linalg.py 126.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _non_static_mode, in_dygraph_mode
18 19 20 21 22
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
Z
zhiboniu 已提交
23
from ..static import Variable
24 25
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
26 27 28
from .math import multiply, add
from .logic import logical_not
from .creation import full
29

A
andyjpaddle 已提交
30
import paddle
31
from paddle.common_ops_import import VarDesc
32
from paddle import _C_ops, _legacy_C_ops
33

34 35
__all__ = []

36 37 38
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
91
        return _C_ops.transpose(x, perm)
92 93
    else:
        if _in_legacy_dygraph():
94
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
95 96
            return out

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
112 113 114 115 116 117 118 119
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
120 121
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
122 123 124 125 126
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
127 128
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
129 130 131 132

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
133 134 135 136 137 138
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
139 140 141
    return out


S
ShenLiang 已提交
142
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
143
    """
144 145
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
146
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
147

S
ShenLiang 已提交
148 149
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
150 151 152 153 154

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
155 156
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
157 158 159 160 161 162 163 164
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

165 166
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
167
      After the matrix multiply, the prepended dimension is removed.
168 169

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
170 171
      the matrix-vector product is obtained.

172 173 174 175 176 177 178 179 180
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
181
      out will be a (j, k, n, p) tensor.
182 183

    Args:
S
ShenLiang 已提交
184 185
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
186 187 188 189 190 191
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
192
        Tensor: The output Tensor.
193 194 195

    Examples:

C
Chen Long 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
234 235

    """
236
    if in_dygraph_mode():
237
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
238 239 240

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
241
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
242 243
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

244
    attrs = {
S
ShenLiang 已提交
245 246
        'trans_x': transpose_x,
        'trans_y': transpose_y,
247 248 249 250 251
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
252
            check_variable_and_dtype(
253 254
                val,
                name,
255
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
256 257
                'matmul',
            )
258 259 260

    __check_input(x, y)

S
ShenLiang 已提交
261
    helper = LayerHelper('matmul_v2', **locals())
262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
263 264 265 266 267 268
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
269
    return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
376
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
377
            if dim is None:
378 379 380 381 382 383
                return _legacy_C_ops.frobenius_norm(
                    input, 'keep_dim', keepdim, 'reduce_all', True
                )
            return _legacy_C_ops.frobenius_norm(
                input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False
            )
myq406450149's avatar
myq406450149 已提交
384 385
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
386
            attrs['reduce_all'] = True
387 388 389
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'frobenius_norm'
        )
390 391

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
392
        out = helper.create_variable_for_type_inference(
393 394
            dtype=helper.input_dtype()
        )
395

396 397 398 399 400 401
        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
402 403
        return out

404 405 406
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
407 408 409 410 411 412 413 414
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
415
        if in_dygraph_mode():
416 417
            if axis is None:
                axis = -1
418
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
419 420

        if _in_legacy_dygraph():
421 422 423 424 425 426 427 428 429 430 431 432 433
            if axis is None:
                axis = -1
            return _legacy_C_ops.p_norm(
                input,
                'porder',
                porder,
                'axis',
                axis,
                'keepdim',
                keepdim,
                'asvector',
                asvector,
            )
434

435 436 437 438
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
439 440 441
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'p_norm'
        )
myq406450149's avatar
myq406450149 已提交
442

443 444 445 446
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
447
            'asvector': asvector,
448 449 450
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
451
        out = helper.create_variable_for_type_inference(
452 453
            dtype=helper.input_dtype()
        )
454

455 456 457 458 459 460
        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
461 462
        return out

463 464 465
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
466
        if in_dygraph_mode():
467
            out = _C_ops.abs(input)
468
            reduce_all = (
469
                True if axis == None or axis == [] or asvector else False
470
            )
471 472 473 474
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
475
                return _C_ops.max(out, axis, keepdim)
476
            else:
477
                return _C_ops.min(out, axis, keepdim)
478

O
OccupyMars2025 已提交
479
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
480
        out = helper.create_variable_for_type_inference(
481 482
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
483 484
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
485 486
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
487

488
        reduce_all = True if axis == None or axis == [] or asvector else False
myq406450149's avatar
myq406450149 已提交
489 490
        axis = axis if axis != None and axis != [] else [0]

491 492 493 494 495 496 497 498 499
        reduce_type = (
            'reduce_max' if porder == np.float64('inf') else 'reduce_min'
        )
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
myq406450149's avatar
myq406450149 已提交
500 501 502

        return reduce_out

503
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
504 505 506 507
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
508
        if in_dygraph_mode():
509 510 511
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
512
            out = _C_ops.pow(sum_out, float(1.0 / porder))
513 514
            return out

myq406450149's avatar
myq406450149 已提交
515 516
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
517 518
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
519
        abs_out = block.create_variable_for_type_inference(
520 521 522 523 524
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
525
        pow_out = block.create_variable_for_type_inference(
526 527
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
528

529 530 531 532 533 534
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
535
        sum_out = block.create_variable_for_type_inference(
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
554 555
        return out

556 557 558
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
559
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
560 561
            else:
                raise ValueError(
562 563
                    "only valid string values are 'fro', found {}".format(p)
                )
564
        elif isinstance(p, (int, float)):
565 566 567 568 569 570 571 572
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
573
        else:
574
            raise ValueError(
575 576
                "only valid p type is string or float, found {}".format(type(p))
            )
577

myq406450149's avatar
myq406450149 已提交
578 579
    if isinstance(axis, tuple):
        axis = list(axis)
580 581 582
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

583
    # calculate vector norm, where axis is int or list with only one integer
584
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
585 586
        if isinstance(p, str):
            if p == "fro":
587 588 589 590 591 592 593 594
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
595 596 597

            else:
                raise ValueError(
598 599
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
600
        elif isinstance(p, (int, float)):
601 602 603 604 605 606 607 608
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
609 610
        else:
            raise ValueError(
611 612 613 614 615
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
616 617
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
618 619 620
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
621 622
        elif p == 0:
            raise ValueError(
623 624 625 626
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
627
        else:
628 629 630
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
631 632
    else:
        raise ValueError(
633 634 635 636
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
637 638


639
def dist(x, y, p=2, name=None):
640
    r"""
S
swtkiwi 已提交
641

Z
Zhang Ting 已提交
642
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
643 644
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
669 670 671 672 673 674 675

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
676
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
677 678 679 680 681

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
682
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
683 684 685 686 687 688 689 690 691 692 693 694

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
695 696
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
697 698 699
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
700
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
701 702 703 704 705 706

    Examples:
        .. code-block:: python

            import paddle

707 708
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
709 710
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
711

712 713
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
714

715 716
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
717

718 719
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
720
    """
H
hong 已提交
721
    if in_dygraph_mode():
722
        return _C_ops.dist(x, y, p)
H
hong 已提交
723

Z
Zhang Ting 已提交
724 725 726 727 728 729 730 731 732
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
733 734 735
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
736
    return out
L
liuwei1031 已提交
737 738


739 740 741 742 743 744
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
745 746
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
801
            # a.numpy()
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

826
    def mat_norm(input, porder=1.0, axis=None):
827 828 829 830 831 832 833 834 835
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

836 837 838 839 840 841 842 843 844 845 846
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
847 848 849 850 851 852 853 854 855
            sum_out = _legacy_C_ops.reduce_sum(
                abs_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
856
            if porder == 1 or porder == np.inf:
857 858 859 860 861 862 863 864 865
                return _legacy_C_ops.reduce_max(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
866
            if porder == -1 or porder == -np.inf:
867 868 869 870 871 872 873 874 875
                return _legacy_C_ops.reduce_min(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
876 877 878
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
879 880
                dtype=block.input_dtype()
            )
881
            sum_out = block.create_variable_for_type_inference(
882 883
                dtype=block.input_dtype()
            )
884
            out = block.create_variable_for_type_inference(
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
900
            if porder == 1 or porder == np.inf:
901 902 903 904 905 906 907 908 909 910
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
911
            if porder == -1 or porder == -np.inf:
912 913 914 915 916 917 918 919 920 921
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
922
            return out
923 924 925 926 927 928 929 930 931

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

932
        if in_dygraph_mode():
933
            pow_out = _C_ops.pow(input, porder)
934 935
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
936
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
937
        elif paddle.in_dynamic_mode():
938
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
            sum_out_1 = _legacy_C_ops.reduce_sum(
                pow_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            sum_out_2 = _legacy_C_ops.reduce_sum(
                sum_out_1,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1.0 / porder))
958 959 960

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
961 962
            dtype=block.input_dtype()
        )
963
        sum_out_1 = block.create_variable_for_type_inference(
964 965
            dtype=block.input_dtype()
        )
966
        sum_out_2 = block.create_variable_for_type_inference(
967 968
            dtype=block.input_dtype()
        )
969
        out = block.create_variable_for_type_inference(
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
            dtype=block.input_dtype()
        )
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

1009
        if _non_static_mode():
1010
            if porder == "nuc":
1011
                if in_dygraph_mode():
1012
                    return _C_ops.sum(s, axis, None, keepdim)
1013
                else:
1014 1015 1016 1017 1018 1019 1020 1021 1022
                    return _legacy_C_ops.reduce_sum(
                        s,
                        'dim',
                        axis,
                        'keepdim',
                        keepdim,
                        'reduce_all',
                        reduce_all,
                    )
1023 1024 1025 1026
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
1027
                    return _C_ops.divide(max_out, min_out)
1028
                if porder == -2:
1029
                    return _C_ops.divide(min_out, max_out)
1030 1031

            else:
1032 1033 1034 1035 1036 1037
                max_out = _legacy_C_ops.reduce_max(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
                min_out = _legacy_C_ops.reduce_min(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
1038 1039
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
1040 1041
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False
                    )
1042 1043
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
1044 1045
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False
                    )
1046 1047 1048

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
1049 1050
            dtype=block.input_dtype()
        )
1051
        if porder == "nuc":
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
1062 1063
            return out
        max_out = block.create_variable_for_type_inference(
1064 1065
            dtype=block.input_dtype()
        )
1066
        min_out = block.create_variable_for_type_inference(
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
1081
        if porder == 2:
1082 1083 1084 1085 1086 1087
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out, 'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1088 1089
            return out
        if porder == -2:
1090 1091 1092 1093 1094 1095
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out, 'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1096 1097 1098
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1099
        if paddle.in_dynamic_mode():
1100 1101 1102 1103 1104
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1105
        raise ValueError(
1106 1107 1108
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1122
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1123 1124
                    x_inv, porder=p, axis=[-2]
                )
1125
            if p in (np.inf, -np.inf):
1126
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1127 1128
                    x_inv, porder=p, axis=[-1]
                )
1129
        else:
1130 1131 1132 1133
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1134 1135 1136 1137 1138 1139
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1140 1141 1142
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1143 1144


L
liuwei1031 已提交
1145 1146 1147
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1148

1149
    Note:
1150 1151
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1152 1153

    Parameters:
S
ShenLiang 已提交
1154 1155
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1156 1157
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1158
    Returns:
1159
        Tensor: the calculated result Tensor.
1160

L
liuwei1031 已提交
1161 1162 1163 1164 1165
    Examples:

    .. code-block:: python

        import paddle
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1176
        z = paddle.dot(x, y)
1177
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1178 1179

    """
1180 1181
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1182 1183
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1184

L
liuwei1031 已提交
1185
    op_type = 'dot'
1186

L
liuwei1031 已提交
1187 1188 1189
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

1190 1191 1192 1193 1194 1195
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
    )
    check_variable_and_dtype(
        y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
    )
L
liuwei1031 已提交
1196 1197 1198 1199 1200

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1201 1202 1203 1204 1205 1206
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
    helper.append_op(
        type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
    )
L
liuwei1031 已提交
1207
    return out
1208 1209


Z
zhiboniu 已提交
1210 1211 1212 1213 1214
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1215
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1249 1250
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1264 1265
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1266 1267 1268
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1269 1270 1271 1272
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1273 1274 1275
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1276 1277
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1278 1279 1280 1281 1282 1283 1284 1285
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1286 1287 1288 1289 1290
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1291 1292 1293
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1294 1295 1296 1297
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1298 1299 1300
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1301 1302
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1321
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1333 1334
def t(input, name=None):
    """
1335 1336
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1337
    the paddle.transpose function which perm dimensions set 0 and 1.
1338

1339
    Args:
1340
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1341
        name(str, optional): The default value is None.  Normally there is no need for
1342 1343
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1344
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1345

1346
    Examples:
1347

1348 1349 1350
        .. code-block:: python
           :name: code-example
             import paddle
1351

1352
             # Example 1 (0-D tensor)
1353 1354
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1355

1356
             # Example 2 (1-D tensor)
1357 1358 1359
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1360 1361

             # Example 3 (2-D tensor)
1362 1363 1364 1365 1366 1367 1368 1369
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1370

1371 1372 1373 1374 1375
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1376 1377
            "tensor.transpose() instead." % len(input.shape)
        )
1378 1379 1380 1381 1382
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1383
        out = _C_ops.transpose(input, perm)
1384 1385 1386
        return out

    if _in_legacy_dygraph():
1387 1388 1389 1390
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1391
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1392 1393 1394
        return out

    check_variable_and_dtype(
1395 1396 1397 1398 1399
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose',
    )
1400 1401 1402 1403 1404 1405 1406

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1407 1408 1409 1410 1411 1412
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': [1, 0]},
        )
1413
    return out
1414 1415


W
wanghuancoder 已提交
1416
def cross(x, y, axis=9, name=None):
1417
    """
1418
    Computes the cross product between two tensors along an axis.
1419

1420 1421
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1422

1423
    Args:
1424 1425
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1426
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1427
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1428 1429

    Returns:
1430
        Tensor. A Tensor with same data type as `x`.
1431

1432 1433
    Examples:
        .. code-block:: python
1434

1435
            import paddle
1436

Z
Zhou Wei 已提交
1437 1438 1439 1440 1441 1442
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1453
    """
J
Jiabin Yang 已提交
1454
    if in_dygraph_mode():
1455
        axis = K_DEFAULT_DIM if axis is None else axis
1456
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1457 1458 1459
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1460
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1461
            else:
1462
                return _legacy_C_ops.cross(x, y)
1463
        else:
J
Jiabin Yang 已提交
1464 1465 1466 1467 1468
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1469 1470 1471 1472 1473 1474
            helper.append_op(
                type='cross',
                inputs={'X': x, 'Y': y},
                outputs={'Out': out},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1475
            return out
1476 1477


1478
def cholesky(x, upper=False, name=None):
1479
    r"""
G
Guo Sheng 已提交
1480
    Computes the Cholesky decomposition of one symmetric positive-definite
1481 1482
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1483 1484 1485 1486 1487 1488
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1489
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1490 1491 1492 1493 1494
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1495 1496
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1497 1498

    Returns:
1499 1500
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1501

G
Guo Sheng 已提交
1502 1503 1504 1505 1506 1507
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1508 1509 1510
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1511
            x = paddle.to_tensor(x_data)
1512
            out = paddle.linalg.cholesky(x, upper=False)
1513
            print(out)
1514 1515 1516
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1517 1518

    """
H
hong 已提交
1519
    if in_dygraph_mode():
1520
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1521 1522

    if _in_legacy_dygraph():
1523
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1524

G
Guo Sheng 已提交
1525 1526 1527 1528
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1529 1530 1531 1532 1533 1534
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
G
Guo Sheng 已提交
1535 1536 1537
    return out


1538 1539 1540 1541
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1542
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1543
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1544 1545

    Args:
1546 1547 1548 1549
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1550
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1551 1552
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1553
            the lower triangular of the matrix to compute.
1554 1555 1556 1557
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1558

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1575

1576
    """
1577 1578 1579 1580 1581 1582 1583
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1584 1585 1586
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1587

1588 1589 1590 1591 1592 1593
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1594
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1595 1596

    if _in_legacy_dygraph():
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        return _legacy_C_ops.matrix_rank(
            x,
            tol_tensor,
            "tol",
            tol_attr,
            'hermitian',
            hermitian,
            'use_default_tol',
            use_default_tol,
        )
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1644 1645 1646
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1647 1648 1649
    return out


1650 1651 1652 1653 1654 1655 1656 1657 1658
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1659 1660
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1661 1662 1663 1664
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1665
        Tensor: The product Tensor.
1666 1667

    Examples:
S
sunzhongkai588 已提交
1668 1669 1670
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1671

S
sunzhongkai588 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1681 1682 1683 1684 1685 1686
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1687

1688
    """
Y
yaoxuefeng 已提交
1689 1690 1691 1692
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1693 1694 1695 1696
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1697 1698
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1699 1700 1701 1702
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1703 1704
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1705 1706 1707 1708
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1709

1710
    if in_dygraph_mode():
1711
        return _C_ops.bmm(x, y)
1712

Z
zhiboniu 已提交
1713
    if paddle.in_dynamic_mode():
1714
        return _legacy_C_ops.bmm(x, y)
1715 1716

    helper = LayerHelper('bmm', **locals())
1717 1718 1719
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1720 1721


1722
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1723
    """
1724
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1725 1726 1727
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1728
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1729
            should be float32, float64, int32, int64.
1730 1731 1732 1733
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1734 1735

    Returns:
1736
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1737

1738
    Examples:
Q
Qi Li 已提交
1739
        .. code-block:: python
1740

Q
Qi Li 已提交
1741
            import paddle
1742

1743
            inputs = paddle.to_tensor([1, 2, 1])
1744 1745
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1746
    """
H
hong 已提交
1747
    if in_dygraph_mode():
1748
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1749 1750

    if _in_legacy_dygraph():
1751 1752 1753
        return _legacy_C_ops.histogram(
            input, "bins", bins, "min", min, "max", max
        )
Q
Qi Li 已提交
1754 1755

    helper = LayerHelper('histogram', **locals())
1756 1757 1758
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
    )
Q
Qi Li 已提交
1759
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1760 1761 1762 1763 1764 1765
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins, 'min': min, 'max': max},
    )
Q
Qi Li 已提交
1766
    return out
S
smallv0221 已提交
1767 1768 1769 1770


def bincount(x, weights=None, minlength=0, name=None):
    """
1771
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1799 1800 1801
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1802
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1803 1804 1805 1806 1807 1808

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
1809 1810 1811 1812 1813 1814
        check_variable_and_dtype(
            weights,
            'Weights',
            ['int32', 'int64', 'float32', 'float64'],
            'bincount',
        )
S
smallv0221 已提交
1815 1816 1817
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1818 1819 1820 1821 1822 1823
    helper.append_op(
        type='bincount',
        inputs={'X': x, 'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength},
    )
S
smallv0221 已提交
1824
    return out
1825 1826 1827 1828 1829 1830 1831


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1832
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1833
            should be one of float32, float64.
F
furnace 已提交
1834
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1850 1851
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1852
            out = paddle.mv(x, vec)
1853 1854 1855
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1856
    """
J
Jiabin Yang 已提交
1857
    if in_dygraph_mode():
1858
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1859 1860
    else:
        if _in_legacy_dygraph():
1861
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1862 1863
            return out
        else:
1864

J
Jiabin Yang 已提交
1865 1866 1867
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
1868 1869 1870
                    check_variable_and_dtype(
                        val, name, ['float32', 'float64'], 'mv'
                    )
J
Jiabin Yang 已提交
1871 1872 1873 1874
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1875 1876 1877 1878
                        "x should be 2-dimensional. But received x's dimention: {}".format(
                            x_shape
                        )
                    )
J
Jiabin Yang 已提交
1879 1880
                if len(vec_shape) != 1:
                    raise ValueError(
1881 1882 1883 1884
                        "vec should be 1-dimensional. But received vec's dimention: {}".format(
                            vec_shape
                        )
                    )
J
Jiabin Yang 已提交
1885 1886 1887 1888 1889

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1890 1891 1892
            helper.append_op(
                type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
            )
J
Jiabin Yang 已提交
1893
            return out
1894 1895


1896
def det(x, name=None):
H
huangxu96 已提交
1897 1898
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1899

H
huangxu96 已提交
1900
    Args:
1901 1902 1903 1904
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1905
    Returns:
1906
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1907

1908
    Examples:
H
huangxu96 已提交
1909 1910
        .. code-block:: python

1911
            import paddle
H
huangxu96 已提交
1912

1913
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1914

1915
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1916

1917
            print(A)
1918

1919
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1920

1921

H
huangxu96 已提交
1922
    """
C
chentianyu03 已提交
1923
    if in_dygraph_mode():
1924
        return _C_ops.det(x)
C
chentianyu03 已提交
1925 1926

    if _in_legacy_dygraph():
1927
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1928 1929 1930 1931

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
1932 1933 1934 1935
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1936

1937 1938 1939 1940 1941 1942
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1943 1944 1945
    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1946 1947 1948
    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1949 1950 1951
    return out


1952
def slogdet(x, name=None):
H
huangxu96 已提交
1953 1954 1955
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1956

H
huangxu96 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1968
    Examples:
1969
        .. code-block:: python
H
huangxu96 已提交
1970

1971
            import paddle
H
huangxu96 已提交
1972

1973
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1974

1975
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1976

1977
            print(A)
1978

1979 1980
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1981 1982

    """
1983
    if in_dygraph_mode():
1984
        return _C_ops.slogdet(x)
1985 1986

    elif paddle.in_dynamic_mode():
1987
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1988 1989 1990 1991

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
1992 1993 1994 1995
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1996

1997 1998 1999 2000 2001 2002
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
2003 2004 2005
    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2006 2007 2008
    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
2009 2010 2011
    return out


2012 2013
def svd(x, full_matrices=False, name=None):
    r"""
2014 2015 2016 2017 2018
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
2019 2020
        X = U * diag(S) * VT

2021 2022
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
2023
            where `...` is zero or more batch dimensions. N and M can be arbitraty
2024 2025 2026 2027
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
2028
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
2029
            If full_matrices = False, svd op will use a economic method to store U and V.
2030
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
2031
        name (str, optional): Name for the operation (optional, default is None).
2032
            For more information, please refer to :ref:`api_guide_Name`.
2033 2034

    Returns:
2035
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2036

2037 2038 2039 2040
    Examples:
        .. code-block:: python

            import paddle
2041 2042 2043

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
2044
            u, s, vh = paddle.linalg.svd(x)
2045 2046 2047 2048 2049
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

2050
            print (s)
2051
            #S = [8.14753743, 0.78589688]
2052
            print (vh)
2053 2054
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
2055

2056
            # one can verify : U * S * VT == X
2057
            #                  U * UH == I
2058
            #                  V * VH == I
2059
    """
2060
    if in_dygraph_mode():
2061
        return _C_ops.svd(x, full_matrices)
2062
    if _in_legacy_dygraph():
2063
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
2075
        outputs={'U': u, 'VH': vh, 'S': s},
2076 2077
        attrs=attrs,
    )
2078 2079 2080
    return u, s, vh


2081 2082 2083
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
2084

2085 2086 2087 2088 2089
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2090

2091 2092
    Specifically,

2093
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
2094

2095 2096
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

2097
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
2098 2099 2100 2101 2102 2103

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2104
        name (str, optional): Name for the operation (optional, default is None).
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2119
            print(paddle.linalg.matrix_power(x, 2))
2120 2121 2122 2123
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2124
            print(paddle.linalg.matrix_power(x, 0))
2125 2126 2127 2128
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2129
            print(paddle.linalg.matrix_power(x, -2))
2130 2131 2132 2133
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2134
    if in_dygraph_mode():
2135
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2136 2137

    if _in_legacy_dygraph():
2138
        return _legacy_C_ops.matrix_power(x, "n", n)
2139 2140 2141 2142 2143

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2144 2145 2146 2147 2148 2149
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n},
    )
2150
    return out
2151 2152


2153 2154 2155 2156 2157 2158 2159
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2160 2161
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2162
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2163
            If mode = "reduced", qr op will return reduced Q and R matrices,
2164
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2165
            If mode = "complete", qr op will return complete Q and R matrices,
2166 2167 2168 2169 2170
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2171

2172
    Returns:
2173
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2174
        If mode = "r", qr will return a tensor which represents R.
2175 2176

    Examples:
2177 2178
        .. code-block:: python

2179
            import paddle
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2192 2193

            # one can verify : X = Q * R ;
2194
    """
Y
Yulong Ao 已提交
2195
    if in_dygraph_mode():
2196
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2197 2198 2199 2200 2201
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2202
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2214 2215 2216
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
    )
2217 2218 2219 2220 2221 2222
    if mode == "r":
        return r
    else:
        return q, r


2223 2224
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2225
    Computes the LU factorization of an N-D(N>=2) matrix x.
2226

2227
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2228 2229 2230 2231
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2232 2233 2234 2235 2236 2237

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2249

2250
    Returns:
2251
        factorization (Tensor), LU matrix, the factorization of input X.
2252

2253 2254 2255
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2256

2257 2258 2259
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2260

2261 2262

    Examples:
2263 2264
        .. code-block:: python

2265
            import paddle
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2281

2282 2283 2284 2285 2286 2287
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2288
            # [1., 0., 0.]]),
2289 2290 2291 2292
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2293
            # [0.60000000, 0.50000000]]),
2294 2295 2296 2297 2298
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2299 2300

            # one can verify : X = P @ L @ U ;
2301
    """
L
Lin Manhui 已提交
2302 2303

    if in_dygraph_mode():
2304
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2305
    elif paddle.in_dynamic_mode():
2306
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2307 2308 2309 2310 2311 2312 2313 2314
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2315 2316 2317 2318 2319 2320
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2321 2322 2323 2324 2325 2326 2327 2328
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2329
    Unpack L U and P to single matrix tensor .
2330 2331 2332
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2333 2334 2335 2336 2337

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2351

2352
    Returns:
2353
        P (Tensor), Permutation matrix P of lu factorization.
2354

2355
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2356

2357
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2358

2359 2360

    Examples:
2361 2362
        .. code-block:: python

2363
            import paddle
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2379

2380 2381 2382 2383 2384 2385
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2386
            # [1., 0., 0.]]),
2387 2388 2389 2390
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2391
            # [0.60000000, 0.50000000]]),
2392 2393 2394 2395 2396
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2397
            # one can verify : X = P @ L @ U ;
2398 2399
    """

2400
    if in_dygraph_mode():
2401
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2402 2403
        return P, L, U

Z
zhiboniu 已提交
2404
    if paddle.in_dynamic_mode():
2405 2406 2407
        P, L, U = _legacy_C_ops.lu_unpack(
            x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots
        )
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2419 2420 2421 2422 2423 2424
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x, 'Pivots': y},
        outputs={'Pmat': p, 'L': l, 'U': u},
        attrs=attrs,
    )
2425 2426 2427
    return p, l, u


L
Lijunhui 已提交
2428 2429
def eig(x, name=None):
    """
2430
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2431

2432 2433 2434 2435 2436 2437
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2438 2439 2440 2441

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2442
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2456
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2457
                               [9.956216,  8.749598,  6.066444 ],
2458
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2459
            w, v = paddle.linalg.eig(x)
2460
            print(v)
L
Lijunhui 已提交
2461 2462 2463 2464 2465 2466 2467 2468
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2469
            print(w)
L
Lijunhui 已提交
2470 2471 2472 2473
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2474
    if in_dygraph_mode():
2475
        return _C_ops.eig(x)
2476
    elif paddle.in_dynamic_mode():
2477
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2478 2479
        return w, v

2480 2481 2482
    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
    )
L
Lijunhui 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2495 2496 2497
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2498 2499 2500

    Warning:
        The gradient kernel of this operator does not yet developed.
2501 2502 2503 2504
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2505
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2506
            Its data type should be float32, float64, complex64, or complex128.
2507
        name (str, optional): Name for the operation (optional, default is None).
2508
            For more information, please refer to :ref:`api_guide_Name`.
2509

2510
    Returns:
2511 2512
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2513 2514 2515 2516 2517

    Examples:
        .. code-block:: python

            import paddle
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

2531 2532 2533
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2534 2535 2536 2537

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2538 2539 2540 2541
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2542 2543 2544

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2545 2546 2547 2548
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2549

R
Ruibiao Chen 已提交
2550
    if in_dygraph_mode():
2551
        return _C_ops.eigvals(x)
2552 2553
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2554 2555 2556 2557 2558 2559 2560

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2561 2562 2563 2564
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2565
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2602 2603
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2604
        out = paddle.linalg.multi_dot([A, B])
2605
        print(out.shape)
2606 2607 2608
        # [3, 5]

        # A * B * C
2609 2610 2611
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2612
        out = paddle.linalg.multi_dot([A, B, C])
2613
        print(out.shape)
2614 2615 2616
        # [10, 7]

    """
2617
    if _in_legacy_dygraph():
2618
        return _legacy_C_ops.multi_dot(x)
2619
    if in_dygraph_mode():
2620
        return _C_ops.multi_dot(x)
2621 2622 2623

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
2624 2625 2626 2627 2628 2629
        check_variable_and_dtype(
            item,
            'x[' + str(id) + ']',
            ['float16', 'float32', 'float64'],
            'multi_dot',
        )
2630 2631
        if item.dtype != x[0].dtype:
            raise TypeError(
2632 2633
                "All the Tensors in the input must have the same data type."
            )
2634 2635 2636 2637 2638 2639

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2640 2641 2642 2643


def eigh(x, UPLO='L', name=None):
    """
2644
    Compute the eigenvalues and eigenvectors of a
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2656 2657 2658 2659
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2660 2661 2662 2663 2664 2665

    Examples:
        .. code-block:: python

            import paddle

2666
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2667
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2668 2669 2670 2671 2672 2673 2674
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2675
    if in_dygraph_mode():
2676
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2677 2678

    if _in_legacy_dygraph():
2679
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2680 2681 2682 2683 2684 2685

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
2686 2687
                "length of Input(input) is %s." % len(x.shape)
            )
2688 2689
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2690 2691 2692 2693
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
2694
        if UPLO != 'L' and UPLO != 'U':
2695
            raise ValueError(
2696 2697
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
2698 2699 2700 2701

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2702 2703 2704
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh'
    )
2705 2706 2707 2708

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2709 2710 2711 2712 2713 2714
    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO},
    )
2715
    return out_value, out_vector
A
andyjpaddle 已提交
2716 2717 2718 2719


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2720
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2731

A
andyjpaddle 已提交
2732 2733 2734
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2735 2736 2737
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2738 2739 2740 2741
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2742
        rcond(Tensor, optional): the tolerance value to determine
2743
            when is a singular value zero. Default:1e-15.
2744 2745

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2746
            if complex or symmetric if real. Default: False.
2747 2748

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2749
            the layer will be named automatically.
2750

A
andyjpaddle 已提交
2751
    Returns:
2752
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2753
        pseudo inverse of x. Its shape should be (*, n, m).
2754

A
andyjpaddle 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2781 2782 2783
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2784 2785
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2786 2787 2788 2789
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2790

2791 2792 2793 2794 2795 2796
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2797
            st = _C_ops.unsqueeze(singular, [-2])
2798 2799 2800

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2801
            v = _C_ops.transpose(vt, perm)
2802 2803

            out_1 = v * st
2804
            out_2 = _C_ops.matmul(out_1, u, False, True)
2805 2806 2807
            return out_2
        else:
            # combine eigh and matmul op
2808
            s, u = _C_ops.eigh(x, 'UPLO')
2809
            s_abs = paddle.abs(s)
2810
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2822
            st = _C_ops.unsqueeze(singular, [-2])
2823 2824

            out_1 = u * st
2825 2826
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2827 2828 2829
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2830 2831
        if not hermitian:
            # combine svd and matmul op
2832
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
2833 2834 2835
            max_singular_val = _legacy_C_ops.reduce_max(
                s, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2836 2837 2838 2839 2840 2841
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2842 2843 2844 2845 2846
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2847
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2848 2849 2850

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2851
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2852 2853

            out_1 = v * st
2854
            if in_dygraph_mode():
2855
                out_2 = _C_ops.matmul(out_1, u, False, True)
2856
            else:
2857 2858 2859
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2860 2861 2862
            return out_2
        else:
            # combine eigh and matmul op
2863
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2864
            s_abs = paddle.abs(s)
2865 2866 2867
            max_singular_val = _legacy_C_ops.reduce_max(
                s_abs, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2868 2869 2870 2871 2872 2873
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2874 2875 2876 2877 2878
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2879
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2880 2881

            out_1 = u * st
2882
            u_conj = _legacy_C_ops.conj(u)
2883
            if in_dygraph_mode():
2884
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2885
            else:
2886 2887 2888
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u_conj, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2902
                outputs={'U': u, 'VH': vt, 'S': s},
2903 2904
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2905 2906

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2907 2908 2909 2910 2911 2912
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2913

2914
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2915 2916
            cutoff = rcond * max_singular_val
            y = float('inf')
2917
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2918 2919

            condition = s > cutoff
2920 2921 2922 2923 2924
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2925 2926 2927

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2928 2929 2930 2931 2932 2933
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2934 2935 2936 2937 2938

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2939 2940 2941 2942 2943 2944
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2945 2946

            out_1 = helper.create_variable_for_type_inference(dtype)
2947 2948 2949 2950 2951 2952
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2953 2954 2955 2956 2957
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2958
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2959
                outputs={'Out': out_2},
2960
                attrs={'trans_x': False, 'trans_y': True},
2961
            )
A
andyjpaddle 已提交
2962 2963 2964 2965 2966
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2967 2968 2969 2970 2971
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2982 2983 2984 2985 2986 2987
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2988
            s_abs = helper.create_variable_for_type_inference(s_type)
2989 2990 2991
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2992
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2993 2994 2995 2996 2997 2998
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2999

3000
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
3001 3002
            cutoff = rcond * max_singular_val
            y = float('inf')
3003
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
3004 3005

            condition = s_abs > cutoff
3006 3007 3008 3009 3010
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
3011 3012 3013

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
3014 3015 3016 3017 3018 3019
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3020 3021

            out_1 = helper.create_variable_for_type_inference(dtype)
3022 3023 3024 3025 3026 3027
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3028 3029 3030
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
3031 3032 3033
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3034 3035 3036 3037

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
3038
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3039
                outputs={'Out': out_2},
3040
                attrs={'trans_x': False, 'trans_y': True},
3041
            )
A
andyjpaddle 已提交
3042
            return out_2
W
Weilong Wu 已提交
3043 3044 3045 3046 3047 3048 3049


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3050

W
Weilong Wu 已提交
3051 3052
    .. math::
        Out = X^-1 * Y
3053 3054

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
3055

W
Weilong Wu 已提交
3056 3057 3058 3059 3060
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3061
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3062
            For more information, please refer to :ref:`api_guide_Name`.
3063

W
Weilong Wu 已提交
3064
    Returns:
3065
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3066
        Its data type should be the same as that of `x`.
3067

W
Weilong Wu 已提交
3068
    Examples:
3069

3070
        .. code-block:: python
3071

3072 3073 3074
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
3075

3076 3077 3078 3079 3080
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
3081

3082 3083
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
3084
    """
3085
    if in_dygraph_mode():
3086
        return _C_ops.solve(x, y)
3087 3088

    if _in_legacy_dygraph():
3089
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
3090 3091 3092 3093 3094 3095 3096

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3097 3098 3099
    helper.append_op(
        type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
    )
W
Weilong Wu 已提交
3100
    return out
3101 3102


3103 3104 3105
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3106
    r"""
3107 3108
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3122 3123 3124 3125

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3126
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3127
            zero or more batch dimensions. Its data type should be float32 or float64.
3128
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3129 3130
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3131
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3132 3133 3134 3135 3136 3137 3138 3139
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3140
        .. code-block:: python
3141

3142 3143 3144 3145
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3146

3147 3148 3149 3150 3151 3152
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3153

3154 3155
            print(out)
            # [7, -2, -5]
3156
    """
H
hong 已提交
3157
    if in_dygraph_mode():
3158
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3159

Z
zhiboniu 已提交
3160
    if paddle.in_dynamic_mode():
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        return _legacy_C_ops.triangular_solve(
            x,
            y,
            'upper',
            upper,
            'transpose',
            transpose,
            'unitriangular',
            unitriangular,
        )
3171 3172 3173 3174 3175 3176 3177

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
    helper.append_op(
        type='triangular_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular,
        },
    )
3188 3189 3190
    return out


Z
zhiboniu 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3201
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3211
        .. code-block:: python
Z
zhiboniu 已提交
3212

3213
            import paddle
Z
zhiboniu 已提交
3214

3215 3216 3217 3218 3219
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3220

3221 3222
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3223
    """
H
hong 已提交
3224
    if in_dygraph_mode():
3225
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3226 3227

    if _in_legacy_dygraph():
3228
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3229 3230 3231 3232 3233 3234

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3235 3236 3237 3238 3239 3240
    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
Z
zhiboniu 已提交
3241 3242 3243
    return out


3244 3245
def eigvalsh(x, UPLO='L', name=None):
    """
3246
    Computes the eigenvalues of a
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3264
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3265 3266
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3267 3268
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3269
    """
3270
    if in_dygraph_mode():
3271
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3272 3273 3274
        return values

    elif paddle.in_dynamic_mode():
3275
        is_test = x.stop_gradient
3276
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3277 3278 3279 3280 3281 3282 3283
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
3284 3285
                "length of Input(input) is %s." % len(x.shape)
            )
3286 3287
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3288 3289 3290 3291
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
3292
        if UPLO != 'L' and UPLO != 'U':
3293
            raise ValueError(
3294 3295
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
3296 3297 3298 3299

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
3300 3301 3302 3303 3304 3305
    check_variable_and_dtype(
        x,
        'dtype',
        ['float32', 'float64', 'complex64', 'complex128'],
        'eigvalsh',
    )
3306 3307 3308 3309 3310

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3311 3312 3313 3314 3315 3316
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO, 'is_test': is_test},
    )
3317
    return out_value
3318 3319


3320 3321 3322 3323 3324 3325 3326 3327
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3328
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3329
            should be one of float32, float64.
3330 3331
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3332
            machine precision of x_dtype.
3333 3334 3335
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3336
            for CUDA inputs.
3337
        name(str, optional): The default value is None. Normally there is no need for user to set
3338 3339 3340
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3341 3342 3343 3344 3345 3346 3347
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3380 3381 3382
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3383 3384 3385 3386
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3387 3388 3389 3390
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3391 3392 3393 3394
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3395 3396 3397 3398
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3412
    if _non_static_mode():
3413
        if in_dygraph_mode():
3414
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3415 3416
                x, y, rcond, driver
            )
3417
        else:
3418
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3419 3420
                x, y, 'rcond', rcond, 'driver', driver
            )
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3431 3432 3433 3434 3435 3436
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
3437 3438 3439 3440 3441 3442

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
    helper.append_op(
        type='lstsq',
        inputs={'X': x, 'Y': y},
        outputs={
            'Solution': solution,
            'Residuals': residuals,
            'Rank': rank,
            'SingularValues': singular_values,
        },
        attrs={'rcond': rcond, 'driver': driver},
    )
3454 3455 3456 3457 3458 3459 3460 3461

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3462 3463 3464 3465


def corrcoef(x, rowvar=True, name=None):
    """
3466

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3490

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3505 3506
            "length of Input(input) is %s." % len(x.shape)
        )
3507 3508 3509
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3510
    if c.ndim == 0:
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3525 3526 3527
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3528 3529 3530 3531
    else:
        c = paddle.clip(c, -1, 1)

    return c