:
Y
yangyaming 已提交
1325
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1326 1327 1328 1329
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1330
        label (Variable|list): the ground truth which is a 2-D tensor. When
1331 1332 1333 1334
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1335
        soft_label (bool): a flag indicating whether to
1336
                                           interpretate the given labels as soft
1337
                                           labels. Default: `False`.
M
minqiyang 已提交
1338 1339
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1340
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1341 1342 1343 1344 1345

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1346 1347 1348
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1349

H
haowang101779990 已提交
1350 1351
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1352

H
haowang101779990 已提交
1353 1354
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1355 1356 1357 1358 1359 1360

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1361
    """
F
fengjiayi 已提交
1362
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1363
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1364 1365 1366 1367 1368
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1369 1370
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1371 1372 1373
    return out


F
frankwhzhang 已提交
1374
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1375 1376 1377
    """
    Bayesian Personalized Ranking Loss Operator.

1378
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1379 1380 1381 1382 1383 1384
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1385 1386 1387 1388 1389 1390
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1391 1392
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1393 1394 1395
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1396 1397 1398
    Examples:
        .. code-block:: python

1399
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1400
    """
1401 1402 1403 1404 1405 1406

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1407
                'Label': [label]},
1408 1409 1410 1411
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1412
def square_error_cost(input, label):
Y
Yu Yang 已提交
1413
    """
1414 1415
    **Square error cost layer**

1416 1417
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1432 1433
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1434 1435

    Returns:
G
guosheng 已提交
1436
        Variable: The tensor variable storing the element-wise squared error \
1437
                  difference of input and label.
1438 1439 1440 1441 1442 1443 1444 1445

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1446
    """
F
fengjiayi 已提交
1447
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1448
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1449 1450 1451 1452 1453 1454
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1455
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1456
    helper.append_op(
F
fengjiayi 已提交
1457 1458
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1459 1460 1461
    return square_out


Y
yi.wu 已提交
1462
@templatedoc()
Y
Yu Yang 已提交
1463 1464 1465 1466
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1467
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1468
    """
Y
yi.wu 已提交
1469
    **Chunk Evaluator**
Y
yi.wu 已提交
1470

Y
yangyaming 已提交
1471
    This function computes and outputs the precision, recall and
1472
    F1-score of chunk detection.
Y
yi.wu 已提交
1473

M
minqiyang 已提交
1474
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1475
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1476 1477 1478 1479 1480 1481

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1482

Y
yi.wu 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1508

Y
yi.wu 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1533
    Args:
1534 1535 1536 1537 1538
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1539

Y
yi.wu 已提交
1540
    Returns:
Y
update  
yi.wu 已提交
1541 1542 1543
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1544

Y
yi.wu 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1557
    """
F
fengjiayi 已提交
1558
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1559 1560

    # prepare output
X
Xin Pan 已提交
1561 1562 1563 1564 1565 1566 1567
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1568 1569 1570 1571 1572 1573 1574 1575

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1576 1577 1578 1579
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1580 1581 1582
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1583 1584
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1585
        })
1586 1587
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1588 1589


1590
@templatedoc()
Y
Yu Yang 已提交
1591 1592 1593 1594 1595 1596 1597
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1598 1599
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1600 1601 1602 1603
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1604 1605 1606 1607 1608 1609 1610

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1624

1625 1626
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1627 1628 1629 1630 1631 1632 1633
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1634
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1645
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1646 1647 1648 1649 1650 1651
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1652
def sequence_softmax(input, use_cudnn=False, name=None):
1653 1654 1655
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1656
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1673 1674 1675
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1688 1689
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1690
    softmax_out = helper.create_variable_for_type_inference(dtype)
1691 1692 1693 1694 1695 1696 1697 1698
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1699
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1700
    """
1701
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1702
    has the same shape as the input.
Q
qiaolongfei 已提交
1703

1704 1705 1706 1707 1708 1709
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1710
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1711 1712 1713 1714 1715 1716 1717

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1718
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1719 1720 1721 1722 1723 1724 1725 1726

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1727 1728 1729
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1742 1743
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1744
    softmax_out = helper.create_variable_for_type_inference(dtype)
1745 1746 1747 1748 1749 1750 1751 1752
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1753 1754 1755
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1756 1757
           stride=1,
           padding=0,
1758
           dilation=1,
Y
Yu Yang 已提交
1759 1760 1761
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1762
           use_cudnn=True,
1763 1764
           act=None,
           name=None):
Y
Yu Yang 已提交
1765
    """
C
chengduoZH 已提交
1766
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1767 1768
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1769
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1770 1771 1772 1773 1774 1775 1776
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1777 1778 1779
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1780

1781
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1782

C
chengduoZH 已提交
1783 1784
    .. math::

C
refine  
chengduoZH 已提交
1785
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1786

T
tensor-tang 已提交
1787
    Where:
C
chengduoZH 已提交
1788

1789 1790 1791 1792 1793
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1794
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1795 1796 1797

    Example:

1798 1799
        - Input:

W
weixing02 已提交
1800
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1801

W
weixing02 已提交
1802
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1803

1804
        - Output:
T
tensor-tang 已提交
1805

W
weixing02 已提交
1806
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1807

C
chengduoZH 已提交
1808
        Where
1809 1810

        .. math::
C
chengduoZH 已提交
1811

W
weixing02 已提交
1812 1813
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1814 1815

    Args:
1816
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1817
        num_filters(int): The number of filter. It is as same as the output
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1835 1836 1837 1838 1839
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1840
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1841 1842 1843 1844 1845
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1846 1847
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1848 1849
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1850
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1851
            will be named automatically. Default: None
C
chengduoZH 已提交
1852 1853

    Returns:
G
guosheng 已提交
1854
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1855 1856
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1857
    Raises:
1858 1859
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1860

C
chengduoZH 已提交
1861 1862 1863
    Examples:
        .. code-block:: python

1864 1865
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1866 1867 1868
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1869
    assert param_attr is not False, "param_attr should not be False here."
1870
    l_type = 'conv2d'
X
xzl 已提交
1871 1872
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1873
        l_type = 'depthwise_conv2d'
1874 1875 1876 1877

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1878 1879 1880 1881 1882
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1883
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1884

C
chengduoZH 已提交
1885 1886 1887
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1888
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1889

C
chengduoZH 已提交
1890 1891
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1892 1893

    input_shape = input.shape
M
minqiyang 已提交
1894
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1895 1896

    def _get_default_param_initializer():
C
chengduo 已提交
1897 1898
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1899 1900 1901 1902 1903 1904 1905 1906
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1907
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1923
    helper.append_op(
1924
        type=l_type,
Y
Yu Yang 已提交
1925 1926 1927 1928 1929
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1930 1931 1932
        attrs={
            'strides': stride,
            'paddings': padding,
1933
            'dilations': dilation,
C
chengduoZH 已提交
1934
            'groups': groups,
1935
            'use_cudnn': use_cudnn,
1936
            'use_mkldnn': False,
C
chengduoZH 已提交
1937
        })
Y
Yu Yang 已提交
1938 1939 1940 1941 1942 1943

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1961 1962 1963 1964 1965 1966
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1976 1977
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1978 1979 1980
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1981
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2007
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2008 2009
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2010
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2011 2012
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2013
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2014 2015
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2016
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2017 2018 2019 2020 2021 2022
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2033 2034
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2035 2036
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2037
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2038
            will be named automatically. Default: None.
C
chengduoZH 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2051 2052
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2053 2054 2055
    """

    l_type = 'conv3d'
C
chengduo 已提交
2056
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2067
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2081 2082 2083
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2084 2085 2086 2087 2088 2089 2090 2091
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2092
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2107
            'use_mkldnn': False
C
chengduoZH 已提交
2108 2109
        })

2110
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2111 2112 2113 2114

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2115
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2116
    """
Y
yangyaming 已提交
2117 2118 2119
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2131
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2132 2133 2134 2135 2136
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2137
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2138 2139 2140 2141 2142 2143 2144

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2145 2146
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2147

L
Luo Tao 已提交
2148 2149
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2150
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2151
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2152
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2153 2154 2155 2156 2157 2158 2159

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2160

Y
yangyaming 已提交
2161
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2162 2163 2164 2165 2166
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2167 2168
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2169
    """
F
fengjiayi 已提交
2170
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2171
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2172 2173
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2174 2175 2176 2177 2178 2179

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2180 2181
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2182

Y
yangyaming 已提交
2183 2184 2185 2186 2187
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2188 2189 2190
    return pool_out


C
add doc  
chengduoZH 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2210
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2211 2212 2213 2214 2215
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2216
def sequence_first_step(input):
L
Luo Tao 已提交
2217
    """
L
Luo Tao 已提交
2218
    This function gets the first step of sequence.
L
Luo Tao 已提交
2219 2220 2221 2222

    .. code-block:: text

       x is a 1-level LoDTensor:
2223
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2224 2225 2226 2227 2228
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2229
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2230
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2231

L
Luo Tao 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2241

Y
yangyaming 已提交
2242
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2243 2244 2245
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2246 2247 2248
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2249
def sequence_last_step(input):
L
Luo Tao 已提交
2250
    """
L
Luo Tao 已提交
2251
    This function gets the last step of sequence.
L
Luo Tao 已提交
2252 2253 2254 2255

    .. code-block:: text

       x is a 1-level LoDTensor:
2256
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2257 2258 2259 2260 2261
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2262
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2263
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2264

L
Luo Tao 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2274

Y
yangyaming 已提交
2275
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2276 2277 2278
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2279 2280 2281
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2282 2283 2284 2285
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2286
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2287 2288 2289 2290 2291
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2292

H
haowang101779990 已提交
2293
              - Case:
Y
Yibing Liu 已提交
2294

2295
            Given the input Variable **input**:
2296

2297 2298 2299
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2300

2301
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2302

2303
            the output Variable will be
2304

2305 2306 2307
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2308

M
minqiyang 已提交
2309
    Note:
H
haowang101779990 已提交
2310
          The first dimension size of **input**, **offset** and **length**
2311
          should be equal. The **offset** should start from 0.
2312

Y
Yibing Liu 已提交
2313
    Args:
2314
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2315
                         sequences.
Y
Yibing Liu 已提交
2316 2317 2318 2319 2320 2321
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2322
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2333
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2334 2335 2336 2337
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2338
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2353
@templatedoc()
Y
Yu Yang 已提交
2354
def pool2d(input,
C
chengduoZH 已提交
2355 2356
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2357 2358
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2359
           global_pooling=False,
C
chengduoZH 已提交
2360
           use_cudnn=True,
2361
           ceil_mode=False,
2362 2363
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2364
    """
F
fengjiayi 已提交
2365
    ${comment}
2366 2367

    Args:
2368 2369 2370
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2371
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2372
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2373 2374
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2375
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2376 2377 2378 2379 2380 2381
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2382 2383 2384
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2385
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2386
                        layer will be named automatically.
2387
        exclusive (bool): Whether to exclude padding points in average pooling
2388
                          mode, default is true
F
fengjiayi 已提交
2389

2390
    Returns:
F
fengjiayi 已提交
2391
        Variable: The pooling result.
F
fengjiayi 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2405 2406 2407 2408
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2409
                            global_pooling=False)
Y
Yu Yang 已提交
2410 2411 2412 2413 2414
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2415

C
chengduoZH 已提交
2416 2417 2418 2419 2420
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2421 2422 2423 2424
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2425 2426
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2427

C
Add doc  
chengduoZH 已提交
2428
    l_type = 'pool2d'
2429 2430

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2431
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2432
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2433 2434

    helper.append_op(
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2446 2447
            "use_mkldnn": False,
            "exclusive": exclusive,
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2461 2462
           name=None,
           exclusive=True):
2463 2464
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2465
    pooling configurations mentioned in input parameters.
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2478
        exclusive (bool): Whether to exclude padding points in average pooling
2479
                          mode, default is true
2480

2481
    Returns:
2482
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2483 2484 2485 2486 2487
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2488

C
chengduoZH 已提交
2489 2490 2491 2492 2493
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2494 2495 2496
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2497

C
chengduoZH 已提交
2498 2499
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2500

2501 2502
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2503
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2504
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2505 2506

    helper.append_op(
2507
        type=l_type,
Y
Yu Yang 已提交
2508 2509 2510 2511 2512 2513 2514
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2515
            "paddings": pool_padding,
2516
            "use_cudnn": use_cudnn,
2517
            "ceil_mode": ceil_mode,
2518 2519
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2520 2521 2522 2523 2524
        })

    return pool_out


2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2558
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2559
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2560
          # of input data into m * n grids averagely and performs poolings in each
2561 2562
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2563
          #
2564 2565 2566 2567 2568 2569 2570 2571
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2572 2573
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2574
          pool_out = fluid.layers.adaptive_pool2d(
2575 2576
                            input=data,
                            pool_size=[3, 3],
2577
                            pool_type='avg')
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2588
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2614
    return (pool_out, mask) if require_index else pool_out
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2650 2651
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2652
          # of input data into l * m * n grids averagely and performs poolings in each
2653 2654
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2655
          #
2656 2657 2658 2659 2660 2661 2662 2663 2664
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2665
          #                 output[:, :, i, j, k] =
2666 2667
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2668 2669
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2670
          pool_out, mask = fluid.layers.adaptive_pool3d(
2671 2672
                            input=data,
                            pool_size=[3, 3],
2673
                            pool_type='avg')
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2684
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2710
    return (pool_out, mask) if require_index else pool_out
2711 2712


Y
Yu Yang 已提交
2713 2714 2715 2716 2717 2718 2719
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2720
               data_layout='NCHW',
Y
Yang Yang 已提交
2721
               in_place=False,
2722 2723
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2724
               moving_variance_name=None,
2725
               do_model_average_for_mean_and_var=False,
2726 2727
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2728
    """
Q
qiaolongfei 已提交
2729 2730 2731 2732
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2733

Q
qiaolongfei 已提交
2734
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2735

Q
qiaolongfei 已提交
2736 2737
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2738 2739 2740
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2753

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2767
    Args:
Q
qiaolongfei 已提交
2768
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2769 2770 2771 2772
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2773 2774 2775 2776 2777 2778 2779 2780
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2781
        data_layout(string, default NCHW): NCHW|NHWC
2782
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2783 2784 2785 2786
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2787
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2788
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2789 2790 2791 2792 2793
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2794 2795

    Returns:
Q
qiaolongfei 已提交
2796
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2797 2798 2799 2800 2801 2802 2803

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2804
    """
C
chengduo 已提交
2805
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2806 2807 2808
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2809 2810 2811 2812
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2830 2831 2832
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2833 2834

    bias = helper.create_parameter(
2835
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2836 2837
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2838
        bias.stop_gradient = True
Y
Yu Yang 已提交
2839

2840 2841
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2842 2843 2844
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2845
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2846
        shape=param_shape,
W
Wu Yi 已提交
2847
        dtype=dtype)
2848 2849 2850 2851 2852 2853
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2854
            trainable=False,
W
wanghaoshuang 已提交
2855
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2856
        shape=param_shape,
W
Wu Yi 已提交
2857
        dtype=dtype)
2858
    variance.stop_gradient = True
Y
Yu Yang 已提交
2859 2860 2861 2862 2863 2864

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2865 2866 2867 2868
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2869

X
Xin Pan 已提交
2870 2871
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2889 2890 2891 2892
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2893
            "use_mkldnn": False,
2894 2895
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2896
        })
Y
Yu Yang 已提交
2897 2898 2899 2900

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3028
@templatedoc()
G
guosheng 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3039
    ${comment}
G
guosheng 已提交
3040 3041 3042

    The formula is as follows:

Y
yuyang18 已提交
3043
    ..  math::
G
guosheng 已提交
3044 3045 3046 3047 3048 3049 3050

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3051 3052 3053 3054 3055 3056 3057 3058
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3059

G
guosheng 已提交
3060 3061
    Args:
        input(Variable): The input tensor variable.
3062
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3063
            normalization. Default True.
3064
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3065 3066
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3067
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3068
            Default 1.
3069
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3070
            division by zero. Default 1e-05.
G
guosheng 已提交
3071
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3072 3073
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3074 3075
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3076
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3077 3078
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3079
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3080
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3081
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3082 3083 3084
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3085 3086

    Returns:
Y
yuyang18 已提交
3087
        ${y_comment}
G
guosheng 已提交
3088 3089 3090

    Examples:

Y
yuyang18 已提交
3091 3092 3093
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3109
    if shift:
G
guosheng 已提交
3110 3111 3112 3113 3114 3115
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3116 3117 3118 3119 3120
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3148
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3196 3197 3198
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3214 3215 3216 3217
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3218 3219 3220
                     padding=0,
                     stride=1,
                     dilation=1,
3221
                     groups=None,
C
caoying03 已提交
3222
                     param_attr=None,
3223
                     bias_attr=None,
C
chengduoZH 已提交
3224
                     use_cudnn=True,
3225
                     act=None,
C
caoying03 已提交
3226
                     name=None):
Y
Yu Yang 已提交
3227
    """
3228 3229 3230 3231 3232 3233 3234 3235
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3236 3237
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3238 3239 3240
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3241 3242 3243 3244 3245

    For each input :math:`X`, the equation is:

    .. math::

3246
        Out = \sigma (W \\ast X + b)
3247

3248
    Where:
3249 3250 3251

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3252 3253 3254 3255
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3256

3257 3258 3259 3260
    Example:

        - Input:

3261
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3262

3263
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3264 3265 3266

        - Output:

3267
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3268 3269

        Where
Y
Yu Yang 已提交
3270

3271 3272
        .. math::

3273 3274
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3275 3276
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3277 3278

    Args:
3279 3280 3281 3282
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3283 3284 3285 3286
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3315
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3316 3317 3318
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3319
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3320
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3321 3322

    Returns:
3323
        Variable: The tensor variable storing the convolution transpose result.
3324 3325

    Raises:
3326 3327
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3328 3329 3330 3331

    Examples:
       .. code-block:: python

3332 3333
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3334
    """
C
chengduo 已提交
3335
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3336 3337 3338 3339 3340 3341 3342 3343
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3344 3345 3346
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3347 3348 3349
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3350

C
chengduoZH 已提交
3351 3352
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3353

Y
Yu Yang 已提交
3354 3355 3356 3357 3358
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3359

Y
Yu Yang 已提交
3360 3361
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3362

C
chengduoZH 已提交
3363
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3364
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3365
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3366
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3367
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3368 3369 3370
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3371

3372 3373 3374 3375 3376 3377 3378
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3379
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3380
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3381

Y
Yu Yang 已提交
3382 3383 3384
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3385
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3386
    helper.append_op(
3387
        type=op_type,
Y
Yu Yang 已提交
3388 3389
        inputs={'Input': [input],
                'Filter': [img_filter]},
3390
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3391
        attrs={
3392
            'output_size': output_size,
3393 3394 3395 3396 3397
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3398 3399
        })

3400 3401 3402
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3403 3404


3405
def conv3d_transpose(input,
Y
Yu Yang 已提交
3406 3407 3408
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3409 3410 3411
                     padding=0,
                     stride=1,
                     dilation=1,
3412
                     groups=None,
C
caoying03 已提交
3413
                     param_attr=None,
3414
                     bias_attr=None,
C
chengduoZH 已提交
3415
                     use_cudnn=True,
3416
                     act=None,
C
caoying03 已提交
3417
                     name=None):
Y
Yu Yang 已提交
3418
    """
3419
    **Convlution3D transpose layer**
3420

3421
    The convolution3D transpose layer calculates the output based on the input,
3422
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3423 3424 3425 3426 3427 3428
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3429 3430 3431
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3432 3433 3434 3435 3436

    For each input :math:`X`, the equation is:

    .. math::

3437
        Out = \sigma (W \\ast X + b)
3438 3439 3440

    In the above equation:

3441 3442
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3443 3444 3445 3446
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3447

3448 3449 3450 3451
    Example:

        - Input:

3452
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3453

3454
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3455 3456 3457

        - Output:

3458
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3459 3460

        Where
Y
Yu Yang 已提交
3461

3462 3463
        .. math::

3464 3465 3466
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3467 3468

    Args:
3469
        input(Variable): The input image with [N, C, D, H, W] format.
3470 3471 3472
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3473
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3474 3475
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3476
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3477 3478 3479
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3480 3481
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3482
        stride(int|tuple): The stride size. If stride is a tuple, it must
3483 3484
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3485
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3486 3487 3488
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3489 3490 3491 3492 3493
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3503 3504
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3505 3506
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3507 3508
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3509 3510

    Returns:
3511
        Variable: The tensor variable storing the convolution transpose result.
3512 3513

    Raises:
3514 3515
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3516 3517 3518 3519

    Examples:
       .. code-block:: python

3520 3521
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3522
    """
C
chengduo 已提交
3523
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3524 3525
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3526
    if not isinstance(input, Variable):
3527
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3528 3529
    input_channel = input.shape[1]

3530 3531 3532
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3533

C
chengduoZH 已提交
3534 3535 3536
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3537 3538 3539 3540 3541 3542
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3543 3544 3545
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3546

3547
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3548
                         padding[0] - 1) // dilation[0] + 1
3549
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3550
                         padding[1] - 1) // dilation[1] + 1
3551
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3552
                         padding[2] - 1) // dilation[2] + 1
3553
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3554
    else:
3555 3556
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3557

3558
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3559
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3560 3561 3562
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3563
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3564
    helper.append_op(
3565
        type=l_type,
Y
Yu Yang 已提交
3566 3567
        inputs={'Input': [input],
                'Filter': [img_filter]},
3568
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3569 3570 3571 3572
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3573
            'groups': groups,
C
chengduoZH 已提交
3574 3575
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3576

3577 3578
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3579
    return out
Y
yangyaming 已提交
3580 3581


Y
yangyaming 已提交
3582
def sequence_expand(x, y, ref_level=-1, name=None):
3583
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3584 3585 3586 3587
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3588 3589 3590 3591 3592

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3593
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3594
                x.data = [[a], [b], [c], [d]]
3595 3596 3597
                x.dims = [4, 1]

            y is a LoDTensor:
3598 3599
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3600

Y
yangyaming 已提交
3601
            ref_level: 0
3602

Y
yangyaming 已提交
3603
            then output is a 1-level LoDTensor:
3604
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3605
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3606 3607 3608 3609
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3610
                x.data = [[a], [b], [c]]
3611 3612 3613
                x.dims = [3, 1]

            y is a LoDTensor:
3614
                y.lod = [[2, 0, 3]]
3615

Y
yangyaming 已提交
3616
            ref_level: -1
3617

Y
yangyaming 已提交
3618 3619 3620
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3621 3622 3623
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3624 3625
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3626
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3627
                        will be named automatically.
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3638
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3639
    """
Y
yangyaming 已提交
3640
    helper = LayerHelper('sequence_expand', input=x, **locals())
3641
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3642
    tmp = helper.create_variable_for_type_inference(dtype)
3643
    helper.append_op(
Y
yangyaming 已提交
3644 3645 3646 3647 3648
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3649
    return tmp
3650 3651


C
chengduo 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3708
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3709 3710 3711 3712 3713 3714 3715 3716
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3717
@templatedoc()
3718
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3719 3720 3721 3722 3723
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3724 3725 3726
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3727
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3728 3729 3730 3731
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3732 3733 3734
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3735

F
fengjiayi 已提交
3736
    Returns:
M
minqiyang 已提交
3737
        Variable: The padded sequence batch and the original lengths before
3738
                  padding. All sequences has the same length.
M
minqiyang 已提交
3739

F
fengjiayi 已提交
3740 3741 3742 3743 3744 3745 3746
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3747
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3748
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3749 3750 3751 3752 3753
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3754 3755
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3756 3757 3758 3759

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3760 3761 3762 3763 3764 3765
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3766 3767
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3768
        attrs={'padded_length': maxlen})
3769
    return out, length
F
fengjiayi 已提交
3770 3771


3772
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3773
    """
3774
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3775

3776 3777
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3787 3788 3789
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3790
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3791 3792 3793 3794 3795 3796

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3797
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3798 3799 3800 3801 3802 3803

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3804 3805
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3820
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3832 3833 3834 3835 3836 3837 3838 3839 3840
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3841 3842
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3843 3844 3845

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3846 3847

    This layer does the search in beams for one time step. Specifically, it
3848 3849 3850 3851 3852 3853
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3854

3855 3856 3857 3858 3859 3860 3861 3862
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3863

3864
    Args:
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3890

3891
    Returns:
3892 3893
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3894 3895 3896 3897

    Examples:
        .. code-block:: python

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3915 3916 3917 3918
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3919 3920 3921
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3922 3923 3924 3925 3926

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3927
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3945 3946 3947 3948 3949 3950 3951
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3962

3963 3964 3965 3966 3967 3968
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3969

3970 3971
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3972

3973 3974 3975 3976 3977 3978
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3979 3980
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3996 3997 3998 3999
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4000
              param_attr=None,
C
caoying03 已提交
4001 4002
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4003 4004 4005 4006
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4007
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4008

4009
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4010

4011
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4012

4013
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4014 4015 4016

            h_t & = o_t tanh(c_t)

4017 4018 4019 4020 4021 4022
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4023 4024 4025

        .. math::

4026
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4027 4028 4029 4030 4031 4032 4033 4034

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4035
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4036 4037

    Args:
Y
yangyaming 已提交
4038 4039 4040 4041 4042 4043
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4044
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4057 4058
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4059 4060

    Returns:
Y
yangyaming 已提交
4061
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4062 4063

    Raises:
4064 4065 4066 4067
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4068 4069 4070 4071 4072 4073

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4074
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4075
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4076
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4093
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4094 4095 4096 4097
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4098 4099
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4100 4101 4102
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4103
    size = cell_t_prev.shape[1]
4104
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4105 4106
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4107
                param_attr=param_attr,
4108
                bias_attr=bias_attr)
Y
yangyaming 已提交
4109
    dtype = x_t.dtype
X
Xin Pan 已提交
4110 4111
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4121
    return h, c
G
guosheng 已提交
4122 4123


C
caoying03 已提交
4124
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4125
    """
Y
yangyaming 已提交
4126
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4127 4128 4129

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4130
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4131 4132
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4133 4134
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4135
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4136
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4137
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4138 4139
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4140 4141 4142

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4143

G
guosheng 已提交
4144 4145 4146 4147 4148 4149
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4150
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4151 4152 4153 4154
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4155 4156 4157 4158

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4159
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4160 4161 4162
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4163 4164
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4165
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4166 4167
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4168 4169 4170 4171 4172
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4173
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4174 4175 4176 4177
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4178 4179


C
caoying03 已提交
4180
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4181
    """
Y
Yibing Liu 已提交
4182
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4183 4184 4185

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4186 4187 4188
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4189
            must be in the range :math:`[-rank(input), rank(input))`. If
4190
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4191
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4192 4193
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4194
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4195
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4196
                       will be named automatically.
G
guosheng 已提交
4197 4198

    Returns:
Y
Yibing Liu 已提交
4199
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4200

G
guosheng 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4211 4212
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4213 4214 4215 4216 4217 4218 4219

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4220 4221
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4222
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4223 4224
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4225 4226 4227 4228 4229
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4230
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4231 4232 4233 4234
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4235 4236


C
caoying03 已提交
4237
def reduce_max(input, dim=None, keep_dim=False, name=None):
4238
    """
Y
yangyaming 已提交
4239
    Computes the maximum of tensor elements over the given dimension.
4240 4241 4242

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4243
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4244 4245 4246
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4247
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4248 4249
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4250
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4251 4252
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4253 4254 4255

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4256

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4268 4269 4270 4271 4272 4273 4274

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4275 4276
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4277
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4278 4279
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4280 4281 4282 4283 4284
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4285
            'dim': dim if dim != None else [0],
4286 4287 4288 4289 4290 4291
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4292
def reduce_min(input, dim=None, keep_dim=False, name=None):
4293
    """
Y
yangyaming 已提交
4294
    Computes the minimum of tensor elements over the given dimension.
4295 4296 4297

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4298
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4299 4300 4301
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4302
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4303 4304
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4305
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4306 4307
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4308 4309 4310

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4311

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4323 4324 4325 4326 4327 4328 4329

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4330 4331
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4332
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4333 4334
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4335 4336 4337 4338 4339
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4340
            'dim': dim if dim != None else [0],
4341 4342 4343 4344
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4345 4346


4347 4348 4349 4350 4351 4352
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4353
        dim (list|int|None): The dimensions along which the product is performed. If
4354 4355
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4356 4357
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4358 4359 4360
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4361
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4362
            layer will be named automatically.
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4377
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4378
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4379 4380 4381 4382 4383 4384 4385

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4386 4387
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4388
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4389 4390
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4391 4392 4393 4394 4395
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4396
            'dim': dim if dim != None else [0],
4397 4398 4399 4400 4401 4402
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4403
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4404
    """
C
caoying03 已提交
4405
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4406 4407 4408

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4409 4410 4411 4412 4413
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4414
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4415
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4416
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4417 4418
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4419 4420

    Returns:
D
dzhwinter 已提交
4421
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4431 4432
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4448
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4471
    .. math::
4472 4473

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4474 4475 4476 4477 4478

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4479
        x(Variable|list): The input tensor to l2_normalize layer.
4480
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4481 4482
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4483
        epsilon(float): The epsilon value is used to avoid division by zero, \
4484
            the defalut value is 1e-10.
4485
        name(str|None): A name for this layer(optional). If set None, the layer \
4486
            will be named automatically.
C
caoying03 已提交
4487 4488

    Returns:
4489
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4490 4491

    Examples:
4492

C
caoying03 已提交
4493 4494
        .. code-block:: python

4495 4496 4497 4498
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4499 4500
    """

F
fengjiayi 已提交
4501 4502
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4503 4504
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4505 4506
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4507
    helper.append_op(
4508 4509 4510 4511
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4512
        attrs={
4513 4514
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4515 4516
        })
    return out
4517 4518


S
sneaxiy 已提交
4519
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4520
    """
Y
ying 已提交
4521 4522 4523 4524
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4525

C
chengduoZH 已提交
4526
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4527
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4528

4529 4530 4531 4532 4533
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4534
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4535

C
chengduoZH 已提交
4536
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4537
      performs in the following way.
G
guosheng 已提交
4538

4539
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4540
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4541
        last two dimensions and a batched matrix multiply supporting broadcast
4542
        applies on the two tensors.
G
guosheng 已提交
4543

Y
ying 已提交
4544 4545
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4546
    removed after matrix multiplication.
G
guosheng 已提交
4547 4548 4549

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4550 4551 4552
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4553
        alpha (float): The scale of output. Default 1.0.
4554
        name(str|None): A name for this layer(optional). If set None, the layer
4555
            will be named automatically.
G
guosheng 已提交
4556 4557

    Returns:
4558
        Variable: The product Tensor variable.
G
guosheng 已提交
4559

G
guosheng 已提交
4560 4561 4562
    Examples:
        .. code-block:: python

4563
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4564 4565
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4566

4567 4568
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4569

4570 4571
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4572

4573 4574
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4575 4576 4577 4578

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4579 4580
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4581

Y
ying 已提交
4582
            # x: [M], y: [N]
4583
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4584
    """
Y
ying 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4597
            y_shape = y_shape + [1]
Y
ying 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4614
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4615
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4616
    helper.append_op(
4617 4618 4619 4620
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4621 4622 4623
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4624
            'alpha': float(alpha),
S
sneaxiy 已提交
4625
        })
4626
    return out
4627 4628


4629
def topk(input, k, name=None):
Q
qingqing01 已提交
4630 4631 4632 4633
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4634
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4635 4636 4637 4638 4639 4640
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4662 4663 4664
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4665
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4666
                 of input.
4667
        name(str|None): A name for this layer(optional). If set None, the layer
4668
                       will be named automatically.
F
fengjiayi 已提交
4669
                       Default: None
Q
qingqing01 已提交
4670 4671

    Returns:
4672 4673 4674
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4675
        within the last dimension of input.
Q
qingqing01 已提交
4676

F
fengjiayi 已提交
4677 4678
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4679 4680 4681 4682 4683 4684 4685

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4686 4687
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4688 4689 4690 4691 4692 4693
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4694 4695
    helper.append_op(
        type="top_k",
W
whs 已提交
4696
        inputs=inputs,
Q
qingqing01 已提交
4697 4698
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4699
        attrs=attrs)
Q
qingqing01 已提交
4700 4701 4702 4703 4704
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4705
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4706
    """
Y
ying 已提交
4707 4708 4709 4710 4711 4712 4713 4714 4715
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4716

Y
ying 已提交
4717
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4718

4719
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4720 4721
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4722
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4723

4724
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4725 4726
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4727

4728 4729 4730
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4731
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4732
                          the length of reference string.
4733
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4734
                                     calculating edit distance.
4735
        name (str): The name of this layer. It is optional.
4736

W
wanghaoshuang 已提交
4737
    Returns:
W
wanghaoshuang 已提交
4738
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4739 4740 4741 4742

    Examples:
        .. code-block:: python

T
tink2123 已提交
4743 4744
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4745
            cost = fluid.layers.edit_distance(input=x,label=y)
4746
    """
4747
    helper = LayerHelper("edit_distance", **locals())
4748

4749
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4750
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4751 4752
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4753 4754 4755 4756 4757

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4758
            attrs={"tokens": ignored_tokens})
4759 4760 4761 4762 4763
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4764
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4765
            attrs={"tokens": ignored_tokens})
4766 4767
        label = erased_label

4768
    # edit distance op
X
Xin Pan 已提交
4769 4770
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4771 4772 4773 4774
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4775 4776
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4777 4778
        attrs={"normalized": normalized})

4779
    return edit_distance_out, sequence_num
4780 4781 4782 4783 4784


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4785

Y
ying 已提交
4786 4787 4788 4789
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4807
        input.lod = [[4, 4]]
M
minqiyang 已提交
4808

W
whs 已提交
4809
        Computation:
4810

W
whs 已提交
4811 4812 4813 4814 4815 4816
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4817 4818 4819 4820 4821

        output.data = [[2],
                       [1],
                       [3]]

4822
        output.lod = [[2, 1]]
4823

W
whs 已提交
4824

4825 4826
    Args:

Y
ying 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4836
        name (str): The name of this layer. It is optional.
4837 4838

    Returns:
H
haowang101779990 已提交
4839 4840 4841
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4842
                  LoD [[]] and dims [1, 1].
4843 4844 4845 4846 4847

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4848

4849
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4850
    """
4851
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4852
    _, topk_indices = topk(input, k=1)
4853 4854

    # ctc align op
X
Xin Pan 已提交
4855
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4856 4857 4858
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4859
        outputs={"Output": [ctc_out]},
4860 4861
        attrs={"merge_repeated": True,
               "blank": blank})
4862
    return ctc_out
4863 4864


W
Wu Yi 已提交
4865
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4866
    """
4867 4868
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4869
    to compute Connectionist Temporal Classification (CTC) loss.
4870 4871
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4872 4873 4874
    input tensor.

    Args:
4875
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4876 4877 4878 4879
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4880
       label (Variable): The ground truth of variable-length sequence,
4881 4882 4883
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4884 4885
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4886 4887 4888
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4889
         follewed by a mean_op.
W
Wu Yi 已提交
4890
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4891 4892

    Returns:
4893 4894
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4895 4896

    Examples:
4897

W
wanghaoshuang 已提交
4898
        .. code-block:: python
4899

4900 4901 4902
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4903 4904

    """
F
fengjiayi 已提交
4905
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4906 4907
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4908 4909 4910 4911 4912 4913
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4914 4915 4916 4917 4918
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4919
    return loss_out
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4935 4936 4937
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4938 4939 4940 4941 4942
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4943

4944
            out.lod  = [[0, 1, 3]]
4945 4946 4947 4948

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4949 4950 4951 4952 4953 4954 4955
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4956 4957 4958

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4959 4960

    Returns:
4961

4962 4963 4964 4965 4966
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4967
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4968
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4969 4970
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4971
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4972 4973 4974 4975 4976 4977
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4978 4979


4980 4981 4982 4983
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4984 4985 4986 4987 4988 4989
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4990
        num_neg_samples=None,
4991 4992 4993
        name=None,
        sampler="uniform",
        custom_dist=None,
4994 4995
        seed=0,
        is_sparse=False):
4996 4997 4998 4999 5000 5001 5002
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5003 5004
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5005
            sample is 1.0.
C
chengduo 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5015
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5016 5017
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5018 5019 5020
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5021
        custom_dist (float[]): A float[] with size=num_total_classes.
5022 5023 5024 5025
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5026
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5027

5028
    Returns:
Y
Yibing Liu 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5056 5057 5058 5059 5060 5061 5062 5063 5064

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5065

5066
    """
Y
Yang Yu 已提交
5067 5068 5069
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5070 5071

    dim = input.shape[1]
Y
Yang Yu 已提交
5072 5073 5074 5075 5076 5077
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5078
    inputs = {}
C
chengduo 已提交
5079 5080 5081 5082 5083 5084 5085
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5086 5087 5088
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5089

5090 5091 5092 5093
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5094 5095 5096 5097 5098 5099 5100

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5153 5154 5155 5156
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5157 5158 5159 5160 5161
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5162 5163 5164 5165
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5166

Y
Yang Yu 已提交
5167 5168
    attrs = {
        'num_total_classes': int(num_total_classes),
5169 5170
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5171
        'sampler': sampler,
5172 5173
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5174
    }
Y
Yang Yu 已提交
5175 5176 5177

    helper.append_op(
        type='nce',
C
chengduo 已提交
5178
        inputs=inputs,
Y
Yang Yu 已提交
5179 5180 5181 5182 5183 5184
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5185
    return cost / (num_neg_samples + 1)
5186 5187


C
chengduo 已提交
5188 5189
def hsigmoid(input,
             label,
5190
             num_classes,
C
chengduo 已提交
5191 5192
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5193
             name=None,
5194 5195 5196
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5197
             is_sparse=False):
W
weixing02 已提交
5198 5199
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5200
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5201
    complete binary tree, or you can use is_custom to pass your own tree to
5202
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5203 5204 5205 5206 5207 5208
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5209
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5210
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5211

5212 5213
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5214 5215 5216 5217
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5218
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5219
       related to the same batch of inputs.
5220

W
weixing02 已提交
5221
    Args:
M
minqiyang 已提交
5222
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5223 5224 5225 5226
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5227 5228
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5229
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5241
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5242
            it should be in leaf -> root order
M
minqiyang 已提交
5243 5244 5245
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5246
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5247
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5248
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5249
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5250
             of W and input will be sparse.
W
weixing02 已提交
5251 5252

    Returns:
J
JiabinYang 已提交
5253
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5254 5255 5256 5257 5258

    Examples:

        .. code-block:: python

G
guosheng 已提交
5259 5260 5261
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5262 5263 5264 5265
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5266 5267
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5268
    dim = input.shape[1]
5269
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5270 5271 5272
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5273 5274 5275 5276
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5277 5278
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5279 5280 5281
    else:
        pass

J
JiabinYang 已提交
5282
    weights = None
5283 5284 5285 5286
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5287
    if not is_custom:
J
JiabinYang 已提交
5288 5289 5290 5291 5292 5293 5294 5295
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5296
            shape=[num_classes, dim],
J
JiabinYang 已提交
5297 5298
            is_bias=False,
            dtype=input.dtype)
5299 5300 5301
    inputs = {
        "X": input,
        "W": weights,
5302
        "PathTable": path_table,
5303
        "PathCode": path_code,
5304 5305
        "Label": label
    }
W
weixing02 已提交
5306
    if helper.bias_attr:
5307
        if not is_custom:
J
JiabinYang 已提交
5308 5309
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5310
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5311 5312 5313 5314 5315 5316
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5317
                shape=[num_classes, 1],
J
JiabinYang 已提交
5318 5319 5320
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5321 5322
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5323
        inputs=inputs,
W
weixing02 已提交
5324
        outputs={"Out": out,
5325 5326 5327 5328 5329 5330 5331
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5332 5333 5334
    return out


Y
fix ci.  
ying 已提交
5335
def transpose(x, perm, name=None):
Y
ying 已提交
5336 5337 5338 5339 5340 5341 5342
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5343 5344 5345
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5346 5347 5348 5349 5350 5351 5352

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5353
            # use append_batch_size=False to avoid prepending extra
5354
            # batch size in shape
5355
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5356
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5357
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5358 5359
    """

Y
fix ci.  
ying 已提交
5360
    if len(perm) != len(x.shape):
Y
ying 已提交
5361 5362 5363
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5364 5365 5366 5367 5368 5369
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5370 5371

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5372 5373
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5374
    helper.append_op(
5375
        type='transpose2',
Y
fix ci.  
ying 已提交
5376
        inputs={'X': [x]},
5377 5378
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5379 5380
        attrs={'axis': perm})
    return out
5381 5382


5383 5384 5385 5386 5387 5388 5389
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5390
    """
5391 5392 5393 5394 5395 5396 5397
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5426 5427 5428 5429 5430 5431 5432 5433 5434
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5435 5436 5437
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5438 5439 5440 5441 5442
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5470 5471 5472
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5485
            output.dims = {8, 8}
5486

5487
            output.lod = [[4, 4]]
5488

T
Tink_Y 已提交
5489
    Examples:
5490 5491 5492

        .. code-block:: python

5493 5494
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5495 5496

    """
W
wanghaoshuang 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5507 5508 5509 5510 5511 5512 5513
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5514
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5515
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5516
    helper.append_op(
5517
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5518
    return out
5519 5520


Y
yuyang18 已提交
5521
@templatedoc()
5522
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5523 5524
    """
    ${comment}
5525 5526

    Args:
Y
yuyang18 已提交
5527
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5528 5529
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5530 5531 5532 5533 5534
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5535
        ${out_comment}.
5536 5537

    Examples:
Y
yuyang18 已提交
5538 5539 5540 5541
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5542 5543 5544 5545 5546 5547
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5548
    out = helper.create_variable_for_type_inference(dtype)
5549 5550 5551 5552 5553
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5554
    return helper.append_activation(out)
5555 5556


Y
yuyang18 已提交
5557
@templatedoc()
5558 5559
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5560 5561 5562 5563 5564 5565 5566
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5567 5568

    Args:
Y
yuyang18 已提交
5569 5570
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5571 5572

    Returns:
Y
yuyang18 已提交
5573
        ${out_comment}.
5574 5575
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5576 5577 5578 5579 5580

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5581
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5582 5583 5584 5585 5586 5587
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5588 5589


5590 5591 5592
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5593
                               ignore_index=kIgnoreIndex,
5594 5595
                               numeric_stable_mode=False,
                               return_softmax=False):
5596 5597
    """
    **Softmax With Cross Entropy Operator.**
5598

5599 5600 5601 5602
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5603

5604 5605 5606
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5607

5608 5609 5610
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5611

5612
    The equation is as follows:
5613

5614
    1) Hard label (one-hot label, so every sample has exactly one class)
5615

5616 5617 5618 5619
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5620

5621 5622 5623
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5624

5625 5626 5627 5628
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5629 5630 5631
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5632

H
haowang101779990 已提交
5633
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5634

H
haowang101779990 已提交
5635
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5636

H
haowang101779990 已提交
5637
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5638 5639 5640

    and then cross entropy loss is calculated by softmax and label.

5641 5642 5643 5644 5645 5646 5647 5648
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5649 5650
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5651
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5652 5653 5654
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5655 5656 5657
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5658
                                    stable algorithm. Default: False
5659
        return_softmax (bool): A flag indicating whether to return the softmax
5660
                               along with the cross entropy loss. Default: False
5661

5662
    Returns:
H
haowang101779990 已提交
5663 5664 5665 5666 5667
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5668 5669 5670 5671 5672 5673 5674

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5675 5676
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5677 5678
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5679 5680
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5681 5682 5683 5684 5685 5686
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5687 5688 5689 5690 5691
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5692 5693 5694 5695

    if return_softmax:
        return loss, softmax

5696 5697 5698 5699 5700
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5701 5702
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5703
    For each instance, it computes the smooth L1 loss element by element first
5704
    and then sums all the losses. So the shape of ouput Variable is
5705
    [batch_size, 1].
5706

5707 5708
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5709
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5710
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5711
            L1 loss op with same shape as :attr:`x`.
5712
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5713 5714
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5715
            by this tensor element by element.
5716
        outside_weight (Variable|None): A tensor with rank at least 2. This
5717 5718
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5719
            element by element.
5720
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5721 5722
           scalar with default value 1.0.

5723
    Returns:
5724
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5725 5726 5727 5728 5729

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5730 5731
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5732
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5733
            out = fluid.layers.smooth_l1(x=fc, y=label)
5734
    """
5735

5736
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5737 5738
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5751 5752 5753 5754


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5755
    This layer creates the one-hot representations for input indices.
5756 5757

    Args:
Y
Yibing Liu 已提交
5758 5759
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5760 5761

    Returns:
Y
Yibing Liu 已提交
5762
        Variable: The one-hot representations of input.
5763 5764

    Examples:
C
caoying03 已提交
5765
        .. code-block:: python
5766

Y
Yibing Liu 已提交
5767 5768
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5769 5770
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5771
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5772 5773 5774 5775 5776 5777
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5778 5779


Y
Yu Yang 已提交
5780
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5781
    """
Y
yi.wu 已提交
5782 5783 5784
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5785 5786 5787 5788 5789 5790

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5791 5792
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5793 5794 5795 5796 5797 5798

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5799 5800
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5801 5802
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5803 5804 5805 5806 5807
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5808
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5809
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5810 5811
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5812
            outputs={'Out': [counter]},
M
minqiyang 已提交
5813 5814
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5815 5816 5817
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5818 5819


5820
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5821
    """
C
caoying03 已提交
5822 5823
    Gives a new shape to the input Tensor without changing its data.

5824 5825 5826 5827 5828
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5829

5830
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5831

5832 5833 5834 5835
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5836
    2. 0 means the actual dimension value is going to be copied from the
5837 5838 5839 5840
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5841 5842

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5843
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5844
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5845

5846
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5847 5848
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5849 5850
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5851
    dimensions.
C
caoying03 已提交
5852

5853
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5854 5855 5856 5857
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5858 5859

    Args:
5860
        x(variable): The input tensor.
C
caoying03 已提交
5861 5862
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5863 5864 5865 5866 5867
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5868 5869
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5870 5871 5872 5873 5874 5875 5876
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5877
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5878

5879
    Returns:
G
guosheng 已提交
5880 5881 5882 5883
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5884

X
Xin Pan 已提交
5885 5886 5887
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5888 5889
    Examples:
        .. code-block:: python
G
guosheng 已提交
5890

5891
            data = fluid.layers.data(
5892
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5893
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5894
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5895 5896 5897
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5898
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5899 5900 5901 5902 5903
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5904

5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5920
    helper = LayerHelper("reshape2", **locals())
5921 5922
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5923
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5924
    helper.append_op(
5925
        type="reshape2",
X
Xin Pan 已提交
5926
        inputs=inputs,
D
dzhwinter 已提交
5927
        attrs={"shape": shape},
5928 5929
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5930

D
dzhwinter 已提交
5931
    return helper.append_activation(out)
5932

5933

5934
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5935
    """
M
minqiyang 已提交
5936 5937 5938
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5939
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5940

H
haowang101779990 已提交
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
5962

Y
Yibing Liu 已提交
5963
    Args:
5964
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5965
        axes (list): List of integers, indicating the dimensions to be squeezed.
5966
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5967 5968 5969 5970 5971 5972 5973 5974

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5975
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5976 5977
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5978 5979
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5980
    helper.append_op(
5981
        type="squeeze2",
5982
        inputs={"X": input},
Y
Yibing Liu 已提交
5983
        attrs={"axes": axes},
5984 5985
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5986

5987 5988 5989
    return out


5990
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5991
    """
M
minqiyang 已提交
5992 5993 5994
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5995

M
minqiyang 已提交
5996
    For example:
H
haowang101779990 已提交
5997 5998 5999

    .. code-block:: text

M
minqiyang 已提交
6000
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6001
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6002

Y
Yibing Liu 已提交
6003
    Args:
6004
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6005
        axes (list): List of integers, indicating the dimensions to be inserted.
6006
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6007 6008 6009 6010 6011 6012 6013 6014

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6015
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6016 6017
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6018 6019
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6020
    helper.append_op(
6021
        type="unsqueeze2",
6022
        inputs={"X": input},
Y
Yibing Liu 已提交
6023
        attrs={"axes": axes},
6024 6025
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6026

6027 6028
    return out

6029

Y
yangyaming 已提交
6030
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6031
    """
Y
Yibing Liu 已提交
6032
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6033 6034 6035 6036
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6037
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6038 6039 6040 6041 6042 6043

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6044
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6045 6046 6047
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6048
            target_lod: [4, 2]
Y
yangyaming 已提交
6049 6050

            then we get a 1-level LoDTensor:
6051
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6052 6053 6054 6055 6056 6057
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6058
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6059 6060 6061 6062
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6063
                y.data = [[2, 4]]
Y
yangyaming 已提交
6064 6065 6066
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6067
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6068 6069 6070 6071 6072 6073
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6074
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6075 6076 6077 6078
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6079
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6080 6081 6082 6083
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6084
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6085 6086 6087 6088 6089
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6090
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6091
                           from :attr:`y`.
Y
yangyaming 已提交
6092
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6093
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6094 6095

    Returns:
Y
Yibing Liu 已提交
6096
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6097 6098

    Raises:
Y
Yibing Liu 已提交
6099
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6100 6101 6102 6103 6104 6105 6106 6107 6108

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6109
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6135
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6164 6165
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6178 6179 6180
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6194 6195 6196 6197


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6198
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6199
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6200

G
guosheng 已提交
6201 6202 6203 6204
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6227
                         The length of :attr:paddings must be
G
guosheng 已提交
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6238

G
guosheng 已提交
6239 6240 6241 6242 6243 6244
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6245
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6246 6247 6248 6249 6250 6251 6252
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6253 6254


C
chengduo 已提交
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6286 6287
		And
            pad_value = -1,
C
chengduo 已提交
6288

T
Tink_Y 已提交
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6324
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6334 6335 6336 6337 6338 6339 6340
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6341 6342
    called label-smoothing regularization (LSR).

6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6366
                              be :math:`(1, class\_num)`.
6367 6368
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6369
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6389
    smooth_label = helper.create_variable_for_type_inference(dtype)
6390 6391 6392 6393 6394 6395 6396
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6397 6398


W
wopeizl 已提交
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6435 6436


J
jerrywgz 已提交
6437 6438 6439 6440 6441 6442
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6443 6444
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6461 6462 6463
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6464 6465 6466 6467 6468 6469
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6470
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6511 6512
        .. code-block:: python

W
whs 已提交
6513 6514 6515 6516
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6517
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6518 6519 6520 6521 6522 6523
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6524 6525


6526 6527 6528 6529
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6530 6531
                 resample='BILINEAR',
                 actual_shape=None):
6532
    """
Q
qiaolongfei 已提交
6533
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6534

6535
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6536 6537 6538
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6539

6540
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6541

6542
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6543

6544
    Args:
6545
        input (Variable): The input tensor of image resize layer,
6546 6547
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6548
        out_shape(list|tuple|Variable|None): Output shape of image resize
6549 6550
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6551
        scale(float|None): The multiplier for the input height or width.
6552 6553 6554
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6555 6556
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6557
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6558
                       currently.
6559
                       Default: 'BILINEAR'
6560 6561 6562
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6563
                                :attr:`out_shape` and :attr:`scale` specifying
6564 6565 6566 6567 6568 6569 6570
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6571 6572
                                constructing stage.
                                Default: None
6573 6574

    Returns:
Q
update  
qiaolongfei 已提交
6575 6576
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6577

6578 6579 6580
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6581
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6582 6583 6584 6585
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6586 6587 6588
    Examples:
        .. code-block:: python

6589
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6590
    """
6591 6592 6593 6594
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6595 6596
    if resample not in resample_methods:
        raise ValueError(
6597
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6598
        )
6599
    resample_type = resample_methods[resample]
6600
    if out_shape is None and scale is None:
6601
        raise ValueError("One of out_shape and scale must not be None.")
6602
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6603
    dtype = helper.input_dtype()
6604 6605 6606 6607

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6608 6609 6610
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6611
    if out_shape is not None:
6612 6613 6614 6615
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6616
            inputs['OutSize'] = out_shape
6617 6618 6619 6620 6621 6622 6623 6624
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6625 6626 6627 6628
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6629 6630 6631 6632 6633
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6634
    out = helper.create_variable_for_type_inference(dtype)
6635
    helper.append_op(
6636
        type='{}_interp'.format(resample_type),
6637
        inputs=inputs,
6638
        outputs={"Out": out},
6639 6640 6641
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6642
    return out
F
stash  
fengjiayi 已提交
6643 6644


6645
@templatedoc(op_type="bilinear_interp")
6646 6647 6648 6649 6650
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6651
    """
6652 6653
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6654 6655
    in priority order.

6656 6657 6658 6659
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6660 6661
    again in the other direction.

6662
    For details of bilinear interpolation, please refer to Wikipedia:
6663
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6664 6665 6666 6667 6668

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6669

Y
yuyang18 已提交
6670 6671 6672 6673 6674
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6675 6676 6677
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6678
                                :attr:`out_shape` and :attr:`scale` specifying
6679 6680 6681 6682 6683 6684 6685
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6686 6687
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6688 6689 6690

    Returns:
        ${out_comment}.
6691 6692 6693 6694 6695

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6696 6697
    """

6698
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6699 6700


6701
@templatedoc(op_type="nearest_interp")
6702 6703 6704 6705 6706
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6707
    """
6708
    Resize input by performing nearest neighbor interpolation in both the
6709 6710
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6711 6712
    out_shape and scale in priority order.

6713
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6714
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6715 6716 6717 6718 6719

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6720

Y
yuyang18 已提交
6721 6722 6723 6724 6725
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6726 6727 6728
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6729
                                :attr:`out_shape` and :attr:`scale` specifying
6730 6731 6732 6733 6734 6735 6736
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6737 6738
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6739 6740 6741

    Returns:
        ${out_comment}.
6742 6743 6744 6745 6746

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6747 6748
    """

6749
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6750 6751 6752 6753


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6754 6755 6756
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6757 6758 6759 6760 6761 6762 6763
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6764
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6765

6766
    Returns:
Q
update  
qiaolongfei 已提交
6767
        Variable: The output is a 4-D tensor of the shape
6768
        (num_batches, channls, out_h, out_w).
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6779 6780 6781
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6782 6783 6784
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6785 6786
def gather(input, index):
    """
Q
qiaolongfei 已提交
6787 6788
    **Gather Layer**

6789
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6790 6791 6792 6793
    of X indexed by `index` and concatenate them together.

    .. math::

6794
        Out = X[Index]
W
whs 已提交
6795 6796 6797 6798 6799 6800 6801


    .. code-block:: text


                Given:

6802 6803
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6814
        input (Variable): The source input with rank>=1.
W
whs 已提交
6815 6816 6817 6818 6819 6820
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6821

W
whs 已提交
6822 6823 6824 6825 6826 6827
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6828
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6829 6830 6831 6832 6833 6834 6835 6836
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6868
    out = helper.create_variable_for_type_inference(dtype)
6869 6870 6871 6872 6873 6874 6875 6876 6877
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6887

Q
Qingsheng Li 已提交
6888
    Given the following input:
H
haowang101779990 已提交
6889

Q
Qingsheng Li 已提交
6890
    .. code-block:: text
H
haowang101779990 已提交
6891

Q
Qingsheng Li 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6904

Q
Qingsheng Li 已提交
6905
    .. code-block:: text
H
haowang101779990 已提交
6906

Q
Qingsheng Li 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6922
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6933
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6956

6957 6958 6959
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6960
    """
F
stash  
fengjiayi 已提交
6961
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6962
    dtype = x.dtype
X
Xin Pan 已提交
6963
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6964
    if seed is None:
6965
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6966
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6967
    if isinstance(seed, int):
F
fengjiayi 已提交
6968 6969 6970 6971 6972
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6973 6974 6975 6976
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6977
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6978 6979
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6980 6981
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6982
    return out
W
whs 已提交
6983 6984


6985
def log(x, name=None):
W
wanghaoshuang 已提交
6986 6987 6988 6989 6990
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6991
        Out = \\ln(x)
W
wanghaoshuang 已提交
6992 6993

    Args:
6994
        x (Variable): Input tensor.
6995 6996
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6997 6998 6999 7000 7001 7002 7003 7004

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7005
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7006 7007
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7008
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7009
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7010
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7011 7012 7013
    return out


7014
def relu(x, name=None):
W
wanghaoshuang 已提交
7015 7016
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7017
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7018 7019 7020 7021
    the tensor elementwise.

    .. math::

7022
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7023 7024

    Args:
7025
        x (Variable): The input tensor.
7026 7027
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7028 7029 7030 7031 7032 7033 7034 7035

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7036
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7037 7038
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7039
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7040
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7041 7042
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7043
    return out
7044 7045


C
chengduo 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7087 7088 7089
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7090 7091 7092 7093
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7094
    .. math::
7095

H
haowang101779990 已提交
7096
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7097

7098
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7099 7100 7101 7102 7103
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7104
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7105
                           Its shape should be the same as input.
7106
        num_classes (int): The possible number of labels.
W
whs 已提交
7107 7108

    Returns:
M
minqiyang 已提交
7109 7110
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7111
                     Three variables:
M
minqiyang 已提交
7112

H
haowang101779990 已提交
7113 7114 7115
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7116 7117 7118 7119

    Examples:

        .. code-block:: python
7120

W
whs 已提交
7121 7122 7123 7124
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7125 7126 7127
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7128 7129
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7130 7131
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7132
        outputs={
W
whs 已提交
7133 7134 7135
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7136 7137 7138
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7207
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7208 7209 7210 7211 7212

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7213
            isinstance(shape, Variable)):
7214 7215 7216 7217 7218
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7219
    out = helper.create_variable_for_type_inference(x.dtype)
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7237 7238


W
whs 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7256

W
whs 已提交
7257
              out_shape = [2, 3, 5, 5]
7258

W
whs 已提交
7259
          Step 1:
7260

W
whs 已提交
7261 7262 7263
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7264

W
whs 已提交
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7310
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7311
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7324

W
whs 已提交
7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7336
            isinstance(out_shape, Variable)):
W
whs 已提交
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7358 7359
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7360

7361 7362
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7363
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7364 7365 7366
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7367

7368 7369
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7370

H
haowang101779990 已提交
7371 7372
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7373 7374
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7375

H
haowang101779990 已提交
7376 7377 7378 7379 7380 7381 7382 7383
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7384 7385 7386

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7421
    out = helper.create_variable_for_type_inference("float32")
7422 7423 7424 7425 7426 7427 7428 7429

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7430 7431


M
minqiyang 已提交
7432 7433
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7434
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7435
    which compares left score and right score passed in.
M
minqiyang 已提交
7436
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7437 7438 7439

    .. math::

H
haowang101779990 已提交
7440
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7441 7442

    Args:
M
minqiyang 已提交
7443
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7444 7445
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7446
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7447 7448
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7449

M
minqiyang 已提交
7450
    Returns:
M
minqiyang 已提交
7451
       Variable: The ranking loss.
H
haowang101779990 已提交
7452

M
minqiyang 已提交
7453
    Raises:
M
minqiyang 已提交
7454
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7455

M
minqiyang 已提交
7456
    Examples:
H
haowang101779990 已提交
7457

M
minqiyang 已提交
7458
        .. code-block:: python
H
haowang101779990 已提交
7459

M
minqiyang 已提交
7460 7461 7462 7463 7464
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7465
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7466 7467 7468 7469 7470 7471
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7472 7473
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7497
        .. code-block:: text
W
whs 已提交
7498

T
Tink_Y 已提交
7499
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7500

T
Tink_Y 已提交
7501 7502
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7503

T
Tink_Y 已提交
7504
	      Case 0:
M
minqiyang 已提交
7505

T
Tink_Y 已提交
7506 7507 7508
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7509

T
Tink_Y 已提交
7510 7511 7512
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7513

T
Tink_Y 已提交
7514
	      Case 1:
M
minqiyang 已提交
7515

T
Tink_Y 已提交
7516 7517
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7518

T
Tink_Y 已提交
7519 7520 7521
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7522

T
Tink_Y 已提交
7523
	      Case 2:
M
minqiyang 已提交
7524

T
Tink_Y 已提交
7525 7526
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7527

T
Tink_Y 已提交
7528 7529 7530
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7531 7532


W
whs 已提交
7533 7534
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7535
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7559
    out = helper.create_variable_for_type_inference(dtype)
7560 7561 7562 7563 7564 7565 7566 7567 7568
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7569
    helper.append_op(
7570
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7571 7572 7573 7574

    return out


7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7587 7588 7589 7590 7591

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7592 7593
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7594 7595
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7596
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7617 7618 7619 7620 7621

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7622 7623
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7624 7625
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7626
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7647 7648 7649 7650 7651

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7652 7653
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7654 7655
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7656
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7678 7679 7680 7681 7682

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7683
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7684
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7685 7686
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7687
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7710 7711 7712 7713 7714

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7715 7716
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7717 7718
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7719
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7741 7742 7743 7744 7745

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7746 7747
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7748 7749
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7750
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7751 7752 7753 7754 7755 7756 7757 7758
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7759 7760 7761 7762
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7763 7764
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7765 7766 7767

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7768
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7769
          weight (alpha).
J
jerrywgz 已提交
7770
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7771 7772 7773
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7774
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7775
          will be named automatically.
J
jerrywgz 已提交
7776 7777 7778 7779 7780 7781 7782 7783

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7784
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7798
        attr=helper.param_attr,
J
jerrywgz 已提交
7799 7800 7801 7802
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7803
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7804 7805 7806 7807 7808 7809 7810 7811 7812
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7823
    Returns:
7824
        output(${out_type}): ${out_comment}
7825 7826 7827

    Examples:

7828
    .. code-block:: python
7829

H
haowang101779990 已提交
7830 7831
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7832 7833
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7834
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7853
    Returns:
7854
        output(${out_type}): ${out_comment}
7855 7856 7857 7858 7859

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7860 7861
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7862 7863
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7864
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7882
    Returns:
7883
        output(${out_type}): ${out_comment}
7884 7885 7886 7887 7888

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7889 7890
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7891 7892
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7893
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7894 7895 7896 7897 7898 7899 7900 7901
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7902 7903 7904 7905
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
7906

H
haowang101779990 已提交
7907
    For Example:
M
minqiyang 已提交
7908

H
haowang101779990 已提交
7909
    .. code-block:: text
7910

H
haowang101779990 已提交
7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7932 7933 7934

    Args:
        x (Variable): A tensor of rank >= axis.
7935 7936
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7937 7938 7939 7940 7941 7942 7943 7944
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7945 7946 7947
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
7948 7949 7950 7951
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7952
        ValueError: If axis is not in range [0, rank(x)].
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7969 7970
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7971
    helper.append_op(
7972
        type='flatten2',
7973
        inputs={"X": x},
7974 7975
        outputs={'Out': out,
                 'XShape': x_shape},
7976 7977
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7978 7979


C
chenweihang 已提交
7980
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7981
    """
C
chenweihang 已提交
7982
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7983
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7984 7985
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7986

H
haowang101779990 已提交
7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8004 8005

    Args:
C
chenweihang 已提交
8006 8007 8008
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8020 8021
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8022 8023 8024 8025 8026 8027
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8028
    return out
8029

8030

S
sneaxiy 已提交
8031 8032 8033 8034 8035 8036 8037 8038 8039
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8040

S
sneaxiy 已提交
8041
    .. math::
8042

S
sneaxiy 已提交
8043 8044 8045
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8046
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8047 8048 8049 8050
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8051 8052 8053
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8054 8055
    Returns:
        Variable: The output sequence mask.
8056

S
sneaxiy 已提交
8057 8058
    """

Q
qingqing01 已提交
8059
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8060
    if name is None:
X
Xin Pan 已提交
8061
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8062
    else:
X
Xin Pan 已提交
8063
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8064

Q
qingqing01 已提交
8065 8066 8067
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8068 8069
        outputs={'Y': out},
        attrs={
8070
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8071 8072 8073
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8074 8075


X
Xin Pan 已提交
8076
def stack(x, axis=0):
S
sneaxiy 已提交
8077 8078 8079 8080
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8081 8082 8083 8084 8085 8086 8087

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8088
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8089
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8090 8091

    Args:
8092
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8093
        axis (int|None): The axis along which all inputs are stacked.
8094

S
sneaxiy 已提交
8095 8096
    Returns:
        Variable: The stacked variable.
8097

S
sneaxiy 已提交
8098 8099
    """

X
Xin Pan 已提交
8100 8101 8102 8103 8104 8105
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8106
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8107
    helper.append_op(
S
sneaxiy 已提交
8108 8109
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8110

X
Xin Pan 已提交
8111
    return out
D
dzhwinter 已提交
8112 8113 8114 8115 8116 8117 8118


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8119

D
dzhwinter 已提交
8120 8121 8122
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8123
    raised.
D
dzhwinter 已提交
8124 8125

    Args:
M
minqiyang 已提交
8126
        x (Variable): Input variable.
D
dzhwinter 已提交
8127 8128
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8129

D
dzhwinter 已提交
8130 8131
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8132

D
dzhwinter 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8143
    for _ in range(num):
X
Xin Pan 已提交
8144
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8145 8146 8147 8148 8149 8150 8151 8152

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8165

W
whs 已提交
8166 8167 8168 8169
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8170

W
whs 已提交
8171
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8172

W
whs 已提交
8173
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8174

W
whs 已提交
8175 8176 8177 8178
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8179

W
whs 已提交
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8196
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8197 8198 8199 8200 8201 8202
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8203 8204


G
fix  
gongweibao 已提交
8205 8206 8207
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8208
@templatedoc()
G
fix  
gongweibao 已提交
8209 8210 8211 8212 8213 8214 8215 8216 8217
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8218
    ${comment}
G
fix  
gongweibao 已提交
8219 8220

    Args:
G
gongweibao 已提交
8221 8222 8223
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8224
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8225 8226 8227
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8228 8229
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8230
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8231

8232 8233 8234 8235 8236
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8237 8238 8239
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8240
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8257 8258


G
gongweibao 已提交
8259
@templatedoc()
X
Xin Pan 已提交
8260
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8261
    """
G
gongweibao 已提交
8262
    ${comment}
G
fix  
gongweibao 已提交
8263 8264

    Args:
G
gongweibao 已提交
8265 8266 8267 8268
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8269 8270 8271
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8272
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8273

8274 8275 8276 8277
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8278 8279 8280
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8281
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8292
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8293 8294 8295 8296 8297
        })

    return out


G
gongweibao 已提交
8298
@templatedoc()
G
fix  
gongweibao 已提交
8299
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8300
    """
G
gongweibao 已提交
8301
    ${comment}
G
fix  
gongweibao 已提交
8302 8303

    Args:
G
gongweibao 已提交
8304 8305 8306 8307
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8308
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8309 8310

    Returns:
G
gongweibao 已提交
8311
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8312

8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8323 8324 8325
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8326
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8338
@templatedoc()
G
fix  
gongweibao 已提交
8339 8340 8341 8342 8343 8344 8345 8346 8347
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8348
    ${comment}
G
fix  
gongweibao 已提交
8349 8350

    Args:
G
gongweibao 已提交
8351 8352
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8353
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8354 8355 8356 8357
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8358
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8359 8360

    Returns:
G
gongweibao 已提交
8361
        out (Variable): ${out_comment}
8362 8363 8364 8365 8366 8367 8368 8369

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8370 8371 8372
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8373
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8392
@templatedoc()
X
Xin Pan 已提交
8393
def sum(x):
G
fix  
gongweibao 已提交
8394
    """
G
gongweibao 已提交
8395
    ${comment}
G
fix  
gongweibao 已提交
8396 8397

    Args:
G
gongweibao 已提交
8398
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8399 8400

    Returns:
G
gongweibao 已提交
8401
        out (Variable): ${out_comment}
8402 8403 8404 8405 8406 8407

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8408 8409 8410
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8411 8412
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8413 8414 8415 8416
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8417
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8418 8419 8420 8421

    return out


G
gongweibao 已提交
8422
@templatedoc()
G
fix  
gongweibao 已提交
8423 8424
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8425
    ${comment}
G
fix  
gongweibao 已提交
8426 8427

    Args:
G
gongweibao 已提交
8428 8429 8430 8431
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8432 8433

    Returns:
G
gongweibao 已提交
8434
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8435

8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8447 8448 8449
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8450 8451
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8463
@templatedoc()
G
fix  
gongweibao 已提交
8464 8465
def shape(input):
    """
G
gongweibao 已提交
8466
    ${comment}
G
fix  
gongweibao 已提交
8467 8468

    Args:
G
gongweibao 已提交
8469
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8470 8471

    Returns:
G
gongweibao 已提交
8472
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8473

8474 8475 8476 8477 8478 8479
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8480 8481 8482
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8483 8484
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8485
    helper.append_op(
G
fix  
gongweibao 已提交
8486
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8487 8488

    return out
G
merge  
gongweibao 已提交
8489 8490


S
sneaxiy 已提交
8491 8492 8493 8494 8495 8496 8497 8498
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8499 8500
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8501
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8502 8503 8504
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8505

S
sneaxiy 已提交
8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8517
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8518 8519 8520 8521 8522 8523 8524 8525
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8526
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8527
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8528 8529 8530 8531 8532 8533

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8534
    if name is None:
X
Xin Pan 已提交
8535
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8536 8537 8538
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8549
    return helper.append_activation(out)
S
sneaxiy 已提交
8550 8551


X
Xin Pan 已提交
8552
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8553 8554 8555
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8556
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8557 8558 8559
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8560
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8561 8562 8563
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8564
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8565 8566 8567
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8568
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8569 8570 8571
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8572
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8573 8574 8575
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8576
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8588 8589
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8590
        ])
M
minqiyang 已提交
8591 8592


8593
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8594 8595
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8596 8597
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8598 8599 8600

    if out is None:
        if name is None:
X
Xin Pan 已提交
8601
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8617
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8629 8630 8631 8632 8633 8634 8635 8636 8637

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8638 8639 8640 8641 8642 8643 8644
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8645
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8657 8658 8659 8660 8661 8662 8663 8664 8665

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8666 8667 8668 8669 8670 8671 8672
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8673
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8685 8686 8687 8688 8689 8690 8691 8692 8693

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8694 8695 8696 8697 8698 8699 8700
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8701
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8712 8713 8714 8715 8716 8717 8718

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8719 8720 8721 8722
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8738 8739 8740 8741 8742 8743 8744

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8745 8746 8747 8748 8749
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8750 8751 8752 8753
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8777 8778 8779 8780 8781 8782 8783

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8784 8785 8786 8787 8788
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8789 8790 8791 8792
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8793 8794 8795 8796 8797 8798 8799 8800

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8819
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8820 8821 8822 8823 8824 8825 8826 8827 8828 8829
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8872
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8873 8874 8875 8876 8877 8878 8879 8880 8881
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8882 8883
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8884 8885 8886 8887 8888 8889
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8890 8891 8892 8893
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8894 8895 8896 8897 8898 8899
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8900
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8901 8902 8903 8904 8905 8906 8907 8908 8909
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8910
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8911 8912 8913 8914 8915 8916 8917 8918
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8919
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8940
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8951 8952


J
JiabinYang 已提交
8953
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8954
    """
J
JiabinYang 已提交
8955
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8956 8957 8958

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8959
    The attr blocksize indicates the input block size.
8960 8961

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8962
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8963 8964

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8965
    (but keeping all data)
J
JiabinYang 已提交
8966

J
JiabinYang 已提交
8967
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8968
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8969 8970 8971 8972 8973
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8974
    Args:
J
JiabinYang 已提交
8975
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8976
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8977 8978

    Returns:
J
JiabinYang 已提交
8979
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8980 8981

    Raises:
J
JiabinYang 已提交
8982
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8983 8984 8985 8986 8987 8988

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8989
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8990
                x=data, blocksize=2)
J
JiabinYang 已提交
8991 8992
    """

J
JiabinYang 已提交
8993
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8994

J
JiabinYang 已提交
8995 8996
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8997 8998

    if name is None:
J
JiabinYang 已提交
8999 9000
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9001 9002 9003 9004 9005
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9006
        type="space_to_depth",
J
JiabinYang 已提交
9007
        inputs={"X": x},
J
JiabinYang 已提交
9008
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9009
        outputs={"Out": out})
J
JiabinYang 已提交
9010 9011
    return out

J
JiabinYang 已提交
9012

S
sneaxiy 已提交
9013 9014
@templatedoc()
def sequence_reverse(x, name=None):
9015
    """
S
sneaxiy 已提交
9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9027
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9038 9039


9040 9041 9042 9043 9044 9045
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9046

9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9066
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9079 9080


B
barrierye 已提交
9081
def similarity_focus(input, axis, indexes, name=None):
9082
    """
B
barrierye 已提交
9083
    SimilarityFocus Operator
B
barrierye 已提交
9084 9085

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9086

9087 9088 9089
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9090
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9091 9092 9093 9094 9095 9096 9097
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9098
       each index.
B
barrierye 已提交
9099 9100 9101 9102
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9152
    Args:
9153
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9154
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9155
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9156
            1, 2 or 3.
B
barrierye 已提交
9157
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9158 9159

    Returns:
H
haowang101779990 已提交
9160 9161
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9162

B
barrierye 已提交
9163 9164
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9165

B
barrierye 已提交
9166
            data = fluid.layers.data(
B
barrierye 已提交
9167 9168
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9169

B
barrierye 已提交
9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9182 9183 9184 9185 9186
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9187 9188 9189 9190 9191 9192 9193
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9194 9195


M
minqiyang 已提交
9196 9197
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9198 9199
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9200 9201
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9240
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9241
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9242 9243 9244 9245 9246 9247

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9248

M
minqiyang 已提交
9249 9250 9251
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9252 9253
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9254 9255
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9256 9257 9258 9259 9260 9261 9262
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9263 9264


D
dengkaipeng 已提交
9265
@templatedoc()
9266 9267
def grid_sampler(x, grid, name=None):
    """
9268
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9269
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9270 9271 9272 9273
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9274
    interpolation value of 4 nearest corner points.
9275

H
haowang101779990 已提交
9276
    .. code-block:: text
9277

H
haowang101779990 已提交
9278 9279
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9280

H
haowang101779990 已提交
9281 9282
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9283

H
haowang101779990 已提交
9284 9285 9286
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9287

H
haowang101779990 已提交
9288 9289 9290 9291 9292 9293 9294 9295 9296
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9297

H
haowang101779990 已提交
9298 9299 9300 9301
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9302

H
haowang101779990 已提交
9303 9304 9305 9306
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9307

H
haowang101779990 已提交
9308 9309 9310 9311
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9312

H
haowang101779990 已提交
9313 9314
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9315 9316

    Args:
9317 9318 9319
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9320 9321

    Returns:
H
haowang101779990 已提交
9322
        Variable: Output of shape [N, C, H, W] data samples input X
9323 9324
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9325 9326 9327 9328 9329 9330 9331 9332
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9333

D
dengkaipeng 已提交
9334 9335 9336 9337 9338 9339 9340 9341 9342
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9343
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9344 9345
    ipts = {'X': x, 'Grid': grid}

9346
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9347 9348 9349
    return out


G
gmcather 已提交
9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9416
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9438 9439 9440 9441
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9442
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9443 9444
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9445
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9446 9447

    .. math::
H
haowang101779990 已提交
9448 9449 9450
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9451 9452

    Where:
H
haowang101779990 已提交
9453 9454
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9469

G
gmcather 已提交
9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9496
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9497

Q
Qiao Longfei 已提交
9498
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9499 9500 9501
    For example:

    .. math::
H
haowang101779990 已提交
9502
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9503

Q
Qiao Longfei 已提交
9504
    In this formula:
9505 9506
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9507
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9508
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9509 9510 9511
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9512 9513
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9514 9515 9516
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9517
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9518
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9519
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9520 9521 9522 9523
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9524
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9525 9526 9527 9528

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9529
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9530 9531
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9532
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9533 9534 9535 9536

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9537
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9578 9579


S
sneaxiy 已提交
9580
class PyFuncRegistry(object):
S
sneaxiy 已提交
9581 9582 9583
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9584
        if func is None or not callable(func):
S
sneaxiy 已提交
9585 9586 9587
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9588
        # find named args using reflection
S
sneaxiy 已提交
9589 9590 9591 9592 9593 9594 9595
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9596 9597 9598
        '''
        Why record self here?

M
minqiyang 已提交
9599 9600
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9601
           to find the registered function corresponding
M
minqiyang 已提交
9602
           to :code:`idx`.
S
sneaxiy 已提交
9603

M
minqiyang 已提交
9604 9605
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9606
           whose reference count is 1 would cause
M
minqiyang 已提交
9607
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9608 9609
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9610
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9625 9626 9627 9628 9629 9630 9631 9632 9633
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9634

S
sneaxiy 已提交
9635 9636
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9637 9638

        ret = []
S
sneaxiy 已提交
9639 9640 9641
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9642 9643
                continue

S
sneaxiy 已提交
9644 9645
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9646

S
sneaxiy 已提交
9647 9648 9649
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9650

S
sneaxiy 已提交
9651
        return tuple(ret)
S
sneaxiy 已提交
9652 9653


S
sneaxiy 已提交
9654 9655 9656 9657
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9658

S
sneaxiy 已提交
9659 9660 9661 9662 9663 9664 9665 9666
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9667
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9668

S
sneaxiy 已提交
9669 9670
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9671 9672 9673 9674
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9675
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9676
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9677 9678
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9679 9680 9681 9682 9683
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9684
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9685
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9686
                                       None means no backward. Default None.
S
sneaxiy 已提交
9687
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9688
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9689 9690
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9691
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9692 9693 9694

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9695 9696

    Examples:
M
minqiyang 已提交
9697

S
sneaxiy 已提交
9698 9699 9700 9701 9702
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9703
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9704 9705
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9706
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9707 9708 9709
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9710
        >>>
S
sneaxiy 已提交
9711 9712 9713 9714 9715
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9716
        >>>     print(x)
S
sneaxiy 已提交
9717 9718 9719 9720 9721 9722
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9723
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9724 9725
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9726 9727
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9728 9729 9730 9731 9732 9733 9734 9735
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9736
    """
S
sneaxiy 已提交
9737
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9738 9739 9740
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9741
        x = [x]
S
sneaxiy 已提交
9742 9743
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9744

S
sneaxiy 已提交
9745 9746 9747
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9748
        out_list = [out]
S
sneaxiy 已提交
9749
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9750
        out_list = out
S
sneaxiy 已提交
9751 9752 9753
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9754

S
sneaxiy 已提交
9755 9756
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9757
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9758 9759

    for each_out in out_list:
S
sneaxiy 已提交
9760 9761
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9762 9763
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9764

S
sneaxiy 已提交
9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9780 9781 9782 9783

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9784 9785
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9786 9787 9788
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9789
        })
S
sneaxiy 已提交
9790
    return out
S
sneaxiy 已提交
9791 9792 9793


# For debug usage
S
sneaxiy 已提交
9794 9795 9796 9797
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9850

M
minqiyang 已提交
9851

M
minqiyang 已提交
9852
def huber_loss(input, label, delta):
9853
    """
M
minqiyang 已提交
9854 9855 9856
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9857 9858 9859 9860

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9861
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9862 9863 9864 9865

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9866
        huber\_loss = 0.5 * (label - input) * (label - input)
9867 9868 9869 9870 9871 9872 9873


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9874
        delta (float): The parameter of huber loss, which controls
9875 9876 9877
                       the range of outliers

    Returns:
M
minqiyang 已提交
9878
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9879 9880 9881 9882 9883

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9884
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9885
    """
M
minqiyang 已提交
9886
    helper = LayerHelper('huber_loss', **locals())
9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out