未验证 提交 eb1fbf12 编写于 作者: 0 0x45f 提交者: GitHub

Add matrix_rank Op and it's GPU and CPU kernel (#34823)

* init matrix_rank op, add matrix_rank CPU code and test

* add GPU kernel, remove svd_eigen.h

* add CPU kernel when tol is tensor

* add cpu and gpu code when tol is tensor

* fix CI-ROCM error

* add matrix_rank API describe, fix PR-CI-Py3 error

* fix PR-CI-Windows error, add matrix_rank API test

* delete useless comments

* fix review

* add my code in svd_helper.h

* update doc commets

* remove spaces
上级 0cb413d3
......@@ -183,6 +183,7 @@ function(op_library TARGET)
list(REMOVE_ITEM miopen_cu_cc_srcs "affine_grid_cudnn_op.cu.cc")
list(REMOVE_ITEM miopen_cu_cc_srcs "grid_sampler_cudnn_op.cu.cc")
list(REMOVE_ITEM hip_srcs "cholesky_op.cu")
list(REMOVE_ITEM hip_srcs "matrix_rank_op.cu")
list(REMOVE_ITEM hip_srcs "svd_op.cu")
list(REMOVE_ITEM hip_srcs "multinomial_op.cu")
list(REMOVE_ITEM hip_srcs "decode_jpeg_op.cu")
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/matrix_rank_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/svd_helper.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
using DDim = framework::DDim;
namespace detail {
static DDim GetInputBatchDim(const DDim& dim_x) {
auto x_vec = framework::vectorize(dim_x);
if (x_vec.size() == 2) {
return framework::make_ddim({1});
}
x_vec.erase(x_vec.end() - 2, x_vec.end());
return framework::make_ddim(x_vec);
}
} // namespace detail
class MatrixRankeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "MatrixRank");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MatrixRank");
auto dim_x = ctx->GetInputDim("X");
PADDLE_ENFORCE_GE(dim_x.size(), 2,
platform::errors::InvalidArgument(
"The dims of input must be greater than 2"));
bool hermitian = ctx->Attrs().Get<bool>("hermitian");
if (hermitian) {
int rows = dim_x[dim_x.size() - 2];
int cols = dim_x[dim_x.size() - 1];
PADDLE_ENFORCE_EQ(rows, cols,
platform::errors::InvalidArgument(
"if hermitian == true, matrix should be n*n"));
}
DDim dim_x_batch = detail::GetInputBatchDim(dim_x);
if (ctx->Attrs().Get<bool>(
"use_default_tol")) { // user not input TolTensor and tol
ctx->SetOutputDim("Out", dim_x_batch);
} else if (ctx->HasInput("TolTensor")) {
auto dim_tol = ctx->GetInputDim("TolTensor");
if (dim_x_batch == dim_tol) {
ctx->SetOutputDim("Out", dim_x_batch);
} else {
int max_dim = std::max(dim_x_batch.size(), dim_tol.size());
int axis = std::abs(dim_x_batch.size() - dim_tol.size());
std::vector<int> x_batch_dims_array(max_dim);
std::vector<int> tol_dims_array(max_dim);
std::vector<int> out_dims_array(max_dim);
GetBroadcastDimsArrays(dim_x_batch, dim_tol, x_batch_dims_array.data(),
tol_dims_array.data(), out_dims_array.data(),
max_dim, axis);
for (auto& it : out_dims_array) {
VLOG(3) << "out dims: " << it;
}
ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
}
} else {
ctx->SetOutputDim("Out", dim_x_batch);
}
ctx->ShareLoD("X", /*->*/ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
}
};
class MatrixRankeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of matrix_rank op.");
AddInput("TolTensor", "(optional) Tol tensor, shape is same as X batch.")
.AsDispensable();
AddOutput("Out", "(Tensor), The output tensor of matrix_rank op.");
AddAttr<float>("tol", "(float, optional). tol").SetDefault(0.0f);
AddAttr<bool>("use_default_tol",
"represent whether user input TolTensor/tol, if input "
"TolTensor/tol use_default_tol=true, otherwise "
"use_default_tol=false")
.SetDefault(true);
AddAttr<bool>("hermitian", "(bool, optional). whether is hermitian matrix")
.SetDefault(false);
AddComment(R"DOC(MatrixRank Operator.
This operator is used to perform MatrixRank operation for batched matrics.
$$out = matrix_rank(X, tol, hermitian)$$
)DOC");
}
};
template <typename T>
void BatchEigenvalues(const T* x_data, T* eigenvalues_data, int batches,
int rows, int cols, int k) {
// Eigen::Matrix API need non-const pointer.
T* input = const_cast<T*>(x_data);
int stride = rows * cols;
for (int i = 0; i < batches; i++) {
auto m = Eigen::Map<
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
input + i * stride, rows, rows);
Eigen::SelfAdjointEigenSolver<
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
eigen_solver(m);
auto eigenvalues = eigen_solver.eigenvalues().cwiseAbs();
for (int j = 0; j < k; j++) {
*(eigenvalues_data + i * k + j) = eigenvalues[j];
}
}
}
template <typename T>
void BatchSVD(const T* x_data, T* eigenvalues_data, int batches, int rows,
int cols, int k) {
// Eigen::Matrix API need non-const pointer.
T* input = const_cast<T*>(x_data);
int stride = rows * cols;
Eigen::BDCSVD<
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
svd;
for (int i = 0; i < batches; i++) {
auto m = Eigen::Map<
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
input + i * stride, rows, cols);
svd.compute(m);
auto res_s = svd.singularValues();
for (int j = 0; j < k; j++) {
eigenvalues_data[i * k + j] = res_s[j];
}
}
}
template <typename T>
class MatrixRankCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* x = context.Input<Tensor>("X");
auto* x_data = x->data<T>();
auto* out = context.Output<Tensor>("Out");
out->mutable_data<int64_t>(context.GetPlace());
bool hermitian = context.Attr<bool>("hermitian");
auto dim_x = x->dims();
auto dim_out = out->dims();
int rows = dim_x[dim_x.size() - 2];
int cols = dim_x[dim_x.size() - 1];
int k = std::min(rows, cols);
auto numel = x->numel();
int batches = numel / (rows * cols);
bool use_default_tol = context.Attr<bool>("use_default_tol");
const Tensor* atol_tensor = nullptr;
Tensor temp_tensor;
T rtol_T = 0;
if (use_default_tol) {
framework::TensorFromVector<T>(std::vector<T>{0},
context.device_context(), &temp_tensor);
atol_tensor = &temp_tensor;
rtol_T = std::numeric_limits<T>::epsilon() * std::max(rows, cols);
} else if (context.HasInput("TolTensor")) {
atol_tensor = context.Input<Tensor>("TolTensor");
} else {
framework::TensorFromVector<T>(std::vector<T>{context.Attr<float>("tol")},
context.device_context(), &temp_tensor);
atol_tensor = &temp_tensor;
}
Tensor eigenvalue_tensor;
auto* eigenvalue_data = eigenvalue_tensor.mutable_data<T>(
detail::GetEigenvalueDim(dim_x, k), context.GetPlace());
if (hermitian) {
BatchEigenvalues<T>(x_data, eigenvalue_data, batches, rows, cols, k);
} else {
BatchSVD<T>(x_data, eigenvalue_data, batches, rows, cols, k);
}
auto dito_T =
math::DeviceIndependenceTensorOperations<platform::CPUDeviceContext, T>(
context);
std::vector<int> max_eigenvalue_shape = framework::vectorize<int>(
detail::RemoveLastDim(eigenvalue_tensor.dims()));
Tensor max_eigenvalue_tensor =
dito_T.ReduceMax(eigenvalue_tensor, max_eigenvalue_shape);
Tensor temp_rtol_tensor;
framework::TensorFromVector<T>(std::vector<T>{rtol_T}, &temp_rtol_tensor);
Tensor rtol_tensor = dito_T.Mul(temp_rtol_tensor, max_eigenvalue_tensor);
Tensor tol_tensor;
tol_tensor.mutable_data<T>(dim_out, context.GetPlace());
ElementwiseComputeEx<GreaterElementFunctor<T>, platform::CPUDeviceContext,
T, T>(context, atol_tensor, &rtol_tensor, -1,
GreaterElementFunctor<T>(), &tol_tensor);
tol_tensor.Resize(detail::NewAxisDim(tol_tensor.dims(), 1));
Tensor compare_result;
compare_result.mutable_data<int>(detail::NewAxisDim(dim_out, k),
context.GetPlace());
int axis = -1;
if (eigenvalue_tensor.dims().size() >= tol_tensor.dims().size()) {
ElementwiseComputeEx<GreaterThanFunctor<T>, platform::CPUDeviceContext, T,
int>(context, &eigenvalue_tensor, &tol_tensor, axis,
GreaterThanFunctor<T>(), &compare_result);
} else {
ElementwiseComputeEx<LessThanFunctor<T>, platform::CPUDeviceContext, T,
int>(context, &eigenvalue_tensor, &tol_tensor, axis,
LessThanFunctor<T>(), &compare_result);
}
auto dito_int =
math::DeviceIndependenceTensorOperations<platform::CPUDeviceContext,
int64_t>(context);
std::vector<int> result_shape = framework::vectorize<int>(dim_out);
Tensor result = dito_int.ReduceSum(compare_result, result_shape);
out->ShareDataWith(result);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(matrix_rank, ops::MatrixRankeOp, ops::MatrixRankeOpMaker);
REGISTER_OP_CPU_KERNEL(matrix_rank, ops::MatrixRankCPUKernel<float>,
ops::MatrixRankCPUKernel<double>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_WITH_HIP
// HIP not support cusolver
#include <algorithm>
#include <vector>
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/matrix_rank_op.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/dynload/cusolver.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
namespace detail {
DDim GetUDDim(const DDim& x_dim, int k) {
auto x_vec = framework::vectorize(x_dim);
x_vec[x_vec.size() - 1] = k;
return framework::make_ddim(x_vec);
}
DDim GetVHDDim(const DDim& x_dim, int k) {
auto x_vec = framework::vectorize(x_dim);
x_vec[x_vec.size() - 2] = k;
return framework::make_ddim(x_vec);
}
} // namespace detail
template <typename T>
class MatrixRankGPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto& dev_ctx =
context.template device_context<platform::CUDADeviceContext>();
const Tensor* x = context.Input<Tensor>("X");
auto* x_data = x->data<T>();
auto* out = context.Output<Tensor>("Out");
out->mutable_data<int64_t>(context.GetPlace());
bool hermitian = context.Attr<bool>("hermitian");
auto dim_x = x->dims();
auto dim_out = out->dims();
int rows = dim_x[dim_x.size() - 2];
int cols = dim_x[dim_x.size() - 1];
int k = std::min(rows, cols);
auto numel = x->numel();
int batches = numel / (rows * cols);
bool use_default_tol = context.Attr<bool>("use_default_tol");
const Tensor* atol_tensor = nullptr;
Tensor temp_tensor;
T rtol_T = 0;
if (use_default_tol) {
framework::TensorFromVector<T>(std::vector<T>{0},
context.device_context(), &temp_tensor);
atol_tensor = &temp_tensor;
rtol_T = std::numeric_limits<T>::epsilon() * std::max(rows, cols);
} else if (context.HasInput("TolTensor")) {
atol_tensor = context.Input<Tensor>("TolTensor");
} else {
framework::TensorFromVector<T>(std::vector<T>{context.Attr<float>("tol")},
context.device_context(), &temp_tensor);
atol_tensor = &temp_tensor;
}
// Must Copy X once, because the gesvdj will destory the content when exit.
Tensor x_tmp;
TensorCopy(*x, context.GetPlace(), &x_tmp);
auto info = memory::Alloc(dev_ctx, sizeof(int) * batches);
int* info_ptr = reinterpret_cast<int*>(info->ptr());
Tensor eigenvalue_tensor;
auto* eigenvalue_data = eigenvalue_tensor.mutable_data<T>(
detail::GetEigenvalueDim(dim_x, k), context.GetPlace());
if (hermitian) {
SyevjBatched(dev_ctx, batches, rows, x_tmp.data<T>(), eigenvalue_data,
info_ptr);
platform::ForRange<platform::CUDADeviceContext> for_range(
dev_ctx, eigenvalue_tensor.numel());
math::AbsFunctor<T> functor(eigenvalue_data, eigenvalue_data,
eigenvalue_tensor.numel());
for_range(functor);
} else {
Tensor U, VH;
auto* u_data =
U.mutable_data<T>(detail::GetUDDim(dim_x, k), context.GetPlace());
auto* vh_data =
VH.mutable_data<T>(detail::GetVHDDim(dim_x, k), context.GetPlace());
GesvdjBatched(dev_ctx, batches, cols, rows, k, x_tmp.data<T>(), vh_data,
u_data, eigenvalue_data, info_ptr, 1);
}
auto dito_T =
math::DeviceIndependenceTensorOperations<platform::CUDADeviceContext,
T>(context);
std::vector<int> max_eigenvalue_shape = framework::vectorize<int>(
detail::RemoveLastDim(eigenvalue_tensor.dims()));
Tensor max_eigenvalue_tensor =
dito_T.ReduceMax(eigenvalue_tensor, max_eigenvalue_shape);
Tensor temp_rtol_tensor;
framework::TensorFromVector<T>(std::vector<T>{rtol_T},
context.device_context(), &temp_rtol_tensor);
Tensor rtol_tensor = dito_T.Mul(temp_rtol_tensor, max_eigenvalue_tensor);
Tensor tol_tensor;
tol_tensor.mutable_data<T>(dim_out, context.GetPlace());
ElementwiseComputeEx<GreaterElementFunctor<T>, platform::CUDADeviceContext,
T, T>(context, atol_tensor, &rtol_tensor, -1,
GreaterElementFunctor<T>(), &tol_tensor);
tol_tensor.Resize(detail::NewAxisDim(tol_tensor.dims(), 1));
Tensor compare_result;
compare_result.mutable_data<int64_t>(detail::NewAxisDim(dim_out, k),
context.GetPlace());
int axis = -1;
if (eigenvalue_tensor.dims().size() >= tol_tensor.dims().size()) {
ElementwiseComputeEx<GreaterThanFunctor<T>, platform::CUDADeviceContext,
T, int64_t>(context, &eigenvalue_tensor, &tol_tensor,
axis, GreaterThanFunctor<T>(),
&compare_result);
} else {
ElementwiseComputeEx<LessThanFunctor<T>, platform::CUDADeviceContext, T,
int64_t>(context, &eigenvalue_tensor, &tol_tensor,
axis, LessThanFunctor<T>(),
&compare_result);
}
auto dito_int =
math::DeviceIndependenceTensorOperations<platform::CUDADeviceContext,
int64_t>(context);
std::vector<int> result_shape = framework::vectorize<int>(dim_out);
Tensor result = dito_int.ReduceSum(compare_result, result_shape);
out->ShareDataWith(result);
}
void GesvdjBatched(const platform::CUDADeviceContext& dev_ctx, int batchSize,
int m, int n, int k, T* A, T* U, T* V, T* S, int* info,
int thin_UV = 1) const;
void SyevjBatched(const platform::CUDADeviceContext& dev_ctx, int batchSize,
int n, T* A, T* W, int* info) const;
};
template <>
void MatrixRankGPUKernel<float>::GesvdjBatched(
const platform::CUDADeviceContext& dev_ctx, int batchSize, int m, int n,
int k, float* A, float* U, float* V, float* S, int* info,
int thin_UV) const {
// do not compute singular vectors
const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
gesvdjInfo_t gesvdj_params = NULL;
int lda = m;
int ldu = m;
int ldt = n;
int lwork = 0;
auto handle = dev_ctx.cusolver_dn_handle();
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSgesvdj_bufferSize(
handle, jobz, thin_UV, m, n, A, lda, S, U, ldu, V, ldt, &lwork,
gesvdj_params));
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
int stride_A = lda * n;
int stride_U = ldu * (thin_UV ? k : m);
int stride_V = ldt * (thin_UV ? k : n);
for (int i = 0; i < batchSize; i++) {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSgesvdj(
handle, jobz, thin_UV, m, n, A + stride_A * i, lda, S + k * i,
U + stride_U * i, ldu, V + stride_V * i, ldt, workspace_ptr, lwork,
info, gesvdj_params));
int error_info;
memory::Copy(platform::CPUPlace(), &error_info,
BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()), info,
sizeof(int), dev_ctx.stream());
PADDLE_ENFORCE_EQ(
error_info, 0,
platform::errors::PreconditionNotMet(
"For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info));
}
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params));
}
template <>
void MatrixRankGPUKernel<double>::GesvdjBatched(
const platform::CUDADeviceContext& dev_ctx, int batchSize, int m, int n,
int k, double* A, double* U, double* V, double* S, int* info,
int thin_UV) const {
// do not compute singular vectors
const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
gesvdjInfo_t gesvdj_params = NULL;
int lda = m;
int ldu = m;
int ldt = n;
int lwork = 0;
auto handle = dev_ctx.cusolver_dn_handle();
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDgesvdj_bufferSize(
handle, jobz, thin_UV, m, n, A, lda, S, U, ldu, V, ldt, &lwork,
gesvdj_params));
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());
int stride_A = lda * n;
int stride_U = ldu * (thin_UV ? k : m);
int stride_V = ldt * (thin_UV ? k : n);
for (int i = 0; i < batchSize; ++i) {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDgesvdj(
handle, jobz, thin_UV, m, n, A + stride_A * i, lda, S + k * i,
U + stride_U * i, ldu, V + stride_V * i, ldt, workspace_ptr, lwork,
info, gesvdj_params));
// check the error info
int error_info;
memory::Copy(platform::CPUPlace(), &error_info,
BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()), info,
sizeof(int), dev_ctx.stream());
PADDLE_ENFORCE_EQ(
error_info, 0,
platform::errors::PreconditionNotMet(
"For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info));
}
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params));
}
template <>
void MatrixRankGPUKernel<float>::SyevjBatched(
const platform::CUDADeviceContext& dev_ctx, int batchSize, int n, float* A,
float* W, int* info) const {
auto handle = dev_ctx.cusolver_dn_handle();
// Compute eigenvalues only
const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
// matrix is saved as column-major in cusolver.
// numpy and torch use lower triangle to compute eigenvalues, so here use
// upper triangle
cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER;
int lda = n;
int stride_A = lda * n;
int lwork = 0;
syevjInfo_t params = NULL;
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnCreateSyevjInfo(&params));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSsyevj_bufferSize(
handle, jobz, uplo, n, A, lda, W, &lwork, params));
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
for (int i = 0; i < batchSize; i++) {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSsyevj(
handle, jobz, uplo, n, A + stride_A * i, lda, W + n * i, workspace_ptr,
lwork, info, params));
int error_info;
memory::Copy(platform::CPUPlace(), &error_info,
BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()), info,
sizeof(int), dev_ctx.stream());
PADDLE_ENFORCE_EQ(
error_info, 0,
platform::errors::PreconditionNotMet(
"For batch [%d]: CUSolver eigenvalues is not zero. [%d]", i,
error_info));
}
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnDestroySyevjInfo(params));
}
template <>
void MatrixRankGPUKernel<double>::SyevjBatched(
const platform::CUDADeviceContext& dev_ctx, int batchSize, int n, double* A,
double* W, int* info) const {
auto handle = dev_ctx.cusolver_dn_handle();
// Compute eigenvalues only
const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
// upper triangle of A is stored
cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER;
int lda = n;
int stride_A = lda * n;
int lwork = 0;
syevjInfo_t params = NULL;
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnCreateSyevjInfo(&params));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDsyevj_bufferSize(
handle, jobz, uplo, n, A, lda, W, &lwork, params));
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());
for (int i = 0; i < batchSize; i++) {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDsyevj(
handle, jobz, uplo, n, A + stride_A * i, lda, W + n * i, workspace_ptr,
lwork, info, params));
int error_info;
memory::Copy(platform::CPUPlace(), &error_info,
BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()), info,
sizeof(int), dev_ctx.stream());
PADDLE_ENFORCE_EQ(
error_info, 0,
platform::errors::PreconditionNotMet(
"For batch [%d]: CUSolver eigenvalues is not zero. [%d]", i,
error_info));
}
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cusolverDnDestroySyevjInfo(params));
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(matrix_rank, ops::MatrixRankGPUKernel<float>,
ops::MatrixRankGPUKernel<double>);
#endif // not PADDLE_WITH_HIP
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;
namespace detail {
static DDim GetEigenvalueDim(const DDim& dim, int k) {
auto vec = framework::vectorize(dim);
vec.erase(vec.end() - 2, vec.end());
vec.push_back(k);
return framework::make_ddim(vec);
}
static DDim NewAxisDim(const DDim& dim, int k) {
auto vec = framework::vectorize(dim);
vec.push_back(k);
return framework::make_ddim(vec);
}
static DDim RemoveLastDim(const DDim& dim) {
auto vec = framework::vectorize(dim);
if (vec.size() <= 1) {
return framework::make_ddim({1});
}
vec.erase(vec.end() - 1, vec.end());
return framework::make_ddim(vec);
}
} // namespace detail
template <typename T>
struct GreaterThanFunctor {
HOSTDEVICE int operator()(const T& a, const T& b) const { return a > b; }
};
template <typename T>
struct LessThanFunctor {
HOSTDEVICE int operator()(const T& a, const T& b) const { return a < b; }
};
template <typename T>
struct GreaterElementFunctor {
HOSTDEVICE T operator()(const T& a, const T& b) const {
if (a > b) {
return a;
} else {
return b;
}
}
};
} // namespace operators
} // namespace paddle
......@@ -313,6 +313,22 @@ struct DeviceIndependenceTensorOperations {
return CreateOpRunAndReturnTensor("slice", inputs, attrs, out_shape);
}
framework::Tensor ReduceSum(const framework::Tensor& x,
std::vector<int> out_dim) {
framework::AttributeMap attrs;
attrs["dim"] = std::vector<int>{-1};
NameInTensorMap inputs({{"X", {&x}}});
return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim);
}
framework::Tensor ReduceMax(const framework::Tensor& x,
std::vector<int> out_dim) {
framework::AttributeMap attrs;
attrs["dim"] = std::vector<int>{-1};
NameInTensorMap inputs({{"X", {&x}}});
return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim);
}
private:
const framework::ExecutionContext& context;
BlasT<DeviceContext, T> GetBlas() {
......
......@@ -28,6 +28,11 @@ CUSOLVER_ROUTINE_EACH(DEFINE_WRAP);
#ifdef CUSOLVER_ROUTINE_EACH_R1
CUSOLVER_ROUTINE_EACH_R1(DEFINE_WRAP);
#endif
#ifdef CUSOLVER_ROUTINE_EACH_R2
CUSOLVER_ROUTINE_EACH_R2(DEFINE_WRAP);
#endif
} // namespace dynload
} // namespace platform
} // namespace paddle
......@@ -66,6 +66,18 @@ CUSOLVER_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUSOLVER_WRAP);
CUSOLVER_ROUTINE_EACH_R1(DECLARE_DYNAMIC_LOAD_CUSOLVER_WRAP)
#endif
#if CUDA_VERSION >= 9020
#define CUSOLVER_ROUTINE_EACH_R2(__macro) \
__macro(cusolverDnCreateSyevjInfo); \
__macro(cusolverDnSsyevj_bufferSize); \
__macro(cusolverDnDsyevj_bufferSize); \
__macro(cusolverDnSsyevj); \
__macro(cusolverDnDsyevj); \
__macro(cusolverDnDestroySyevjInfo);
CUSOLVER_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUSOLVER_WRAP)
#endif
#undef DECLARE_DYNAMIC_LOAD_CUSOLVER_WRAP
} // namespace dynload
} // namespace platform
......
......@@ -67,7 +67,7 @@ std::map<std::string, std::set<std::string>> op_ins_map = {
{"sparse_momentum", {"Param", "Grad", "Velocity", "Index", "LearningRate"}},
{"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}},
{"run_program", {"X", "Params"}},
};
{"matrix_rank", {"X", "TolTensor"}}};
// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard
paddle.enable_static()
SEED = 2049
np.random.seed(SEED)
class TestMatrixRankOP(OpTest):
def setUp(self):
self.op_type = "matrix_rank"
self.init_data()
self.inputs = {'X': self.x}
self.attrs = {'hermitian': self.hermitian}
if self.tolTensor is not None:
self.inputs["TolTensor"] = self.tolTensor
if self.tol is not None:
self.attrs["tol"] = self.tol
self.attrs["use_default_tol"] = self.use_default_tol
self.outputs = {'Out': self.out}
def test_check_output(self):
self.check_output()
def init_data(self):
self.x = np.eye(3, dtype=np.float32)
self.tolTensor = None
self.tol = 0.1
self.use_default_tol = False
self.hermitian = True
self.out = np.linalg.matrix_rank(self.x, self.tol, self.hermitian)
class TestMatrixRankOP1(TestMatrixRankOP):
def init_data(self):
self.x = np.eye(3, k=1, dtype=np.float64)
self.tolTensor = None
self.tol = None
self.use_default_tol = True
self.hermitian = False
self.out = np.linalg.matrix_rank(self.x, self.tolTensor, self.hermitian)
class TestMatrixRankOP2(TestMatrixRankOP):
def init_data(self):
self.x = np.random.rand(3, 4, 5, 6).astype(np.float32)
self.tolTensor = np.random.random([3, 4]).astype(self.x.dtype)
self.tol = None
self.use_default_tol = False
self.hermitian = False
self.out = np.linalg.matrix_rank(self.x, self.tolTensor, self.hermitian)
class TestMatrixRankOP3(TestMatrixRankOP):
def init_data(self):
self.x = np.eye(200, dtype=np.float64)
self.tolTensor = None
self.tol = None
self.use_default_tol = True
self.hermitian = True
self.out = np.linalg.matrix_rank(self.x, self.tolTensor, self.hermitian)
class TestMatrixRankOP4(TestMatrixRankOP):
def init_data(self):
self.x = np.random.rand(1, 10).astype(np.float32)
self.tolTensor = None
self.tol = None
self.use_default_tol = True
self.hermitian = False
self.out = np.linalg.matrix_rank(self.x, self.tolTensor, self.hermitian)
class TestMatrixRankOP5(TestMatrixRankOP):
def init_data(self):
self.x = np.random.rand(5, 1).astype(np.float64)
self.tolTensor = np.random.random([1, 4]).astype(self.x.dtype)
self.tol = None
self.use_default_tol = False
self.hermitian = False
self.out = np.linalg.matrix_rank(self.x, self.tolTensor, self.hermitian)
class TestMatrixRankAPI(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static()
x_np = np.eye(10, dtype=np.float32)
x_pd = paddle.to_tensor(x_np)
rank_np = np.linalg.matrix_rank(x_np, hermitian=True)
rank_pd = paddle.linalg.matrix_rank(x_pd, hermitian=True)
self.assertTrue(np.allclose(rank_np, rank_pd))
x_np = np.random.rand(3, 4, 7, 8).astype(np.float64)
tol_np = np.random.random([3, 4]).astype(np.float32)
x_pd = paddle.to_tensor(x_np)
tol_pd = paddle.to_tensor(tol_np)
rank_np = np.linalg.matrix_rank(x_np, tol_np, hermitian=False)
rank_pd = paddle.linalg.matrix_rank(x_pd, tol_pd, hermitian=False)
self.assertTrue(np.allclose(rank_np, rank_pd))
x_np = np.random.rand(3, 4, 7, 8).astype(np.float64)
x_pd = paddle.to_tensor(x_np)
tol = 0.1
rank_np = np.linalg.matrix_rank(x_np, tol, hermitian=False)
rank_pd = paddle.linalg.matrix_rank(x_pd, tol, hermitian=False)
self.assertTrue(np.allclose(rank_np, rank_pd))
def test_static(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
with fluid.program_guard(fluid.Program(), fluid.Program()):
x_np = np.random.rand(3, 4, 7, 7).astype(np.float64)
tol_np = np.random.random([3, 4]).astype(np.float32)
x_pd = paddle.fluid.data(
name="X", shape=[3, 4, 7, 7], dtype='float64')
tol_pd = paddle.fluid.data(
name="TolTensor", shape=[3, 4], dtype='float32')
rank_np = np.linalg.matrix_rank(x_np, tol_np, hermitian=False)
rank_pd = paddle.linalg.matrix_rank(
x_pd, tol_pd, hermitian=False)
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"X": x_np,
"TolTensor": tol_np},
fetch_list=[rank_pd])
self.assertTrue(np.allclose(fetches[0], rank_np))
for place in places:
with fluid.program_guard(fluid.Program(), fluid.Program()):
x_np = np.random.rand(3, 4, 7, 7).astype(np.float64)
x_pd = paddle.fluid.data(
name="X", shape=[3, 4, 7, 7], dtype='float64')
rank_np = np.linalg.matrix_rank(x_np, hermitian=True)
rank_pd = paddle.linalg.matrix_rank(x_pd, hermitian=True)
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"X": x_np},
fetch_list=[rank_pd])
self.assertTrue(np.allclose(fetches[0], rank_np))
for place in places:
with fluid.program_guard(fluid.Program(), fluid.Program()):
x_np = np.random.rand(3, 4, 7, 7).astype(np.float64)
x_pd = paddle.fluid.data(
name="X", shape=[3, 4, 7, 7], dtype='float64')
rank_np = np.linalg.matrix_rank(x_np, 0.1, hermitian=False)
rank_pd = paddle.linalg.matrix_rank(x_pd, 0.1, hermitian=False)
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"X": x_np},
fetch_list=[rank_pd])
self.assertTrue(np.allclose(fetches[0], rank_np))
if __name__ == '__main__':
unittest.main()
......@@ -16,12 +16,14 @@ from .tensor.linalg import cholesky # noqa: F401
from .tensor.linalg import norm # noqa: F401
from .tensor.linalg import matrix_power # noqa: F401
from .tensor import inverse as inv # noqa: F401
from .tensor.linalg import matrix_rank
from .tensor.linalg import svd
__all__ = [
'cholesky', #noqa
'norm',
'inv',
'matrix_rank',
'svd',
'matrix_power'
]
......@@ -15,9 +15,9 @@
import numpy as np
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type
from ..fluid.framework import in_dygraph_mode, _varbase_creator
from ..fluid.framework import in_dygraph_mode, _varbase_creator, Variable
from ..fluid.layers import transpose # noqa: F401
from ..fluid.layers import transpose, cast # noqa: F401
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
from paddle import _C_ops
......@@ -785,6 +785,94 @@ def cholesky(x, upper=False, name=None):
return out
def matrix_rank(x, tol=None, hermitian=False, name=None):
r"""
Computes the rank of a matrix.
The rank of a matrix is the number of singular values that are greater than the specified tol threshold when hermitian=False,
or the number of eigenvalues in absolute value that are greater than the specified tol threshold when hermitian=True.
Args:
x (Tensor): The input tensor.
Its shape should be [..., m, n], where ... is zero or more batch dimensions. If x is a batch of matrices then the output
has the same batch dimensions. The data type of x should be float32 or float64.
tol (float,Tensor,optional): the tolerance value. Default: None.
If tol is not specified, and sigma is the largest singular value (or eigenvalue in absolute value), and eps is the
epsilon value for the dtype of x, then tol is computed with formula tol=sigma * max(m,n) * eps. Note that if x is
a batch of matrices, tol is computed this way for every batch.
hermitian (bool,optional): indicates whether x is Hermitian. Default: False.
When hermitian=True, x is assumed to be Hermitian, but x is not checked inside the function. Instead, We just use the
lower triangular of the matrix to compute.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Rank of tensor x.
Examples:
.. code-block:: python
import paddle
a = paddle.eye(10)
b = paddle.linalg.matrix_rank(a)
print(b)
# b = [10]
c = paddle.ones(shape=[3, 4, 5, 5])
d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
print(d)
# d = [[1, 1, 1, 1],
# [1, 1, 1, 1],
# [1, 1, 1, 1]]
"""
if in_dygraph_mode():
if tol is None:
tol_tensor = None
tol_attr = 0.0
use_default_tol = True
elif isinstance(tol, Variable):
if tol.dtype != x.dtype:
tol_tensor = cast(tol, x.dtype)
else:
tol_tensor = tol
tol_attr = 0.0
use_default_tol = False
else:
tol_tensor = None
tol_attr = float(tol)
use_default_tol = False
return _C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr, 'hermitian',
hermitian, 'use_default_tol', use_default_tol)
inputs = {}
attrs = {}
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
inputs['X'] = x
if tol is None:
attrs['use_default_tol'] = True
elif isinstance(tol, Variable):
check_variable_and_dtype(tol, 'tol', ['float32'], 'matrix_rank')
attrs['use_default_tol'] = False
if tol.dtype != x.dtype:
inputs['TolTensor'] = cast(tol, x.dtype)
else:
inputs['TolTensor'] = tol
else:
check_type(tol, 'tol', float, 'matrix_rank')
attrs['use_default_tol'] = False
attrs['tol'] = tol
check_type(hermitian, 'hermitian', bool, 'matrix_rank')
attrs['hermitian'] = hermitian
helper = LayerHelper('matrix_rank', **locals())
out = helper.create_variable_for_type_inference(dtype='int32')
helper.append_op(
type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs)
return out
def bmm(x, y, name=None):
"""
Applies batched matrix multiplication to two tensors.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册