linalg.py 131.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dynamic_mode
28
from .creation import full
29
from .manipulation import cast
30
from .math import _get_reduce_axis
31

32 33
__all__ = []

34 35 36
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
88
    if in_dynamic_mode():
89
        return _C_ops.transpose(x, perm)
90
    else:
91 92 93 94 95 96 97 98 99 100
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
101
                'uint16',
102 103 104 105
                'complex64',
                'complex128',
            ],
            'transpose',
106
        )
107 108 109 110
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
111
            raise ValueError(
112 113
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
114 115 116 117
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
118
            )
119 120 121 122 123 124 125
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
126

127 128 129 130 131 132 133 134 135 136
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
137 138


S
ShenLiang 已提交
139
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
140
    """
141 142
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
143
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
144

S
ShenLiang 已提交
145 146
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
147 148 149 150 151

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
152 153
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
154 155 156 157 158 159 160 161
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

162 163
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
164
      After the matrix multiply, the prepended dimension is removed.
165 166

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
167 168
      the matrix-vector product is obtained.

169 170 171 172 173 174 175 176 177
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
178
      out will be a (j, k, n, p) tensor.
179 180

    Args:
S
ShenLiang 已提交
181 182
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
183 184 185
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
186 187 188
            will be named automatically.

    Returns:
S
ShenLiang 已提交
189
        Tensor: The output Tensor.
190 191 192

    Examples:

C
Chen Long 已提交
193 194 195 196 197 198 199 200 201
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
202
            # ()
C
Chen Long 已提交
203 204 205 206 207 208

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
209
            # (10,)
C
Chen Long 已提交
210 211 212 213 214 215

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
216
            # (10, 5)
C
Chen Long 已提交
217 218 219 220 221 222

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
223
            # (10, 5, 5)
C
Chen Long 已提交
224 225 226 227 228 229

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
230
            # (10, 3, 5, 5)
231 232

    """
233
    if in_dynamic_mode():
234
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
235 236 237 238 239
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
240

241 242 243 244 245 246 247
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
248
                        'uint16',
249 250 251 252 253 254 255 256
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
257

258
        __check_input(x, y)
259

260 261 262 263 264 265 266 267 268
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
269 270


myq406450149's avatar
myq406450149 已提交
271
def norm(x, p='fro', axis=None, keepdim=False, name=None):
272
    """
S
swtkiwi 已提交
273

274 275 276
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

277
    Note:
278 279 280 281 282
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

283
    Args:
myq406450149's avatar
myq406450149 已提交
284
        x (Tensor): The input tensor could be N-D tensor, and the input data
285
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
286
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
287
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
288
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
289 290
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
291
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
292
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
293
            Default value is `None`.
294 295 296 297 298 299 300 301
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
302
        Tensor: results of norm operation on the specified axis of input tensor,
303
        it's data type is the same as input's Tensor.
304

305 306
    Examples:
        .. code-block:: python
307

308
            import paddle
309 310 311 312 313 314 315 316 317
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
318

319
            # compute frobenius norm along last two dimensions.
320
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
321 322
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
323

324
            # compute 2-order vector norm along last dimension.
325
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
326 327 328
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
329 330

            # compute 2-order  norm along [0,1] dimension.
331
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
332 333
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
334 335

            # compute inf-order  norm
336
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
337 338
            # out_pnorm  = Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    12.)
339 340 341 342 343 344

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
345 346

            # compute -inf-order  norm
347
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
348 349
            # out_pnorm: Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  0.)
350 351 352 353 354 355

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
356 357
    """

myq406450149's avatar
myq406450149 已提交
358
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
359 360 361 362 363 364 365 366 367 368 369
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
370

371
        if in_dynamic_mode():
F
From00 已提交
372
            if dim is None:
373 374
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
375 376
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
377
            if dim is None:
378 379 380
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
381
            )
382

383 384 385 386
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
387

388 389 390 391 392 393 394
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
395

396 397 398
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
399 400 401 402 403 404 405 406
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
407
        if in_dynamic_mode():
408 409
            if axis is None:
                axis = -1
410
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
411 412 413 414 415 416
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
417 418 419 420
                input,
                'input',
                ['float16', 'uint16', 'float32', 'float64'],
                'p_norm',
421
            )
422

423 424 425 426 427 428 429 430 431 432 433
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
434

435 436 437 438 439 440 441
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
442

443 444 445
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
446
        if in_dynamic_mode():
447
            out = _C_ops.abs(input)
448
            if porder == np.float64('inf'):
449
                return _C_ops.max(out, axis, keepdim)
450
            else:
451
                return _C_ops.min(out, axis, keepdim)
452 453 454 455 456 457 458 459 460 461 462
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
463
            reduce_all, axis = _get_reduce_axis(axis, x)
464 465 466 467 468 469 470 471 472 473 474 475 476
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
477

478
            return reduce_out
myq406450149's avatar
myq406450149 已提交
479

480
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
481 482 483 484
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
485
        if in_dynamic_mode():
486 487 488
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
489
            out = _C_ops.pow(sum_out, float(1.0 / porder))
490 491
            return out

myq406450149's avatar
myq406450149 已提交
492 493
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
494 495
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
496
        abs_out = block.create_variable_for_type_inference(
497 498 499 500 501
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
502
        pow_out = block.create_variable_for_type_inference(
503 504
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
505

506 507 508 509 510 511
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
512
        sum_out = block.create_variable_for_type_inference(
513 514
            dtype=block.input_dtype()
        )
515
        reduce_all, axis = _get_reduce_axis(axis, x)
516 517 518 519 520 521 522
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
523
                'reduce_all': reduce_all,
524 525 526 527 528 529 530 531
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
532 533
        return out

534 535 536
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
537
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
538 539
            else:
                raise ValueError(
540
                    f"only valid string values are 'fro', found {p}"
541
                )
542
        elif isinstance(p, (int, float)):
543 544 545 546 547 548 549 550
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
551
        else:
552
            raise ValueError(
553
                f"only valid p type is string or float, found {type(p)}"
554
            )
555

myq406450149's avatar
myq406450149 已提交
556 557
    if isinstance(axis, tuple):
        axis = list(axis)
558 559 560
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

561
    # calculate vector norm, where axis is int or list with only one integer
562
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
563 564
        if isinstance(p, str):
            if p == "fro":
565 566 567 568 569 570 571 572
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
573 574 575

            else:
                raise ValueError(
576
                    f"only valid string values are 'fro', found {p}"
577
                )
myq406450149's avatar
myq406450149 已提交
578
        elif isinstance(p, (int, float)):
579 580 581 582 583 584 585 586
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
587 588
        else:
            raise ValueError(
589 590 591 592 593
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
594 595
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
596 597 598
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
599 600
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
601
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
602 603 604
                    axis
                )
            )
605
        else:
606 607 608
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
609 610
    else:
        raise ValueError(
611 612 613 614
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
615 616


617
def dist(x, y, p=2, name=None):
618
    r"""
S
swtkiwi 已提交
619

620
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
621
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
622
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
647 648 649 650 651 652 653

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
654
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
655 656 657 658 659

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
660
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
661 662 663 664 665 666 667 668 669 670 671 672

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
673 674
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
675
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
676 677
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
678 679

    Returns:
680
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
681 682 683 684 685 686

    Examples:
        .. code-block:: python

            import paddle

687 688
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
689
            out = paddle.dist(x, y, 0)
690
            print(out) # out = 1.
Z
Zhang Ting 已提交
691

692
            out = paddle.dist(x, y, 2)
693
            print(out) # out = 2.
Z
Zhang Ting 已提交
694

695
            out = paddle.dist(x, y, float("inf"))
696
            print(out) # out = 2.
Z
Zhang Ting 已提交
697

698
            out = paddle.dist(x, y, float("-inf"))
699
            print(out) # out = 0.
Z
Zhang Ting 已提交
700
    """
701
    if in_dynamic_mode():
702
        return _C_ops.dist(x, y, p)
H
hong 已提交
703

704 705
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
Z
Zhang Ting 已提交
706 707 708 709 710 711 712
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
713 714 715
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
716
    return out
L
liuwei1031 已提交
717 718


719 720 721 722 723 724
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
725 726
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
745 746
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.41421342)
747 748 749

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
750 751
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        3.16227770)
752 753 754

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
755 756
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        9.24263859)
757 758 759

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
760 761
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        2.)
762 763 764

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
765 766
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.)
767 768 769

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
770 771
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.41421342)
772 773 774

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
775 776
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.70710683)
777 778

            # compute conditional number when order of the norm is inf
779
            out_inf = paddle.linalg.cond(x, p=float("inf"))
780 781
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        2.)
782 783

            # compute conditional number when order of the norm is -inf
784
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
785 786
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.)
787 788 789 790 791 792 793 794 795 796 797 798 799

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

800
            a_cond_fro = paddle.linalg.cond(a, p='fro')
801 802 803 804 805 806 807 808 809 810 811 812
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
813
            b_cond_2 = paddle.linalg.cond(b, p=2)
814 815
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
816 817 818

    """

819
    def mat_norm(input, porder=1.0, axis=None):
820 821 822 823 824
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
825
        if in_dynamic_mode():
826
            abs_out = _C_ops.abs(input)
827
            sum_out = _C_ops.sum(abs_out, axis, None, False)
828 829

            if porder == 1 or porder == np.inf:
830
                return _C_ops.max(sum_out, [-1], False)
831
            if porder == -1 or porder == -np.inf:
832
                return _C_ops.min(sum_out, [-1], False)
833 834 835
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
836 837
                dtype=block.input_dtype()
            )
838
            sum_out = block.create_variable_for_type_inference(
839 840
                dtype=block.input_dtype()
            )
841
            out = block.create_variable_for_type_inference(
842 843 844 845 846
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
847 848

            reduce_all, axis = _get_reduce_axis(axis, x)
849 850 851 852 853 854
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
855
                    'keep_dim': False,
856 857 858
                    'reduce_all': reduce_all,
                },
            )
859
            if porder == 1 or porder == np.inf:
860 861 862 863 864 865
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
866
                        'keep_dim': False,
867 868 869
                        'reduce_all': reduce_all,
                    },
                )
870
            if porder == -1 or porder == -np.inf:
871 872 873 874 875 876
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
877
                        'keep_dim': False,
878 879 880
                        'reduce_all': reduce_all,
                    },
                )
881
            return out
882 883 884 885 886 887

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
888
        if in_dynamic_mode():
889
            pow_out = _C_ops.pow(input, porder)
890 891
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
892
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
        else:
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
913 914

            reduce_all, axis = _get_reduce_axis(axis, x)
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
942 943 944 945 946 947 948 949 950

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

951
        if in_dynamic_mode():
952
            if porder == "nuc":
953 954 955 956 957 958 959 960
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
961
            reduce_all, axis = _get_reduce_axis(axis, x)
962 963 964 965 966 967 968 969 970 971 972 973 974 975
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
976
                )
977 978 979 980 981 982 983
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
984
            block.append_op(
985
                type='reduce_max',
986
                inputs={'X': s},
987
                outputs={'Out': max_out},
988 989
                attrs={
                    'dim': axis,
990
                    'keep_dim': False,
991 992 993 994
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
995 996 997 998 999 1000 1001 1002
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1003
            )
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1020 1021

    def empty_tensor(input, shape):
1022
        if in_dynamic_mode():
1023
            return input.reshape(shape)
1024 1025 1026
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1027 1028 1029

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1030
        raise ValueError(
1031
            "input should be a matrix or batches of matrices, "
1032
            + f"but the dimention of received input is {len(x_shape)}"
1033
        )
1034
    if p is None:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1047
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1048 1049
                    x_inv, porder=p, axis=[-2]
                )
1050
            if p in (np.inf, -np.inf):
1051
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1052 1053
                    x_inv, porder=p, axis=[-1]
                )
1054
        else:
1055
            raise ValueError(
1056
                f"only support p is {p} when input is a "
1057 1058
                + "square matrix or batches of square matrices"
            )
1059 1060 1061 1062 1063 1064
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1065
            f"unsupported {p} for p, only supporting ('fro', 'nuc', "
1066 1067
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1068 1069


L
liuwei1031 已提交
1070 1071 1072
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1073

1074
    Note:
1075 1076
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1077 1078

    Parameters:
S
ShenLiang 已提交
1079 1080
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1081 1082
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1083
    Returns:
1084
        Tensor: the calculated result Tensor.
1085

L
liuwei1031 已提交
1086 1087 1088 1089 1090
    Examples:

    .. code-block:: python

        import paddle
1091

1092 1093 1094 1095
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
1096
        print(z)  # 32
1097 1098 1099 1100

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1101
        z = paddle.dot(x, y)
1102
        print(z)  # [32, 64]
L
liuwei1031 已提交
1103 1104

    """
1105
    if in_dynamic_mode():
1106
        return _C_ops.dot(x, y)
1107 1108
    else:
        op_type = 'dot'
1109

1110 1111
        assert x is not None, f'x cannot be None in {op_type}'
        assert y is not None, f'y cannot be None in {op_type}'
L
liuwei1031 已提交
1112

1113
        check_variable_and_dtype(
1114 1115 1116 1117
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1118 1119
        )
        check_variable_and_dtype(
1120 1121 1122 1123
            y,
            'y',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1124
        )
L
liuwei1031 已提交
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1135
        )
1136
        return out
1137 1138


Z
zhiboniu 已提交
1139 1140 1141 1142 1143
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1144
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

1164
        xt = paddle.rand((3, 4))
Z
zhiboniu 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1178 1179
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1193 1194
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1195 1196 1197
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1198 1199 1200 1201
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1202 1203 1204
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1205 1206
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1207 1208 1209 1210 1211 1212 1213 1214
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1215 1216 1217 1218 1219
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1220 1221 1222
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1223 1224 1225 1226
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1227 1228 1229
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1230 1231
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1250
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1262 1263
def t(input, name=None):
    """
1264 1265
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1266
    the paddle.transpose function which perm dimensions set 0 and 1.
1267

1268
    Args:
1269
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1270
        name(str, optional): The default value is None.  Normally there is no need for
1271 1272
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1273
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1274

1275
    Examples:
1276

1277 1278 1279
        .. code-block:: python
           :name: code-example
             import paddle
1280

1281
             # Example 1 (0-D tensor)
1282 1283
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1284

1285
             # Example 2 (1-D tensor)
1286 1287 1288
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1289 1290

             # Example 3 (2-D tensor)
1291 1292 1293 1294 1295 1296 1297 1298
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1299

1300 1301 1302 1303 1304
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1305 1306
            "tensor.transpose() instead." % len(input.shape)
        )
1307
    if in_dynamic_mode():
1308
        if len(input.shape) <= 1:
1309 1310 1311
            return input
        # 2-D tensor
        perm = [1, 0]
1312
        out = _C_ops.transpose(input, perm)
1313
        return out
1314 1315 1316 1317 1318 1319 1320
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1321

1322 1323 1324
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1325
        if len(input.shape) <= 1:
1326 1327 1328 1329 1330 1331 1332 1333
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1334 1335
        return out

1336

W
wanghuancoder 已提交
1337
def cross(x, y, axis=9, name=None):
1338
    """
1339
    Computes the cross product between two tensors along an axis.
1340

1341 1342
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1343

1344
    Args:
1345 1346
        x (Tensor): The first input tensor, the data type is float16, float32, float64, int32, int64.
        y (Tensor): The second input tensor, the data type is float16, float32, float64, int32, int64.
W
wanghuancoder 已提交
1347
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1348
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1349 1350

    Returns:
1351
        Tensor. A Tensor with same data type as `x`.
1352

1353 1354
    Examples:
        .. code-block:: python
1355

1356
            import paddle
1357

Z
Zhou Wei 已提交
1358 1359 1360 1361 1362 1363
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1374
    """
1375
    if in_dynamic_mode():
1376
        axis = K_DEFAULT_DIM if axis is None else axis
1377
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1378
    else:
1379 1380 1381
        check_variable_and_dtype(
            x,
            'x',
1382
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1383 1384 1385 1386 1387
            'cross',
        )
        check_variable_and_dtype(
            y,
            'y',
1388
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1389 1390
            'cross',
        )
1391 1392
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
1393
        attrs = {}
1394
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1395

1396 1397 1398 1399 1400 1401 1402
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1403 1404


1405
def cholesky(x, upper=False, name=None):
1406
    r"""
G
Guo Sheng 已提交
1407
    Computes the Cholesky decomposition of one symmetric positive-definite
1408 1409
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1410 1411 1412 1413 1414 1415
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1416
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1417 1418 1419 1420 1421
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1422 1423
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1424 1425

    Returns:
1426 1427
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1428

G
Guo Sheng 已提交
1429 1430 1431 1432 1433
    Examples:
        .. code-block:: python

            import paddle

1434 1435 1436 1437
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1438
            out = paddle.linalg.cholesky(x, upper=False)
1439
            print(out)
G
Guo Sheng 已提交
1440
    """
1441
    if in_dynamic_mode():
1442
        return _C_ops.cholesky(x, upper)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1455 1456


1457 1458 1459 1460
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1461
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1462
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1463 1464

    Args:
1465 1466 1467 1468
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1469
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1470 1471
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1472
            the lower triangular of the matrix to compute.
1473 1474 1475 1476
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1477

1478 1479 1480 1481 1482 1483 1484 1485
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
1486
            # b = 10
1487 1488 1489 1490 1491 1492 1493

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1494

1495
    """
1496
    if in_dynamic_mode():
1497 1498 1499 1500 1501 1502
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1503 1504 1505
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1506

1507 1508 1509 1510 1511 1512
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
Z
zhangyuqin1998 已提交
1513
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1514 1515 1516 1517 1518
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1519
        if tol is None:
1520
            attrs['use_default_tol'] = True
1521
        elif isinstance(tol, Variable):
1522
            attrs['use_default_tol'] = False
1523
            if tol.dtype != x.dtype:
1524
                inputs['TolTensor'] = cast(tol, x.dtype)
1525
            else:
1526
                inputs['TolTensor'] = tol
1527
        else:
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1540 1541


1542 1543 1544 1545 1546 1547 1548 1549 1550
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1551 1552
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1553 1554 1555 1556
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1557
        Tensor: The product Tensor.
1558 1559

    Examples:
S
sunzhongkai588 已提交
1560 1561 1562
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1563

S
sunzhongkai588 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1573 1574 1575 1576 1577 1578
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1579

1580
    """
1581
    if in_dynamic_mode():
1582
        return _C_ops.bmm(x, y)
1583
    else:
W
Weilong Wu 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1604 1605 1606 1607 1608 1609
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1610 1611


1612
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1613
    """
1614
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1615 1616 1617
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1618
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1619
            should be float32, float64, int32, int64.
1620 1621 1622 1623
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1624 1625

    Returns:
1626
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1627

1628
    Examples:
Q
Qi Li 已提交
1629
        .. code-block:: python
1630

Q
Qi Li 已提交
1631
            import paddle
1632

1633
            inputs = paddle.to_tensor([1, 2, 1])
1634 1635
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1636
    """
1637
    if in_dynamic_mode():
1638
        return _C_ops.histogram(input, bins, min, max)
1639 1640 1641 1642
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1643
        )
1644 1645 1646 1647 1648 1649 1650 1651
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1652 1653 1654 1655


def bincount(x, weights=None, minlength=0, name=None):
    """
1656
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1684
    if in_dynamic_mode():
1685
        return _C_ops.bincount(x, weights, minlength)
1686 1687
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1688

1689
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1706
        )
1707
        return out
1708 1709 1710 1711 1712 1713 1714


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1715
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1716
            should be one of float32, float64.
F
furnace 已提交
1717
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1733 1734
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1735
            out = paddle.mv(x, vec)
1736 1737 1738
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1739
    """
1740
    if in_dynamic_mode():
1741
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1742
    else:
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1756
                    )
1757 1758 1759 1760 1761
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1762
                    )
1763
                )
J
Jiabin Yang 已提交
1764

1765
        __check_input(x, vec)
J
Jiabin Yang 已提交
1766

1767 1768 1769 1770 1771 1772
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1773 1774


1775
def det(x, name=None):
H
huangxu96 已提交
1776
    """
1777

H
huangxu96 已提交
1778
    Calculates determinant value of a square matrix or batches of square matrices.
1779

H
huangxu96 已提交
1780
    Args:
1781
        x (Tensor): the input matrix of size `(n, n)` or the
1782 1783
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1784 1785
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1786

H
huangxu96 已提交
1787
    Returns:
1788
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1789

1790
    Examples:
H
huangxu96 已提交
1791 1792
        .. code-block:: python

1793
            import paddle
H
huangxu96 已提交
1794

1795
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1796

1797
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1798

1799
            print(A)
1800

1801
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1802

1803

H
huangxu96 已提交
1804
    """
1805
    if in_dynamic_mode():
1806
        return _C_ops.det(x)
1807
    else:
1808
        check_dtype(x.dtype, 'Input', ['float16', 'float32', 'float64'], 'det')
C
chentianyu03 已提交
1809

1810 1811 1812 1813 1814
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1815

1816 1817
        assert (
            input_shape[-1] == input_shape[-2]
1818
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1819 1820 1821 1822 1823
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1824

1825 1826 1827 1828
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1829 1830


1831
def slogdet(x, name=None):
H
huangxu96 已提交
1832
    """
1833

H
huangxu96 已提交
1834
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1835
    The determinant can be computed with ``sign * exp`` (logabsdet)
1836

H
huangxu96 已提交
1837 1838 1839
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1840

H
huangxu96 已提交
1841 1842 1843 1844 1845
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1846
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1847 1848
        of the absolute value of determinant, respectively.

1849
    Examples:
1850
        .. code-block:: python
H
huangxu96 已提交
1851

1852
            import paddle
H
huangxu96 已提交
1853

1854
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1855

1856
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1857

1858
            print(A)
1859

1860 1861
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1862 1863

    """
1864
    if in_dynamic_mode():
1865
        return _C_ops.slogdet(x)
1866 1867
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1868

1869 1870 1871 1872 1873
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1874

1875 1876
        assert (
            input_shape[-1] == input_shape[-2]
1877
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1878 1879 1880 1881 1882
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1883

1884 1885 1886 1887 1888 1889
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1890 1891


1892 1893
def svd(x, full_matrices=False, name=None):
    r"""
1894 1895 1896 1897 1898
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1899 1900
        X = U * diag(S) * VT

1901 1902
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1903
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1904 1905
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1906
        full_matrices (bool, optional): A flag to control the behavor of svd.
1907
            If full_matrices = True, svd op will compute full U and V matrics,
1908
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1909
            If full_matrices = False, svd op will use a economic method to store U and V.
1910
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1911
            Default value is False.
1912
        name (str, optional): Name for the operation (optional, default is None).
1913
            For more information, please refer to :ref:`api_guide_Name`.
1914 1915

    Returns:
Z
Zman 已提交
1916 1917 1918 1919 1920
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1921

1922 1923 1924 1925
    Examples:
        .. code-block:: python

            import paddle
1926 1927 1928

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1929
            u, s, vh = paddle.linalg.svd(x)
1930 1931 1932 1933 1934
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1935
            print (s)
1936
            #S = [8.14753743, 0.78589688]
1937
            print (vh)
1938 1939
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1940

1941
            # one can verify : U * S * VT == X
1942
            #                  U * UH == I
1943
            #                  V * VH == I
1944
    """
1945

1946
    if in_dynamic_mode():
1947
        return _C_ops.svd(x, full_matrices)
1948 1949 1950 1951 1952 1953 1954
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
1955
        attrs = {}
1956 1957 1958 1959 1960 1961 1962 1963
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1964 1965


1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
def pca_lowrank(x, q=None, center=True, niter=2, name=None):
    r"""
    Performs linear Principal Component Analysis (PCA) on a low-rank matrix or batches of such matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
        X = U * diag(S) * V^{T}

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
            where `...` is zero or more batch dimensions. N and M can be arbitraty
            positive number. The data type of x should be float32 or float64.
        q (int, optional): a slightly overestimated rank of :math:`X`.
            Default value is :math:`q=min(6,N,M)`.
        center (bool, optional): if True, center the input tensor.
            Default value is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - Tensor U, is N x q matrix.
        - Tensor S, is a vector with length q.
        - Tensor V, is M x q matrix.

        tuple (U, S, V): which is the nearly optimal approximation of a singular value decomposition of a centered matrix :math:`X`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.randn((5, 5), dtype='float64')
            U, S, V = paddle.linalg.pca_lowrank(x)
            print(U)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[ 0.41057070,  0.40364287,  0.59099574, -0.34529432,  0.44721360],
            #         [-0.30243321,  0.55670611, -0.15025419,  0.61321785,  0.44721360],
            #         [ 0.57427340, -0.15936327, -0.66414981, -0.06097905,  0.44721360],
            #         [-0.63897516, -0.09968973, -0.17298615, -0.59316819,  0.44721360],
            #         [-0.04343573, -0.70129598,  0.39639442,  0.38622370,  0.44721360]])

            print(S)
            # Tensor(shape=[5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [3.33724265, 2.57573259, 1.69479048, 0.68069312, 0.00000000])

            print(V)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[ 0.09800724, -0.32627008, -0.23593953,  0.81840445,  0.39810690],
            #         [-0.60100303,  0.63741176, -0.01953663,  0.09023999,  0.47326173],
            #         [ 0.25073864, -0.21305240, -0.32662950, -0.54786156,  0.69634740],
            #         [ 0.33057205,  0.48282641, -0.75998527,  0.06744040, -0.27472705],
            #         [ 0.67604895,  0.45688227,  0.50959437,  0.13179682,  0.23908071]])
    """

    def conjugate(x):
        if x.is_complex():
            return x.conj()
        return x

    def transpose(x):
        shape = x.shape
        perm = list(range(0, len(shape)))
        perm = perm[:-2] + [perm[-1]] + [perm[-2]]
        return paddle.transpose(x, perm)

    def transjugate(x):
        return conjugate(transpose(x))

    def get_approximate_basis(x, q, niter=2, M=None):
        niter = 2 if niter is None else niter
        m, n = x.shape[-2:]
        qr = paddle.linalg.qr

        R = paddle.randn((n, q), dtype=x.dtype)

        A_t = transpose(x)
        A_H = conjugate(A_t)
        if M is None:
            Q = qr(paddle.matmul(x, R))[0]
            for i in range(niter):
                Q = qr(paddle.matmul(A_H, Q))[0]
                Q = qr(paddle.matmul(x, Q))[0]
        else:
            M_H = transjugate(M)
            Q = qr(paddle.matmul(x, R) - paddle.matmul(M, R))[0]
            for i in range(niter):
                Q = qr(paddle.matmul(A_H, Q) - paddle.matmul(M_H, Q))[0]
                Q = qr(paddle.matmul(x, Q) - paddle.matmul(M, Q))[0]

        return Q

    def svd_lowrank(x, q=6, niter=2, M=None):
        q = 6 if q is None else q
        m, n = x.shape[-2:]
        if M is None:
            M_t = None
        else:
            M_t = transpose(M)
        A_t = transpose(x)

        if m < n or n > q:
            Q = get_approximate_basis(A_t, q, niter=niter, M=M_t)
            Q_c = conjugate(Q)
            if M is None:
                B_t = paddle.matmul(x, Q_c)
            else:
                B_t = paddle.matmul(x, Q_c) - paddle.matmul(M, Q_c)
            assert B_t.shape[-2] == m, (B_t.shape, m)
            assert B_t.shape[-1] == q, (B_t.shape, q)
            assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
            U, S, Vh = paddle.linalg.svd(B_t, full_matrices=False)
            V = transjugate(Vh)
            V = Q.matmul(V)
        else:
            Q = get_approximate_basis(x, q, niter=niter, M=M)
            Q_c = conjugate(Q)
            if M is None:
                B = paddle.matmul(A_t, Q_c)
            else:
                B = paddle.matmul(A_t, Q_c) - paddle.matmul(M_t, Q_c)
            B_t = transpose(B)
            assert B_t.shape[-2] == q, (B_t.shape, q)
            assert B_t.shape[-1] == n, (B_t.shape, n)
            assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
            U, S, Vh = paddle.linalg.svd(B_t, full_matrices=False)
            V = transjugate(Vh)
            U = Q.matmul(U)

        return U, S, V

    if not paddle.is_tensor(x):
        raise ValueError(f'Input must be tensor, but got {type(x)}')

    (m, n) = x.shape[-2:]

    if q is None:
        q = min(6, m, n)
    elif not (q >= 0 and q <= min(m, n)):
        raise ValueError(
            'q(={}) must be non-negative integer'
            ' and not greater than min(m, n)={}'.format(q, min(m, n))
        )
    if not (niter >= 0):
        raise ValueError(f'niter(={niter}) must be non-negative integer')

    if not center:
        return svd_lowrank(x, q, niter=niter, M=None)

    C = x.mean(axis=-2, keepdim=True)
    return svd_lowrank(x - C, q, niter=niter, M=None)


2119 2120
def matrix_power(x, n, name=None):
    r"""
2121

2122
    Computes the n-th power of a square matrix or a batch of square matrices.
2123

2124 2125 2126 2127 2128
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2129

2130 2131
    Specifically,

2132
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
2133

2134 2135
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

2136
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
2137 2138 2139 2140 2141 2142

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2143
        name (str, optional): Name for the operation (optional, default is None).
2144 2145 2146
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2147 2148
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
2149 2150 2151 2152 2153 2154 2155 2156 2157

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2158
            print(paddle.linalg.matrix_power(x, 2))
2159 2160 2161 2162
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2163
            print(paddle.linalg.matrix_power(x, 0))
2164 2165 2166 2167
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2168
            print(paddle.linalg.matrix_power(x, -2))
2169 2170 2171 2172
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
2173
    if in_dynamic_mode():
2174
        return _C_ops.matrix_power(x, n)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2189 2190


2191 2192 2193 2194 2195 2196 2197
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2198 2199
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2200
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2201
            If mode = "reduced", qr op will return reduced Q and R matrices,
2202
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2203
            If mode = "complete", qr op will return complete Q and R matrices,
2204 2205 2206 2207 2208
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2209

2210
    Returns:
2211
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2212
        If mode = "r", qr will return a tensor which represents R.
2213 2214

    Examples:
2215 2216
        .. code-block:: python

2217
            import paddle
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2230 2231

            # one can verify : X = Q * R ;
2232
    """
2233
    if in_dynamic_mode():
2234
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2235 2236 2237 2238
        if mode == "r":
            return r
        else:
            return q, r
2239 2240 2241 2242 2243 2244
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
2245
        attrs = {}
2246 2247 2248 2249
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2250 2251 2252 2253 2254 2255
        if mode == "r":
            return r
        else:
            return q, r


2256 2257
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2258
    Computes the LU factorization of an N-D(N>=2) matrix x.
2259

2260
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2261 2262 2263 2264
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2265 2266

    .. code-block:: text
2267

2268 2269 2270 2271
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2283

2284
    Returns:
2285
        factorization (Tensor), LU matrix, the factorization of input X.
2286

2287 2288 2289
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2290

2291 2292 2293
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2294

2295 2296

    Examples:
2297 2298
        .. code-block:: python

2299
            import paddle
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2315

2316 2317 2318 2319 2320 2321
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2322
            # [1., 0., 0.]]),
2323 2324 2325 2326
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2327
            # [0.60000000, 0.50000000]]),
2328 2329 2330 2331 2332
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2333 2334

            # one can verify : X = P @ L @ U ;
2335
    """
L
Lin Manhui 已提交
2336

2337
    if in_dynamic_mode():
2338
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2339 2340 2341 2342 2343 2344
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
2345
        attrs = {}
L
Lin Manhui 已提交
2346
        attrs['pivot'] = pivot
2347 2348 2349 2350 2351 2352
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2353 2354 2355 2356 2357 2358 2359 2360
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2361
    Unpack L U and P to single matrix tensor .
2362 2363 2364
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2365 2366

    .. code-block:: text
2367

2368 2369 2370
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2384

2385
    Returns:
2386
        P (Tensor), Permutation matrix P of lu factorization.
2387

2388
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2389

2390
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2391

2392 2393

    Examples:
2394 2395
        .. code-block:: python

2396
            import paddle
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2412

2413 2414 2415 2416 2417 2418
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2419
            # [1., 0., 0.]]),
2420 2421 2422 2423
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2424
            # [0.60000000, 0.50000000]]),
2425 2426 2427 2428 2429
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2430
            # one can verify : X = P @ L @ U ;
2431 2432
    """

2433
    if in_dynamic_mode():
2434
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2435
        return P, L, U
2436 2437 2438
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2439
        )
2440 2441 2442 2443
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2444

2445
        attrs = {}
2446 2447 2448 2449 2450 2451 2452 2453 2454
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2455 2456


L
Lijunhui 已提交
2457 2458
def eig(x, name=None):
    """
2459
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2460

2461 2462 2463 2464 2465 2466
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2467 2468 2469 2470

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2471
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2485
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2486
                               [9.956216,  8.749598,  6.066444 ],
2487
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2488
            w, v = paddle.linalg.eig(x)
2489
            print(v)
L
Lijunhui 已提交
2490 2491 2492 2493 2494 2495 2496 2497
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2498
            print(w)
L
Lijunhui 已提交
2499 2500 2501 2502
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2503

2504
    if in_dynamic_mode():
2505
        return _C_ops.eig(x)
2506 2507 2508 2509 2510
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2511

2512 2513
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2514

2515 2516 2517
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2518

2519
        return w, v
L
Lijunhui 已提交
2520 2521


2522 2523 2524
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2525 2526 2527

    Warning:
        The gradient kernel of this operator does not yet developed.
2528 2529 2530 2531
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2532
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2533
            Its data type should be float32, float64, complex64, or complex128.
2534
        name (str, optional): Name for the operation (optional, default is None).
2535
            For more information, please refer to :ref:`api_guide_Name`.
2536

2537
    Returns:
2538 2539
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2540 2541 2542 2543 2544

    Examples:
        .. code-block:: python

            import paddle
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2561 2562 2563 2564
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2565 2566 2567

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2568 2569 2570 2571
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2572

2573
    if in_dynamic_mode():
2574
        return _C_ops.eigvals(x)
2575
    else:
2576 2577 2578 2579 2580 2581
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2582 2583 2584 2585
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2586 2587


2588 2589 2590 2591
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2592
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2629 2630
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2631
        out = paddle.linalg.multi_dot([A, B])
2632
        print(out.shape)
2633 2634 2635
        # [3, 5]

        # A * B * C
2636 2637 2638
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2639
        out = paddle.linalg.multi_dot([A, B, C])
2640
        print(out.shape)
2641 2642 2643
        # [10, 7]

    """
2644
    if in_dynamic_mode():
2645
        return _C_ops.multi_dot(x)
2646 2647 2648 2649 2650 2651
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
2652
                ['float16', 'float32', 'float64', 'uint16'],
2653 2654 2655 2656 2657 2658
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2659

2660 2661 2662 2663 2664
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2665
        )
2666
        return out
2667 2668 2669 2670


def eigh(x, UPLO='L', name=None):
    """
2671
    Compute the eigenvalues and eigenvectors of a
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2683 2684 2685 2686
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2687 2688 2689 2690 2691 2692

    Examples:
        .. code-block:: python

            import paddle

2693
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2694
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2695 2696 2697 2698 2699 2700 2701
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
2702
    if in_dynamic_mode():
2703
        return _C_ops.eigh(x, UPLO)
2704
    else:
H
hong 已提交
2705

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
2721
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
2722
                )
2723

2724
        __check_input(x, UPLO)
2725

2726 2727 2728 2729 2730 2731 2732
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2733

2734 2735
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2736

2737 2738 2739 2740 2741 2742 2743
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2744 2745 2746 2747


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2748
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2759

A
andyjpaddle 已提交
2760 2761 2762
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2763 2764 2765
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2766 2767 2768 2769
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2770
        rcond(Tensor, optional): the tolerance value to determine
2771
            when is a singular value zero. Default:1e-15.
2772 2773

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2774
            if complex or symmetric if real. Default: False.
2775 2776

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2777
            the layer will be named automatically.
2778

A
andyjpaddle 已提交
2779
    Returns:
2780
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2781
        pseudo inverse of x. Its shape should be (*, n, m).
2782

A
andyjpaddle 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2809
    if in_dynamic_mode():
2810 2811
        if not hermitian:
            # combine svd and matmul op
2812 2813
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2814 2815 2816 2817
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2818

A
andyj 已提交
2819
            singular = paddle.where(s > cutoff, 1 / s, 1 / y)
2820
            st = _C_ops.unsqueeze(singular, [-2])
2821 2822 2823

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2824
            v = _C_ops.transpose(vt, perm)
2825 2826

            out_1 = v * st
2827
            out_2 = _C_ops.matmul(out_1, u, False, True)
2828 2829 2830
            return out_2
        else:
            # combine eigh and matmul op
2831
            s, u = _C_ops.eigh(x, 'UPLO')
2832
            s_abs = paddle.abs(s)
2833
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2834 2835 2836 2837 2838
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

A
andyj 已提交
2839
            singular = paddle.where(s_abs > cutoff, 1 / s, 1 / y)
2840
            st = _C_ops.unsqueeze(singular, [-2])
2841 2842

            out_1 = u * st
2843 2844
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2845
            return out_2
A
andyjpaddle 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2858
                outputs={'U': u, 'VH': vt, 'S': s},
2859 2860
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2861 2862

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2863 2864 2865 2866 2867 2868
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2869

2870
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2871 2872
            cutoff = rcond * max_singular_val
            y = float('inf')
2873
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2874

A
andyj 已提交
2875
            singular = paddle.where(s > cutoff, 1 / s, 1 / y)
A
andyjpaddle 已提交
2876 2877 2878

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2879 2880 2881 2882 2883 2884
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2885 2886 2887 2888 2889

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2890 2891 2892 2893 2894 2895
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2896 2897

            out_1 = helper.create_variable_for_type_inference(dtype)
2898 2899 2900 2901 2902 2903
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2904 2905 2906 2907 2908
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2909
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2910
                outputs={'Out': out_2},
2911
                attrs={'trans_x': False, 'trans_y': True},
2912
            )
A
andyjpaddle 已提交
2913 2914 2915 2916 2917
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2918 2919 2920 2921 2922
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2933 2934 2935 2936 2937 2938
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2939
            s_abs = helper.create_variable_for_type_inference(s_type)
2940 2941 2942
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2943
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2944 2945 2946 2947 2948 2949
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2950

2951
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2952 2953
            cutoff = rcond * max_singular_val
            y = float('inf')
2954
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2955

A
andyj 已提交
2956
            singular = paddle.where(s_abs > cutoff, 1 / s, 1 / y)
A
andyjpaddle 已提交
2957 2958 2959

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2960 2961 2962 2963 2964 2965
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2966 2967

            out_1 = helper.create_variable_for_type_inference(dtype)
2968 2969 2970 2971 2972 2973
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2974 2975 2976
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2977 2978 2979
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2980 2981 2982 2983

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2984
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2985
                outputs={'Out': out_2},
2986
                attrs={'trans_x': False, 'trans_y': True},
2987
            )
A
andyjpaddle 已提交
2988
            return out_2
W
Weilong Wu 已提交
2989 2990 2991 2992


def solve(x, y, name=None):
    r"""
2993

W
Weilong Wu 已提交
2994
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2995
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2996
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2997

W
Weilong Wu 已提交
2998 2999
    .. math::
        Out = X^-1 * Y
3000 3001

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
3002

W
Weilong Wu 已提交
3003
    Args:
3004
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
3005
            more batch dimensions. Its data type should be float32 or float64.
3006
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
3007
            more batch dimensions. Its data type should be float32 or float64.
3008
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3009
            For more information, please refer to :ref:`api_guide_Name`.
3010

W
Weilong Wu 已提交
3011
    Returns:
3012
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3013
        Its data type should be the same as that of `x`.
3014

W
Weilong Wu 已提交
3015
    Examples:
3016

3017
        .. code-block:: python
3018

3019 3020 3021
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
3022

3023 3024 3025 3026 3027
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
3028

3029 3030
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
3031
    """
3032
    if in_dynamic_mode():
3033
        return _C_ops.solve(x, y)
3034 3035 3036 3037 3038 3039
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3040

3041 3042 3043 3044
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3045 3046


3047 3048 3049
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3050
    r"""
3051 3052
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3066 3067 3068 3069

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3070
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3071
            zero or more batch dimensions. Its data type should be float32 or float64.
3072
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3073 3074
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3075
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3076 3077 3078 3079 3080 3081 3082 3083
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3084
        .. code-block:: python
3085

3086 3087 3088 3089
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3090

3091 3092 3093 3094 3095 3096
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3097

3098 3099
            print(out)
            # [7, -2, -5]
3100
    """
3101
    if in_dynamic_mode():
3102
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
3103 3104 3105 3106 3107
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
3108
        )
3109 3110 3111 3112
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
3125 3126


Z
zhiboniu 已提交
3127 3128 3129 3130 3131 3132 3133 3134
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
3135
        x (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3136
            zero or more batch dimensions. Its data type should be float32 or float64.
3137 3138
        y (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
Z
zhiboniu 已提交
3139 3140 3141 3142 3143 3144 3145 3146
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3147
        .. code-block:: python
Z
zhiboniu 已提交
3148

3149
            import paddle
Z
zhiboniu 已提交
3150

3151 3152 3153 3154 3155
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3156

3157 3158
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3159
    """
3160
    if in_dynamic_mode():
3161
        return _C_ops.cholesky_solve(x, y, upper)
3162 3163 3164 3165 3166 3167 3168 3169 3170
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3171

3172 3173 3174 3175 3176 3177 3178
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3179 3180


3181 3182
def eigvalsh(x, UPLO='L', name=None):
    """
3183
    Computes the eigenvalues of a
3184 3185 3186
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3187
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3201
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3202 3203
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3204 3205
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3206
    """
3207
    if in_dynamic_mode():
3208
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3209
        return values
3210
    else:
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
3227
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
3228
                )
3229

3230
        __check_input(x, UPLO)
3231

3232 3233 3234 3235 3236 3237 3238
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3239

3240 3241
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3242

3243 3244 3245 3246 3247 3248 3249 3250
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3251 3252


3253 3254 3255 3256 3257 3258 3259 3260
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3261
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3262
            should be one of float32, float64.
3263 3264
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3265
            machine precision of x_dtype.
3266 3267 3268
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3269
            for CUDA inputs.
3270
        name(str, optional): The default value is None. Normally there is no need for user to set
3271 3272 3273
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3274 3275 3276 3277 3278 3279 3280
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3313 3314 3315
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3316 3317 3318 3319
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3320 3321 3322 3323
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3324 3325 3326 3327
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3328 3329 3330 3331
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3332
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3333 3334 3335 3336
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3352 3353 3354 3355 3356 3357
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3358
    if in_dynamic_mode():
3359 3360 3361
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3362 3363 3364 3365 3366 3367 3368
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3383

3384 3385 3386 3387 3388 3389
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3390

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3412

3413
        return solution, residuals, rank, singular_values
3414 3415 3416 3417


def corrcoef(x, rowvar=True, name=None):
    """
3418

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3442

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3457 3458
            "length of Input(input) is %s." % len(x.shape)
        )
3459 3460 3461
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3462
    if c.ndim == 0:
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3477 3478 3479
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3480 3481 3482 3483
    else:
        c = paddle.clip(c, -1, 1)

    return c
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599


def cdist(
    x, y, p=2.0, compute_mode="use_mm_for_euclid_dist_if_necessary", name=None
):
    r"""

    Compute the p-norm distance between each pair of the two collections of inputs.

    This function is equivalent to `scipy.spatial.distance.cdist(input,'minkowski', p=p)`
    if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to `scipy.spatial.distance.cdist(input, 'hamming') * M`.
    When :math:`p = \infty`, the closest scipy function is `scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max())`.

    Args:
        x (Tensor): A tensor with shape :math:`B \times P \times M`.
        y (Tensor): A tensor with shape :math:`B \times R \times M`.
        p (float, optional): The value for the p-norm distance to calculate between each vector pair. Default: :math:`2.0`.
        compute_mode (str, optional): The mode for compute distance.

            - ``use_mm_for_euclid_dist_if_necessary`` , for p = 2.0 and (P > 25 or R > 25), it will use matrix multiplication to calculate euclid distance if possible.
            - ``use_mm_for_euclid_dist`` , for p = 2.0, it will use matrix multiplication to calculate euclid distance.
            - ``donot_use_mm_for_euclid_dist`` , it will not use matrix multiplication to calculate euclid distance.

            Default: ``use_mm_for_euclid_dist_if_necessary``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, the dtype is same as input tensor.

        If x has shape :math:`B \times P \times M` and y has shape :math:`B \times R \times M` then
        the output will have shape :math:`B \times P \times R`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[0.9041,  0.0196], [-0.3108, -2.4423], [-0.4821,  1.059]], dtype=paddle.float32)
            y = paddle.to_tensor([[-2.1763, -0.4713], [-0.6986,  1.3702]], dtype=paddle.float32)
            distance = paddle.cdist(x, y)
            print(distance)
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            # [[3.1193, 2.0959], [2.7138, 3.8322], [2.2830, 0.3791]])
    """

    check_variable_and_dtype(x, 'x', ('float32', 'float64'), 'cdist')
    check_variable_and_dtype(y, 'y', ('float32', 'float64'), 'cdist')
    check_type(p, 'p', (float, int), 'cdist')

    if compute_mode not in [
        'use_mm_for_euclid_dist_if_necessary',
        'use_mm_for_euclid_dist',
        'donot_use_mm_for_euclid_dist',
    ]:
        raise ValueError(
            "The compute_mode should be 'use_mm_for_euclid_dist_if_necessary', "
            "'use_mm_for_euclid_dist' or 'donot_use_mm_for_euclid_dist', "
            "but received compute_mode is %s." % compute_mode
        )

    mode = 0
    if compute_mode == 'use_mm_for_euclid_dist_if_necessary':
        mode = 0
    elif compute_mode == 'use_mm_for_euclid_dist':
        mode = 1
    elif compute_mode == 'donot_use_mm_for_euclid_dist':
        mode = 2

    x_shape = list(x.shape)
    assert len(x_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "But received Input x's dimensional is %s.\n" % len(x_shape)
    )
    y_shape = list(y.shape)
    assert len(y_shape) >= 2, (
        "The y must be at least 2-dimensional, "
        "But received Input y's dimensional is %s.\n" % len(y_shape)
    )
    assert x_shape[-1] == y_shape[-1], (
        "The x and y must have same last dimension, "
        "But received Input x's last dimension is {}, "
        "Input y's last dimension is {}.\n".format(x_shape[-1], y_shape[-1])
    )
    assert p >= 0, (
        "The p must be greater than or equal to 0, "
        "But received p is %s.\n" % p
    )

    r1 = x.shape[-2]
    r2 = y.shape[-2]
    c1 = x.shape[-1]

    p = float(p)

    if r1 == 0 or r2 == 0:
        return paddle.empty((r1, r2), dtype=x.dtype)

    if c1 == 0:
        return paddle.zeros((r1, r2), dtype=x.dtype)

    if p == 2.0 and (mode == 1 or (mode == 0 and (r1 > 25 or r2 > 25))):
        x_norm = paddle.sum(x.pow(2), axis=-1, keepdim=True)
        y_norm = paddle.sum(y.pow(2), axis=-1, keepdim=True)
        y_transposed = paddle.transpose(
            y, perm=[*range(y.ndim - 2), y.ndim - 1, y.ndim - 2]
        )
        y_norm_transposed = paddle.transpose(
            y_norm,
            perm=[*range(y_norm.ndim - 2), y_norm.ndim - 1, y_norm.ndim - 2],
        )
        res = paddle.matmul(x, y_transposed) * -2 + y_norm_transposed + x_norm
        res = paddle.clip(res, min=0.0).sqrt()
        return res

    return paddle.linalg.norm(
        x[..., None, :] - y[..., None, :, :], p=p, axis=-1
    )