linalg.py 126.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _varbase_creator, _dygraph_tracer, in_dygraph_mode, _non_static_mode
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
20 21
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
22 23 24
from .math import multiply, add
from .logic import logical_not
from .creation import full
25

A
andyjpaddle 已提交
26
import paddle
27
import warnings
28 29
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
30
from paddle import _C_ops
31

32 33
__all__ = []

34 35 36
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
        return _C_ops.final_state_transpose(x, perm)
    else:
        if _in_legacy_dygraph():
            out, _ = _C_ops.transpose2(x, 'axis', perm)
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
118 119 120 121 122 123 124
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
125 126 127
    return out


S
ShenLiang 已提交
128
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
129
    """
130 131
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
132
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
133

S
ShenLiang 已提交
134 135
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
136 137 138 139 140

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
141 142
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
143 144 145 146 147 148 149 150
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

151 152
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
153
      After the matrix multiply, the prepended dimension is removed.
154 155

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
156 157
      the matrix-vector product is obtained.

158 159 160 161 162 163 164 165 166
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
167
      out will be a (j, k, n, p) tensor.
168 169

    Args:
S
ShenLiang 已提交
170 171
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
172 173 174 175 176 177
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
178
        Tensor: The output Tensor.
179 180 181

    Examples:

C
Chen Long 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
220 221

    """
222 223 224 225 226
    if in_dygraph_mode():
        return _C_ops.final_state_matmul(x, y, transpose_x, transpose_y)

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
W
wanghuancoder 已提交
227
        op = getattr(_C_ops, op_type)
S
ShenLiang 已提交
228 229
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

230
    attrs = {
S
ShenLiang 已提交
231 232
        'trans_x': transpose_x,
        'trans_y': transpose_y,
233 234 235 236 237
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
238
            check_variable_and_dtype(
239 240 241
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
242 243 244

    __check_input(x, y)

S
ShenLiang 已提交
245
    helper = LayerHelper('matmul_v2', **locals())
246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
247 248 249 250 251 252 253
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
254
    return out
Z
Zhang Ting 已提交
255 256


myq406450149's avatar
myq406450149 已提交
257
def norm(x, p='fro', axis=None, keepdim=False, name=None):
258
    """
S
swtkiwi 已提交
259

260 261 262
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

263 264 265 266 267 268
    .. note::
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

269
    Args:
myq406450149's avatar
myq406450149 已提交
270
        x (Tensor): The input tensor could be N-D tensor, and the input data
271
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
272
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
273
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
274
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
275 276
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
277
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
278
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
myq406450149's avatar
myq406450149 已提交
279
            Defalut value is `None`.
280 281 282 283 284 285 286 287
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
288
        Tensor: results of norm operation on the specified axis of input tensor,
289
        it's data type is the same as input's Tensor.
290

291 292
    Examples:
        .. code-block:: python
293

294
            import paddle
myq406450149's avatar
myq406450149 已提交
295 296 297 298 299 300 301 302
            import numpy as np
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

303
            # compute frobenius norm along last two dimensions.
304
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
myq406450149's avatar
myq406450149 已提交
305 306
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

307
            # compute 2-order vector norm along last dimension.
308
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
309 310 311 312
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
313
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
myq406450149's avatar
myq406450149 已提交
314 315 316
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
317
            out_pnorm = paddle.linalg.norm(x, p=np.inf)
myq406450149's avatar
myq406450149 已提交
318
            #out_pnorm.numpy()  = [12.]
319
            out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
320 321 322
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
323
            out_pnorm = paddle.linalg.norm(x, p=-np.inf)
myq406450149's avatar
myq406450149 已提交
324
            #out_pnorm.numpy(): [0.]
325
            out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
326
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
327 328
    """

myq406450149's avatar
myq406450149 已提交
329
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
330 331 332 333 334 335 336 337 338 339 340
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
341 342 343

        if in_dygraph_mode():
            if dim is None:
344 345
                return _C_ops.final_state_frobenius_norm(
                    input, [], keepdim, True)
F
From00 已提交
346 347
            return _C_ops.final_state_frobenius_norm(input, dim, keepdim, False)
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
348
            if dim is None:
W
wanghuancoder 已提交
349 350 351 352
                return _C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                             'reduce_all', True)
            return _C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim', keepdim,
                                         'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
353 354
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
355 356 357 358 359
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
360 361
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
362

363 364 365 366
        helper.append_op(type='frobenius_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
367 368 369 370 371 372
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
373
                    asvector=False,
374 375 376 377 378 379 380 381 382
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
383 384 385 386 387 388
        if in_dygraph_mode():
            if axis is None: axis = -1
            return _C_ops.final_state_p_norm(input, porder, axis, 1e-12,
                                             keepdim, asvector)

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
389
            if axis is None: axis = -1
W
wanghuancoder 已提交
390 391
            return _C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                 'keepdim', keepdim, 'asvector', asvector)
392

393 394 395 396
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
397 398 399
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

400 401 402 403
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
404
            'asvector': asvector,
405 406 407
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
408 409
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
410

411 412 413 414
        helper.append_op(type='p_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
415 416
        return out

myq406450149's avatar
myq406450149 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
        helper = LayerHelper('frobenius_norm', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

433
        reduce_type = 'reduce_max' if porder == np.float64(
myq406450149's avatar
myq406450149 已提交
434
            'inf') else 'reduce_min'
435 436 437 438 439 440 441 442
        helper.append_op(type=reduce_type,
                         inputs={'X': out},
                         outputs={'Out': reduce_out},
                         attrs={
                             'dim': axis,
                             'keep_dim': keepdim,
                             'reduce_all': reduce_all
                         })
myq406450149's avatar
myq406450149 已提交
443 444 445 446

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
447 448 449 450
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
myq406450149's avatar
myq406450149 已提交
451 452 453 454 455
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
456 457 458
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
myq406450149's avatar
myq406450149 已提交
459 460 461
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

462 463 464 465
        block.append_op(type='pow',
                        inputs={'X': abs_out},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
myq406450149's avatar
myq406450149 已提交
466 467
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
468 469 470 471 472 473 474 475
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': True if axis is None else False
                        })
myq406450149's avatar
myq406450149 已提交
476
        porder
477 478 479 480
        block.append_op(type='pow',
                        inputs={'X': sum_out},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
myq406450149's avatar
myq406450149 已提交
481 482
        return out

483 484 485
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
486
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
487 488 489 490
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
491 492 493 494 495 496
            return vector_norm(x,
                               porder=p,
                               axis=axis,
                               keepdim=keepdim,
                               asvector=True,
                               name=name)
497
        else:
498 499 500
            raise ValueError(
                "only valid p type is string or float, found {}".format(
                    type(p)))
501

myq406450149's avatar
myq406450149 已提交
502 503
    if isinstance(axis, tuple):
        axis = list(axis)
504 505 506 507 508
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
509 510
        if isinstance(p, str):
            if p == "fro":
511 512 513 514 515 516
                return vector_norm(x,
                                   porder=2,
                                   axis=axis,
                                   keepdim=keepdim,
                                   asvector=False,
                                   name=name)
myq406450149's avatar
myq406450149 已提交
517 518 519 520 521

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
522 523 524 525 526 527
            return vector_norm(x,
                               axis=axis,
                               porder=p,
                               keepdim=keepdim,
                               asvector=False,
                               name=name)
528 529 530 531 532 533 534
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
535 536 537
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
538 539
        elif p == 0:
            raise ValueError(
540 541
                "just suport axis type int or list (length of list <=1) if p = 0, found {}"
                .format(axis))
542
        else:
543 544 545 546 547
            return p_matrix_norm(x,
                                 porder=p,
                                 axis=axis,
                                 keepdim=keepdim,
                                 name=name)
548 549 550 551 552 553
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


554
def dist(x, y, p=2, name=None):
555
    r"""
S
swtkiwi 已提交
556

Z
Zhang Ting 已提交
557
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
558 559
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
584 585 586 587 588 589 590

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
591
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
592 593 594 595 596

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
597
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
598 599 600 601 602 603 604 605 606 607 608 609

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
610 611
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
612 613 614
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
615
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
616 617 618 619 620 621 622

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

623 624 625 626
            x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")
            y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
627

628 629
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
630

631 632
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
633

634 635
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
636
    """
H
hong 已提交
637 638 639
    if in_dygraph_mode():
        return _C_ops.final_state_dist(x, y, p)

Z
Zhang Ting 已提交
640 641 642 643 644 645 646 647 648
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
649 650 651 652
    helper.append_op(type='dist',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
Z
Zhang Ting 已提交
653
    return out
L
liuwei1031 已提交
654 655


656 657 658 659 660 661
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
662 663
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
718
            # a.numpy()
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

753
        if _non_static_mode():
754
            abs_out = _C_ops.abs(input)
755 756 757 758 759
            if in_dygraph_mode():
                sum_out = _C_ops.final_state_sum(abs_out, axis, None, keepdim)
            else:
                sum_out = _C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                            keepdim, 'reduce_all', reduce_all)
760 761 762 763 764 765 766 767 768 769 770 771 772 773
            if porder == 1 or porder == np.inf:
                return _C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                         keepdim, 'reduce_all', reduce_all)
            if porder == -1 or porder == -np.inf:
                return _C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                         keepdim, 'reduce_all', reduce_all)

        block = LayerHelper('norm', **locals())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
774 775 776 777 778 779 780 781 782 783 784
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
        block.append_op(type='reduce_sum',
                        inputs={'X': abs_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
785
        if porder == 1 or porder == np.inf:
786 787 788 789 790 791 792 793
            block.append_op(type='reduce_max',
                            inputs={'X': sum_out},
                            outputs={'Out': out},
                            attrs={
                                'dim': [-1],
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
794
        if porder == -1 or porder == -np.inf:
795 796 797 798 799 800 801 802
            block.append_op(type='reduce_min',
                            inputs={'X': sum_out},
                            outputs={'Out': out},
                            attrs={
                                'dim': [-1],
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
803 804 805 806 807 808 809 810 811 812
        return out

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

813 814 815 816 817 818
        if in_dygraph_mode():
            pow_out = _C_ops.pow(input, 'factor', porder)
            sum_out_1 = _C_ops.final_state_sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.final_state_sum(sum_out_1, axis, None, keepdim)
            return _C_ops.pow(sum_out_2, 'factor', float(1. / porder))
        elif paddle.in_dynamic_mode():
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
            pow_out = _C_ops.pow(input, 'factor', porder)
            sum_out_1 = _C_ops.reduce_sum(pow_out, 'dim', axis, 'keepdim',
                                          keepdim, 'reduce_all', reduce_all)
            sum_out_2 = _C_ops.reduce_sum(sum_out_1, 'dim', axis, 'keepdim',
                                          keepdim, 'reduce_all', reduce_all)
            return _C_ops.pow(sum_out_2, 'factor', float(1. / porder))

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
        block.append_op(type='pow',
                        inputs={'X': input},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out_1},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_sum',
                        inputs={'X': sum_out_1},
                        outputs={'Out': sum_out_2},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out_2},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
859 860 861 862 863 864 865 866 867 868 869 870 871
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

872
        if _non_static_mode():
873
            if porder == "nuc":
874 875 876 877 878
                if in_dygraph_mode():
                    return _C_ops.final_state_sum(s, axis, None, keepdim)
                else:
                    return _C_ops.reduce_sum(s, 'dim', axis, 'keepdim', keepdim,
                                             'reduce_all', reduce_all)
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
            max_out = _C_ops.reduce_max(s, 'dim', axis, 'keepdim', keepdim,
                                        'reduce_all', reduce_all)
            min_out = _C_ops.reduce_min(s, 'dim', axis, 'keepdim', keepdim,
                                        'reduce_all', reduce_all)
            if porder == 2:
                return _C_ops.elementwise_div(max_out, min_out, 'aixs', axis,
                                              'use_mkldnn', False)
            if porder == -2:
                return _C_ops.elementwise_div(min_out, max_out, 'aixs', axis,
                                              'use_mkldnn', False)

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
894 895 896 897 898 899 900 901
            block.append_op(type='reduce_sum',
                            inputs={'X': s},
                            outputs={'Out': out},
                            attrs={
                                'dim': axis,
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
902 903 904 905 906
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
        block.append_op(type='reduce_max',
                        inputs={'X': s},
                        outputs={'Out': max_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_min',
                        inputs={'X': s},
                        outputs={'Out': min_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
923
        if porder == 2:
924 925 926 927 928 929 930 931 932 933
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': max_out,
                                'Y': min_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
934 935
            return out
        if porder == -2:
936 937 938 939 940 941 942 943 944 945
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': min_out,
                                'Y': max_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
946 947 948
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
949
        if paddle.in_dynamic_mode():
950 951 952 953 954
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
955 956 957
        raise ValueError(
            "input should be a matrix or batches of matrices, " +
            "but the dimention of received input is {}".format(len(x_shape)))
958 959 960 961 962 963 964 965 966 967 968 969 970
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
971 972
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
                    x_inv, porder=p, axis=[-2])
973
            if p in (np.inf, -np.inf):
974 975
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
                    x_inv, porder=p, axis=[-1])
976 977 978 979 980 981 982 983 984
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
985 986
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) +
            "1, -1, 2, -2, inf, -inf) or none")
987 988


L
liuwei1031 已提交
989 990 991
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
992

L
liuwei1031 已提交
993
    .. note::
994 995
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
996 997

    Parameters:
S
ShenLiang 已提交
998 999
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1000 1001
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1002
    Returns:
1003
        Tensor: the calculated result Tensor.
1004

L
liuwei1031 已提交
1005 1006 1007 1008 1009 1010
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
1011 1012 1013

        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
1014 1015
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
1016
        z = paddle.dot(x, y)
1017
        print(z)
L
liuwei1031 已提交
1018 1019

    """
1020 1021 1022 1023 1024
    if in_dygraph_mode():
        return _C_ops.final_state_dot(x, y)
    if _in_legacy_dygraph():
        return _C_ops.dot(x, y)

L
liuwei1031 已提交
1025
    op_type = 'dot'
1026

L
liuwei1031 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
    helper.append_op(type="dot",
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     attrs={},
                     outputs={"Out": out})
L
liuwei1031 已提交
1049
    return out
1050 1051


Z
zhiboniu 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix 
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1165 1166
def t(input, name=None):
    """
1167 1168
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1169
    the paddle.transpose function which perm dimensions set 0 and 1.
1170

1171
    Args:
1172
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1173
        name(str, optional): The default value is None.  Normally there is no need for
1174 1175
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1176
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1177

1178
    Examples:
1179

1180 1181 1182 1183
        .. code-block:: python
           :name: code-example
             import paddle
             
1184
             # Example 1 (0-D tensor)
1185 1186 1187
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
             
1188
             # Example 2 (1-D tensor)
1189 1190 1191
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1192 1193

             # Example 3 (2-D tensor)
1194 1195 1196 1197 1198 1199 1200 1201
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1202

1203 1204 1205 1206 1207 1208
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
1209 1210 1211 1212 1213 1214 1215 1216 1217
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
        out = _C_ops.final_state_transpose(input, perm)
        return out

    if _in_legacy_dygraph():
1218 1219 1220 1221
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
W
wanghuancoder 已提交
1222
        out, _ = _C_ops.transpose2(input, 'axis', perm)
1223 1224 1225
        return out

    check_variable_and_dtype(
1226 1227
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
1228 1229 1230 1231 1232 1233 1234

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1235 1236 1237 1238 1239 1240 1241
        helper.append_op(type='transpose2',
                         inputs={'X': [input]},
                         outputs={
                             'Out': [out],
                             'XShape': [input_shape]
                         },
                         attrs={'axis': [1, 0]})
1242
    return out
1243 1244


W
wanghuancoder 已提交
1245
def cross(x, y, axis=9, name=None):
1246
    """
1247
    Computes the cross product between two tensors along an axis.
1248

1249 1250
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1251

1252
    Args:
1253 1254
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1255
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1256
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1257 1258

    Returns:
1259
        Tensor. A Tensor with same data type as `x`.
1260

1261 1262
    Examples:
        .. code-block:: python
1263

1264
            import paddle
1265

Z
Zhou Wei 已提交
1266 1267 1268 1269 1270 1271
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1282
    """
J
Jiabin Yang 已提交
1283
    if in_dygraph_mode():
1284
        axis = K_DEFAULT_DIM if axis is None else axis
J
Jiabin Yang 已提交
1285 1286 1287 1288 1289 1290 1291
        return _C_ops.final_state_cross(x, y, axis)
    else:
        if _in_legacy_dygraph():
            if axis is not None:
                return _C_ops.cross(x, y, 'dim', axis)
            else:
                return _C_ops.cross(x, y)
1292
        else:
J
Jiabin Yang 已提交
1293 1294 1295 1296 1297
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1298 1299 1300 1301 1302 1303 1304
            helper.append_op(type='cross',
                             inputs={
                                 'X': x,
                                 'Y': y
                             },
                             outputs={'Out': out},
                             attrs=attrs)
J
Jiabin Yang 已提交
1305
            return out
1306 1307


1308
def cholesky(x, upper=False, name=None):
1309
    r"""
G
Guo Sheng 已提交
1310
    Computes the Cholesky decomposition of one symmetric positive-definite
1311 1312
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1313 1314 1315 1316 1317 1318
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1319
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1320 1321 1322 1323 1324 1325 1326
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
1327
        Tensor: A Tensor with same shape and data type as `x`. It represents \
G
Guo Sheng 已提交
1328
            triangular matrices generated by Cholesky decomposition.
1329

G
Guo Sheng 已提交
1330 1331 1332 1333 1334 1335
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1336 1337 1338
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1339
            x = paddle.to_tensor(x_data)
1340
            out = paddle.linalg.cholesky(x, upper=False)
1341
            print(out)
1342 1343 1344
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1345 1346

    """
H
hong 已提交
1347 1348 1349 1350
    if in_dygraph_mode():
        return _C_ops.final_state_cholesky(x, upper)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1351
        return _C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1352

G
Guo Sheng 已提交
1353 1354 1355 1356
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1357 1358 1359 1360
    helper.append_op(type='cholesky',
                     inputs={'X': [x]},
                     outputs={'Out': out},
                     attrs={'upper': upper})
G
Guo Sheng 已提交
1361 1362 1363
    return out


1364 1365 1366 1367
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1368
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1369
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1370 1371

    Args:
1372 1373 1374 1375
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1376
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1377 1378
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1379
            the lower triangular of the matrix to compute.
1380 1381 1382 1383
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1401

1402
    """
1403 1404 1405 1406 1407 1408 1409
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1410 1411 1412
            return _C_ops.final_state_matrix_rank_tol(x, tol_tensor,
                                                      use_default_tol,
                                                      hermitian)
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
        return _C_ops.final_state_matrix_rank(x, tol_attr, use_default_tol,
                                              hermitian)

    if _in_legacy_dygraph():
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
        return _C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr, 'hermitian',
                                  hermitian, 'use_default_tol', use_default_tol)

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1463 1464 1465 1466
    helper.append_op(type='matrix_rank',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
1467 1468 1469
    return out


1470 1471 1472 1473 1474 1475 1476 1477 1478
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1479 1480
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1481 1482 1483 1484
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1485
        Tensor: The product Tensor.
1486 1487

    Examples:
S
sunzhongkai588 已提交
1488 1489 1490
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1491

S
sunzhongkai588 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1501 1502 1503 1504 1505 1506
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1507

1508
    """
Y
yaoxuefeng 已提交
1509 1510 1511 1512
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1513 1514
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1515 1516
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1517 1518
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1519 1520
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1521 1522
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1523

1524 1525 1526
    if in_dygraph_mode():
        return _C_ops.final_state_bmm(x, y)

Z
zhiboniu 已提交
1527
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1528
        return _C_ops.bmm(x, y)
1529 1530

    helper = LayerHelper('bmm', **locals())
1531 1532 1533
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1534 1535


1536
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1537
    """
1538
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1539 1540 1541
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1542
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1543
            should be float32, float64, int32, int64.
1544 1545 1546 1547
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1548 1549

    Returns:
1550
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1551

1552
    Examples:
Q
Qi Li 已提交
1553
        .. code-block:: python
1554

Q
Qi Li 已提交
1555
            import paddle
1556

1557
            inputs = paddle.to_tensor([1, 2, 1])
1558 1559
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1560
    """
H
hong 已提交
1561 1562 1563 1564
    if in_dygraph_mode():
        return _C_ops.final_state_histogram(input, bins, min, max)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1565
        return _C_ops.histogram(input, "bins", bins, "min", min, "max", max)
Q
Qi Li 已提交
1566 1567

    helper = LayerHelper('histogram', **locals())
1568 1569 1570
    check_variable_and_dtype(input, 'X',
                             ['int32', 'int64', 'float32', 'float64'],
                             'histogram')
Q
Qi Li 已提交
1571
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1572 1573 1574 1575 1576 1577 1578 1579
    helper.append_op(type='histogram',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'bins': bins,
                         'min': min,
                         'max': max
                     })
Q
Qi Li 已提交
1580
    return out
S
smallv0221 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612


def bincount(x, weights=None, minlength=0, name=None):
    """
    Computes frequency of each value in the input tensor. 

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

H
hong 已提交
1613
    if _non_static_mode():
S
smallv0221 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
        return _C_ops.bincount(x, weights, "minlength", minlength)

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1627 1628 1629 1630 1631 1632 1633
    helper.append_op(type='bincount',
                     inputs={
                         'X': x,
                         'Weights': weights
                     },
                     outputs={'Out': out},
                     attrs={'minlength': minlength})
S
smallv0221 已提交
1634
    return out
1635 1636 1637 1638 1639 1640 1641


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1642
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1643
            should be one of float32, float64.
F
furnace 已提交
1644
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1660 1661
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1662
            out = paddle.mv(x, vec)
1663 1664 1665
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1666
    """
J
Jiabin Yang 已提交
1667 1668 1669 1670 1671 1672 1673
    if in_dygraph_mode():
        return _C_ops.final_state_mv(x, vec)
    else:
        if _in_legacy_dygraph():
            out = _C_ops.mv(x, vec)
            return out
        else:
1674

J
Jiabin Yang 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1684 1685
                        "x should be 2-dimensional. But received x's dimention: {}"
                        .format(x_shape))
J
Jiabin Yang 已提交
1686 1687
                if len(vec_shape) != 1:
                    raise ValueError(
1688 1689
                        "vec should be 1-dimensional. But received vec's dimention: {}"
                        .format(vec_shape))
J
Jiabin Yang 已提交
1690 1691 1692 1693 1694

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1695 1696 1697 1698 1699 1700
            helper.append_op(type='mv',
                             inputs={
                                 'X': x,
                                 'Vec': vec
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
1701
            return out
1702 1703


1704
def det(x, name=None):
H
huangxu96 已提交
1705 1706 1707 1708 1709 1710 1711 1712
    """
    Calculates determinant value of a square matrix or batches of square matrices.
    Args:
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
                    `(*, n, n)` where `*` is one or more batch dimensions.
    Returns:
        y (Tensor):the determinant value of a square matrix or batches of square matrices.

1713
    Examples:
H
huangxu96 已提交
1714 1715 1716 1717 1718 1719
        .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1720
        A = paddle.linalg.det(x)
H
huangxu96 已提交
1721 1722

        print(A)
1723

H
huangxu96 已提交
1724 1725
        # [ 0.02547996,  2.52317095, -6.15900707])

1726

H
huangxu96 已提交
1727
    """
C
chentianyu03 已提交
1728 1729 1730 1731
    if in_dygraph_mode():
        return _C_ops.final_state_det(x)

    if _in_legacy_dygraph():
1732
        return _C_ops.determinant(x)
H
huangxu96 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1750 1751 1752
    helper.append_op(type='determinant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1753 1754 1755
    return out


1756
def slogdet(x, name=None):
H
huangxu96 已提交
1757 1758 1759
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1760

H
huangxu96 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1772
    Examples:
H
huangxu96 已提交
1773 1774 1775 1776 1777 1778
    .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1779
        A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1780 1781

        print(A)
1782

H
huangxu96 已提交
1783 1784 1785 1786
        # [[ 1.        ,  1.        , -1.        ],
        # [-0.98610914, -0.43010661, -0.10872950]])

    """
1787 1788 1789 1790
    if in_dygraph_mode():
        return _C_ops.final_state_slogdet(x)

    elif paddle.in_dynamic_mode():
1791
        return _C_ops.slogdeterminant(x)
H
huangxu96 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1809 1810 1811
    helper.append_op(type='slogdeterminant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1812 1813 1814
    return out


1815 1816
def svd(x, full_matrices=False, name=None):
    r"""
1817 1818 1819 1820 1821
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1822 1823
        X = U * diag(S) * VT

1824 1825
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1826
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1827 1828 1829 1830
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1831
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1832
            If full_matrices = False, svd op will use a economic method to store U and V.
1833
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1834
        name (str, optional): Name for the operation (optional, default is None).
1835
            For more information, please refer to :ref:`api_guide_Name`.
1836 1837

    Returns:
1838
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1839

1840 1841 1842 1843
    Examples:
        .. code-block:: python

            import paddle
1844 1845 1846

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1847
            u, s, vh = paddle.linalg.svd(x)
1848 1849 1850 1851 1852
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1853
            print (s)
1854
            #S = [8.14753743, 0.78589688]
1855
            print (vh)
1856 1857
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1858

1859
            # one can verify : U * S * VT == X
1860
            #                  U * UH == I
1861
            #                  V * VH == I
1862
    """
1863 1864 1865
    if in_dygraph_mode():
        return _C_ops.final_state_svd(x, full_matrices)
    if _in_legacy_dygraph():
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        return _C_ops.svd(x, 'full_matrices', full_matrices)
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
1878 1879 1880 1881 1882 1883 1884
        outputs={
            'U': u,
            'VH': vh,
            'S': s
        },
        attrs=attrs,
    )
1885 1886 1887
    return u, s, vh


1888 1889 1890
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1891

1892 1893 1894 1895 1896
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1897

1898 1899 1900 1901
    Specifically,

    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power
    of `n`.
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
    the power of `abs(n)`.

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1913
        name (str, optional): Name for the operation (optional, default is None).
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1928
            print(paddle.linalg.matrix_power(x, 2))
1929 1930 1931 1932
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1933
            print(paddle.linalg.matrix_power(x, 0))
1934 1935 1936 1937
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1938
            print(paddle.linalg.matrix_power(x, -2))
1939 1940 1941 1942
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
1943 1944 1945 1946
    if in_dygraph_mode():
        return _C_ops.final_state_matrix_power(x, n)

    if _in_legacy_dygraph():
1947
        return _C_ops.matrix_power(x, "n", n)
1948 1949 1950 1951 1952

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1953 1954 1955 1956
    helper.append_op(type='matrix_power',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'n': n})
1957
    return out
1958 1959


1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
            positive number. The data type of x should be float32 or float64. 
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced". 
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
            If mode = "reduced", qr op will return reduced Q and R matrices, 
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
            If mode = "complete", qr op will return complete Q and R matrices, 
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R. 
        If mode = "r", qr will return a tensor which represents R.
        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
            
            # one can verify : X = Q * R ;     
    """
Z
zhiboniu 已提交
2002
    if paddle.in_dynamic_mode():
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        q, r = _C_ops.qr(x, 'mode', mode)
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2015 2016 2017 2018 2019 2020 2021
    helper.append_op(type='qr',
                     inputs={'X': [x]},
                     outputs={
                         'Q': q,
                         'R': r
                     },
                     attrs=attrs)
2022 2023 2024 2025 2026 2027
    if mode == "r":
        return r
    else:
        return q, r


2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
    Computes the LU factorization of an N-D(N>=2) matrix x. 

    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and 
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])
    # return ones

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        factorization (Tensor): LU matrix, the factorization of input X.

        pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the 
                    intermediate transpositions of rows. The final permutation `perm` could be 
                    reconstructed by this, details refer to upper example.

        infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2)) 
                    where non-zero values indicate whether factorization for the matrix or each minibatch 
                    has succeeded or failed.

        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
            
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
            # [1., 0., 0.]]), 
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
            # [0.60000000, 0.50000000]]), 
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))
            

            # one can verify : X = P @ L @ U ;     
    """
L
Lin Manhui 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

    if in_dygraph_mode():
        lu, p, info = _C_ops.final_state_lu(x, pivot)
    elif paddle.in_dynamic_mode():
        lu, p, info = _C_ops.lu(x, 'pivot', pivot)
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
        helper.append_op(type='lu',
                         inputs={'X': x},
                         outputs={
                             'Out': lu,
                             'Pivots': p,
                             'Infos': info
                         },
                         attrs=attrs)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
    Unpack L U and P to single matrix tensor . 
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        P (Tensor): Permutation matrix P of lu factorization.

        L (Tensor): The lower triangular matrix tensor of lu factorization.

        U (Tensor): The upper triangular matrix tensor of lu factorization.

        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
            
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
            # [1., 0., 0.]]), 
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
            # [0.60000000, 0.50000000]]), 
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

            # one can verify : X = P @ L @ U ;   
    """

Z
zhiboniu 已提交
2203
    if paddle.in_dynamic_mode():
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        P, L, U = _C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                   'unpack_pivots', unpack_pivots)
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
    helper.append_op(type='lu_unpack',
                     inputs={
                         'X': x,
                         'Pivots': y
                     },
                     outputs={
                         'Pmat': p,
                         'L': l,
                         'U': u
                     },
                     attrs=attrs)
2228 2229 2230
    return p, l, u


L
Lijunhui 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
def eig(x, name=None):
    """
    This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.

    .. note::
        If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        This API is only supported on CPU device.
        The output datatype is always complex for both real and complex input.

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
        name (str, optional): The default value is `None`. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.device.set_device("cpu")

            x_data = np.array([[1.6707249, 7.2249975, 6.5045543],
                               [9.956216,  8.749598,  6.066444 ],
                               [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")
            x = paddle.to_tensor(x_data)
            w, v = paddle.linalg.eig(x)
            print(w)
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

            print(v)
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2279 2280 2281
    if in_dygraph_mode():
        return _C_ops.final_state_eig(x)
    elif paddle.in_dynamic_mode():
L
Lijunhui 已提交
2282 2283 2284
        w, v = _C_ops.eig(x)
        return w, v

2285 2286 2287
    check_variable_and_dtype(x, 'X',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eig')
L
Lijunhui 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2300 2301 2302
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2303 2304 2305

    Warning:
        The gradient kernel of this operator does not yet developed.
2306 2307 2308 2309
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2310
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2311
            Its data type should be float32, float64, complex64, or complex128.
2312
        name (str, optional): Name for the operation (optional, default is None).
2313
            For more information, please refer to :ref:`api_guide_Name`.
2314
            
2315
    Returns:
2316
        Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
2317 2318 2319 2320 2321 2322
            The eigenvalues are complex-valued even when `x` is real.

    Examples:
        .. code-block:: python

            import paddle
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2337 2338
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvals')
2339 2340 2341 2342

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2343 2344
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}"
            .format(len(x_shape), x_shape))
2345 2346 2347

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2348 2349
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}"
            .format(x_shape))
2350

R
Ruibiao Chen 已提交
2351 2352 2353
    if in_dygraph_mode():
        return _C_ops.final_state_eigvals(x)
    elif paddle.in_dynamic_mode():
2354 2355 2356 2357 2358 2359 2360 2361
        return _C_ops.eigvals(x)

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2362 2363 2364 2365
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2366
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        # A * B
        A_data = np.random.random([3, 4]).astype(np.float32)
        B_data = np.random.random([4, 5]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
2408
        out = paddle.linalg.multi_dot([A, B])
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
        print(out.numpy().shape)
        # [3, 5]

        # A * B * C
        A_data = np.random.random([10, 5]).astype(np.float32)
        B_data = np.random.random([5, 8]).astype(np.float32)
        C_data = np.random.random([8, 7]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
        C = paddle.to_tensor(C_data)
2419
        out = paddle.linalg.multi_dot([A, B, C])
2420 2421 2422 2423
        print(out.numpy().shape)
        # [10, 7]

    """
2424
    if _in_legacy_dygraph():
2425
        return _C_ops.multi_dot(x)
2426 2427
    if in_dygraph_mode():
        return _C_ops.final_state_multi_dot(x)
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2442 2443 2444 2445


def eigh(x, UPLO='L', name=None):
    """
2446
    Compute the eigenvalues and eigenvectors of a
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.
        out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
2470
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2471 2472 2473 2474 2475 2476 2477
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2478 2479 2480 2481
    if in_dygraph_mode():
        return _C_ops.final_state_eigh(x, UPLO)

    if _in_legacy_dygraph():
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
        return _C_ops.eigh(x, 'UPLO', UPLO)

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2492 2493
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
2494
        if UPLO != 'L' and UPLO != 'U':
2495 2496 2497 2498 2499 2500
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2501 2502 2503
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigh')
2504 2505 2506 2507

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2508 2509 2510 2511 2512 2513 2514
    helper.append_op(type='eigh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={'UPLO': UPLO})
2515
    return out_value, out_vector
A
andyjpaddle 已提交
2516 2517 2518 2519


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2520
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2531

A
andyjpaddle 已提交
2532 2533 2534
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2535 2536 2537
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2538 2539 2540 2541
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2542 2543 2544 2545
        rcond(Tensor, optional): the tolerance value to determine
            when is a singular value zero. Defalut:1e-15.

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2546
            if complex or symmetric if real. Default: False.
2547 2548

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2549
            the layer will be named automatically.
2550

A
andyjpaddle 已提交
2551
    Returns:
2552
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2553
        pseudo inverse of x. Its shape should be (*, n, m).
2554

A
andyjpaddle 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """

2582
    if _non_static_mode():
A
andyjpaddle 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
        if not hermitian:
            # combine svd and matmul op
            u, s, vt = _C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2594 2595 2596 2597 2598
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2599 2600 2601 2602 2603 2604 2605
            st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2])

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v, _ = _C_ops.transpose2(vt, 'axis', perm)

            out_1 = v * st
2606 2607 2608 2609 2610
            if in_dygraph_mode():
                out_2 = _C_ops.final_state_matmul(out_1, u, False, True)
            else:
                out_2 = _C_ops.matmul_v2(out_1, u, 'trans_x', False, 'trans_y',
                                         True)
A
andyjpaddle 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
            return out_2
        else:
            # combine eigh and matmul op
            s, u = _C_ops.eigh(x, 'UPLO', 'L')
            s_abs = paddle.abs(s)
            max_singular_val = _C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2624 2625 2626 2627 2628
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2629 2630 2631 2632
            st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2])

            out_1 = u * st
            u_conj = _C_ops.conj(u)
2633 2634 2635 2636 2637
            if in_dygraph_mode():
                out_2 = _C_ops.final_state_matmul(out_1, u_conj, False, True)
            else:
                out_2 = _C_ops.matmul_v2(out_1, u_conj, 'trans_x', False,
                                         'trans_y', True)
A
andyjpaddle 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2651 2652 2653 2654 2655 2656 2657
                outputs={
                    'U': u,
                    'VH': vt,
                    'S': s
                },
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2658 2659

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2660 2661 2662 2663 2664 2665 2666 2667
            helper.append_op(type='reduce_max',
                             inputs={'X': s},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2668

2669
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2670 2671
            cutoff = rcond * max_singular_val
            y = float('inf')
2672
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2673 2674

            condition = s > cutoff
2675 2676 2677 2678 2679
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2680 2681 2682

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2683 2684 2685 2686 2687 2688 2689
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2690 2691 2692 2693 2694

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2695 2696 2697 2698 2699 2700 2701
            helper.append_op(type='transpose2',
                             inputs={'X': [vt]},
                             outputs={
                                 'Out': [v],
                                 'XShape': [v_shape]
                             },
                             attrs={'axis': perm})
A
andyjpaddle 已提交
2702 2703

            out_1 = helper.create_variable_for_type_inference(dtype)
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': v,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2714 2715 2716 2717 2718
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2719 2720 2721 2722
                inputs={
                    'X': out_1,
                    'Y': u
                },
A
andyjpaddle 已提交
2723
                outputs={'Out': out_2},
2724 2725 2726 2727 2728
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2729 2730 2731 2732 2733
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2734 2735
                x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'],
                'pinv')
A
andyjpaddle 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2746 2747 2748 2749 2750 2751 2752
            helper.append_op(type='eigh',
                             inputs={'X': x},
                             outputs={
                                 'Eigenvalues': s,
                                 'Eigenvectors': u
                             },
                             attrs={'UPLO': 'L'})
A
andyjpaddle 已提交
2753
            s_abs = helper.create_variable_for_type_inference(s_type)
2754 2755 2756
            helper.append_op(type='abs',
                             inputs={'X': s},
                             outputs={'Out': s_abs})
A
andyjpaddle 已提交
2757
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2758 2759 2760 2761 2762 2763 2764 2765
            helper.append_op(type='reduce_max',
                             inputs={'X': s_abs},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2766

2767
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2768 2769
            cutoff = rcond * max_singular_val
            y = float('inf')
2770
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2771 2772

            condition = s_abs > cutoff
2773 2774 2775 2776 2777
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2778 2779 2780

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2781 2782 2783 2784 2785 2786 2787
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2788 2789

            out_1 = helper.create_variable_for_type_inference(dtype)
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': u,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2800 2801 2802
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2803 2804 2805
            helper.append_op(type='conj',
                             inputs={'X': u},
                             outputs={'Out': [u_conj]})
A
andyjpaddle 已提交
2806 2807 2808 2809

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2810 2811 2812 2813
                inputs={
                    'X': out_1,
                    'Y': u_conj
                },
A
andyjpaddle 已提交
2814
                outputs={'Out': out_2},
2815 2816 2817 2818 2819
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2820
            return out_2
W
Weilong Wu 已提交
2821 2822 2823 2824 2825 2826 2827


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2828

W
Weilong Wu 已提交
2829 2830 2831 2832
    .. math::
        Out = X^-1 * Y
    Specifically,
    - This system of linear equations has one solution if and only if input 'X' is invertible.
2833

W
Weilong Wu 已提交
2834 2835 2836 2837 2838
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2839
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2840
            For more information, please refer to :ref:`api_guide_Name`.
2841

W
Weilong Wu 已提交
2842
    Returns:
2843
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2844
        Its data type should be the same as that of `x`.
2845

W
Weilong Wu 已提交
2846 2847
    Examples:
    .. code-block:: python
2848

W
Weilong Wu 已提交
2849 2850 2851
        # a square system of linear equations:
        # 2*X0 + X1 = 9
        # X0 + 2*X1 = 8
2852

W
Weilong Wu 已提交
2853 2854
        import paddle
        import numpy as np
2855

W
Weilong Wu 已提交
2856 2857 2858 2859 2860
        np_x = np.array([[3, 1],[1, 2]])
        np_y = np.array([9, 8])
        x = paddle.to_tensor(np_x, dtype="float64")
        y = paddle.to_tensor(np_y, dtype="float64")
        out = paddle.linalg.solve(x, y)
2861

W
Weilong Wu 已提交
2862 2863 2864
        print(out)
        # [2., 3.])
    """
2865 2866 2867 2868
    if in_dygraph_mode():
        return _C_ops.final_state_solve(x, y)

    if _in_legacy_dygraph():
W
Weilong Wu 已提交
2869 2870 2871 2872 2873 2874 2875 2876
        return _C_ops.solve(x, y)

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2877 2878 2879 2880 2881 2882
    helper.append_op(type="solve",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     outputs={"Out": out})
W
Weilong Wu 已提交
2883
    return out
2884 2885


2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is 
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular 
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed 
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
    .. code-block:: python

        # a square system of linear equations:
        # x1 +   x2  +   x3 = 0
        #      2*x2  +   x3 = -9
        #               -x3 = 5

        import paddle
        import numpy as np

        x = paddle.to_tensor([[1, 1, 1], 
                              [0, 2, 1],
                              [0, 0,-1]], dtype="float64")
        y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.triangular_solve(x, y, upper=True)

        print(out)
        # [7, -2, -5]
    """
H
hong 已提交
2935 2936 2937 2938
    if in_dygraph_mode():
        return _C_ops.final_state_triangular_solve(x, y, upper, transpose,
                                                   unitriangular)

Z
zhiboniu 已提交
2939
    if paddle.in_dynamic_mode():
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
        return _C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                       transpose, 'unitriangular',
                                       unitriangular)

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
    helper.append_op(type='triangular_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'upper': upper,
                         'transpose': transpose,
                         'unitriangular': unitriangular
                     })
2961 2962 2963
    return out


Z
zhiboniu 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is 
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
    .. code-block:: python

        import paddle

        u = paddle.to_tensor([[1, 1, 1], 
                                [0, 2, 1],
                                [0, 0,-1]], dtype="float64")
        b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.cholesky_solve(b, u, upper=True)

        print(out)
        # [-2.5, -7, 9.5]
    """
H
hong 已提交
2997 2998 2999 3000
    if in_dygraph_mode():
        return _C_ops.final_state_cholesky_solve(x, y, upper)

    if _in_legacy_dygraph():
Z
zhiboniu 已提交
3001 3002 3003 3004 3005 3006 3007
        return _C_ops.cholesky_solve(x, y, 'upper', upper)

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3008 3009 3010 3011 3012 3013 3014
    helper.append_op(type='cholesky_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={'upper': upper})
Z
zhiboniu 已提交
3015 3016 3017
    return out


3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
def eigvalsh(x, UPLO='L', name=None):
    """
    Computes the eigenvalues of a 
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
            #[0.17157288, 5.82842712]
    """
Z
zhiboniu 已提交
3045
    if paddle.in_dynamic_mode():
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
        is_test = x.stop_gradient
        values, _ = _C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3058 3059
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
3060
        if UPLO != 'L' and UPLO != 'U':
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
    helper.append_op(type='eigvalsh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={
                         'UPLO': UPLO,
                         'is_test': is_test
                     })
3085
    return out_value
3086 3087


3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y`` 
            should be one of float32, float64.
        rcond(float, optional): The default value is None. A float pointing number used to determine 
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the 
            machine precision of x_dtype.
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For 
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only 
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’ 
            for CUDA inputs.
        name(str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``). 
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals`` 
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed 
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor 
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in 
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with 
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when 
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3148 3149 3150
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3151 3152
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}"
                .format(driver))
3153 3154 3155 3156
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3157 3158
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}"
                .format(driver))
3159 3160 3161 3162
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3176
    if _non_static_mode():
3177 3178 3179
        if in_dygraph_mode():
            solution, residuals, rank, singular_values = _C_ops.final_state_lstsq(
                x, y, rcond, driver)
3180
        else:
3181 3182
            solution, residuals, rank, singular_values = _C_ops.lstsq(
                x, y, 'rcond', rcond, 'driver', driver)
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3193 3194 3195 3196 3197 3198
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
    check_variable_and_dtype(y, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
3199 3200 3201 3202 3203 3204

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3205 3206 3207 3208 3209 3210 3211
    helper.append_op(type='lstsq',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Solution': solution,
3212
                         'Residuals': residuals,
3213 3214 3215 3216 3217 3218 3219
                         'Rank': rank,
                         'SingularValues': singular_values
                     },
                     attrs={
                         'rcond': rcond,
                         'driver': driver
                     })
3220 3221 3222 3223 3224 3225 3226 3227

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290


def corrcoef(x, rowvar=True, name=None):
    """
    
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
          :name: code-example1
        
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
    if (c.ndim == 0):
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3291 3292
        return paddle.complex(paddle.clip(c.real(), -1, 1),
                              paddle.clip(c.imag(), -1, 1))
3293 3294 3295 3296
    else:
        c = paddle.clip(c, -1, 1)

    return c