Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
52b45007
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
52b45007
编写于
9月 26, 2021
作者:
Z
zhangkaihuo
提交者:
GitHub
9月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update multi_dot exposure rules (#36018)
上级
c330c3d9
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
80 addition
and
78 deletion
+80
-78
python/paddle/__init__.py
python/paddle/__init__.py
+0
-1
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
+10
-8
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-0
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+69
-69
未找到文件。
python/paddle/__init__.py
浏览文件 @
52b45007
...
...
@@ -103,7 +103,6 @@ from .tensor.linalg import histogram # noqa: F401
from
.tensor.linalg
import
mv
# noqa: F401
from
.tensor.linalg
import
det
# noqa: F401
from
.tensor.linalg
import
slogdet
# noqa: F401
from
.tensor.linalg
import
multi_dot
# noqa: F401
from
.tensor.linalg
import
matrix_power
# noqa: F401
from
.tensor.linalg
import
svd
# noqa: F401
from
.tensor.linalg
import
solve
# noqa: F401
...
...
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
浏览文件 @
52b45007
...
...
@@ -198,32 +198,34 @@ class TestMultiDotOpError(unittest.TestCase):
paddle
.
static
.
Program
()):
# The inputs type of multi_dot must be list matrix.
input1
=
12
self
.
assertRaises
(
TypeError
,
paddle
.
multi_dot
,
[
input1
,
input1
])
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
multi_dot
,
[
input1
,
input1
])
# The inputs dtype of multi_dot must be float64, float64 or float16.
input2
=
paddle
.
static
.
data
(
name
=
'input2'
,
shape
=
[
10
,
10
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
paddle
.
multi_dot
,
[
input2
,
input2
])
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
multi_dot
,
[
input2
,
input2
])
# the number of tensor must be larger than 1
x0
=
paddle
.
static
.
data
(
name
=
'x0'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x0
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x0
])
#the first tensor must be 1D or 2D
x1
=
paddle
.
static
.
data
(
name
=
'x1'
,
shape
=
[
3
,
2
,
3
],
dtype
=
"float64"
)
x2
=
paddle
.
static
.
data
(
name
=
'x2'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x1
,
x2
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x1
,
x2
])
#the last tensor must be 1D or 2D
x3
=
paddle
.
static
.
data
(
name
=
'x3'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
x4
=
paddle
.
static
.
data
(
name
=
'x4'
,
shape
=
[
3
,
2
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x3
,
x4
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x3
,
x4
])
#the tensor must be 2D, except first and last tensor
x5
=
paddle
.
static
.
data
(
name
=
'x5'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
x6
=
paddle
.
static
.
data
(
name
=
'x6'
,
shape
=
[
2
],
dtype
=
"float64"
)
x7
=
paddle
.
static
.
data
(
name
=
'x7'
,
shape
=
[
2
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x5
,
x6
,
x7
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x5
,
x6
,
x7
])
class
APITestMultiDot
(
unittest
.
TestCase
):
...
...
@@ -232,7 +234,7 @@ class APITestMultiDot(unittest.TestCase):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x0
=
paddle
.
static
.
data
(
name
=
'x0'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
x1
=
paddle
.
static
.
data
(
name
=
'x1'
,
shape
=
[
2
,
3
],
dtype
=
'float64'
)
result
=
paddle
.
multi_dot
([
x0
,
x1
])
result
=
paddle
.
linalg
.
multi_dot
([
x0
,
x1
])
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
data1
=
np
.
random
.
rand
(
3
,
2
).
astype
(
"float64"
)
data2
=
np
.
random
.
rand
(
2
,
3
).
astype
(
"float64"
)
...
...
@@ -254,7 +256,7 @@ class APITestMultiDot(unittest.TestCase):
input_array2
=
np
.
random
.
rand
(
4
,
3
).
astype
(
"float64"
)
data1
=
paddle
.
to_tensor
(
input_array1
)
data2
=
paddle
.
to_tensor
(
input_array2
)
out
=
paddle
.
multi_dot
([
data1
,
data2
])
out
=
paddle
.
linalg
.
multi_dot
([
data1
,
data2
])
expected_result
=
np
.
linalg
.
multi_dot
([
input_array1
,
input_array2
])
self
.
assertTrue
(
np
.
allclose
(
expected_result
,
out
.
numpy
()))
...
...
python/paddle/tensor/__init__.py
浏览文件 @
52b45007
...
...
@@ -387,6 +387,7 @@ tensor_method_func = [ #noqa
'bitwise_not'
,
'broadcast_tensors'
,
'uniform_'
,
'multi_dot'
,
'solve'
,
]
...
...
python/paddle/tensor/linalg.py
浏览文件 @
52b45007
...
...
@@ -551,8 +551,8 @@ def cond(x, p=None, name=None):
Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.
Args:
x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
And the input data type could be ``float32`` or ``float64``.
p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
`inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
...
...
@@ -607,7 +607,7 @@ def cond(x, p=None, name=None):
# out_minus_inf.numpy() [1.]
a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
# a.numpy()
# a.numpy()
# [[[ 0.14063153 -0.996288 0.7996131 -0.02571543]
# [-0.16303636 1.5534962 -0.49919784 -0.04402903]
# [-1.1341571 -0.6022629 0.5445269 0.29154757]
...
...
@@ -975,8 +975,8 @@ def t(input, name=None):
return
out
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'transpose'
)
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'transpose'
)
helper
=
LayerHelper
(
't'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
...
...
@@ -1108,17 +1108,17 @@ def matrix_rank(x, tol=None, hermitian=False, name=None):
r
"""
Computes the rank of a matrix.
The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
Args:
x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
the lower triangular of the matrix to compute.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
...
...
@@ -1225,7 +1225,7 @@ def bmm(x, y, name=None):
#output value:
#[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]
out_np = out.numpy()
"""
x_shape
=
x
.
shape
y_shape
=
y
.
shape
...
...
@@ -1360,7 +1360,7 @@ def det(x):
Returns:
y (Tensor):the determinant value of a square matrix or batches of square matrices.
Example
:
Example
s:
.. code-block:: python
import paddle
...
...
@@ -1370,10 +1370,10 @@ def det(x):
A = paddle.det(x)
print(A)
# [ 0.02547996, 2.52317095, -6.15900707])
"""
if
in_dygraph_mode
():
return
core
.
ops
.
determinant
(
x
)
...
...
@@ -1403,7 +1403,7 @@ def slogdet(x):
"""
Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
The determinant can be computed with ``sign * exp(logabsdet)
Supports input of float, double
Note that for matrices that have zero determinant, this returns ``(0, -inf)``
...
...
@@ -1415,7 +1415,7 @@ def slogdet(x):
y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
of the absolute value of determinant, respectively.
Example:
Example
s
:
.. code-block:: python
import paddle
...
...
@@ -1425,7 +1425,7 @@ def slogdet(x):
A = paddle.slogdet(x)
print(A)
# [[ 1. , 1. , -1. ],
# [-0.98610914, -0.43010661, -0.10872950]])
...
...
@@ -1461,19 +1461,19 @@ def svd(x, full_matrices=False, name=None):
Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:
.. math::
X = U * diag(S) * VT
X = U * diag(S) * VT
Args:
x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
where `...` is zero or more batch dimensions. N and M can be arbitraty
positive number. Note that if x is sigular matrices, the grad is numerical
instable. The data type of x should be float32 or float64.
full_matrices (bool): A flag to control the behavor of svd.
If full_matrices = True, svd op will compute full U and V matrics,
positive number. Note that if x is sigular matrices, the grad is numerical
instable. The data type of x should be float32 or float64.
full_matrices (bool): A flag to control the behavor of svd.
If full_matrices = True, svd op will compute full U and V matrics,
which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
If full_matrices = False, svd op will use a economic method to store U and V.
If full_matrices = False, svd op will use a economic method to store U and V.
which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
...
...
@@ -1497,9 +1497,9 @@ def svd(x, full_matrices=False, name=None):
print (vh)
#VT= [[ 0.51411221, 0.85772294],
# [ 0.85772294, -0.51411221]]
# one can verify : U * S * VT == X
# U * UH == I
# U * UH == I
# V * VH == I
"""
...
...
@@ -1526,7 +1526,7 @@ def svd(x, full_matrices=False, name=None):
def
matrix_power
(
x
,
n
,
name
=
None
):
r
"""
Computes the n-th power of a square matrix or a batch of square matrices.
Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
an exponent, the equation should be:
...
...
@@ -1596,27 +1596,27 @@ def matrix_power(x, n, name=None):
def
eigvals
(
x
,
name
=
None
):
"""
Compute the eigenvalues of one or more general matrices.
Warning:
The gradient kernel of this operator does not yet developed.
Warning:
The gradient kernel of this operator does not yet developed.
If you need back propagation through this operator, please replace it with paddle.linalg.eig.
Args:
x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
Its data type should be float32, float64, complex64, or complex128.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
The eigenvalues are complex-valued even when `x` is real.
Examples:
.. code-block:: python
import paddle
paddle.set_device("cpu")
paddle.seed(1234)
...
...
@@ -1630,8 +1630,8 @@ def eigvals(x, name=None):
"""
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'eigvals'
)
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'eigvals'
)
x_shape
=
list
(
x
.
shape
)
if
len
(
x_shape
)
<
2
:
...
...
@@ -1657,7 +1657,7 @@ def multi_dot(x, name=None):
"""
Multi_dot is an operator that calculates multiple matrix multiplications.
Supports inputs of float
, double and float16
dtypes. This function does not
Supports inputs of float
16(only GPU support), float32 and float64
dtypes. This function does not
support batched inputs.
The input tensor in [x] must be 2-D except for the first and last can be 1-D.
...
...
@@ -1699,7 +1699,7 @@ def multi_dot(x, name=None):
B_data = np.random.random([4, 5]).astype(np.float32)
A = paddle.to_tensor(A_data)
B = paddle.to_tensor(B_data)
out = paddle.multi_dot([A, B])
out = paddle.
linalg.
multi_dot([A, B])
print(out.numpy().shape)
# [3, 5]
...
...
@@ -1710,7 +1710,7 @@ def multi_dot(x, name=None):
A = paddle.to_tensor(A_data)
B = paddle.to_tensor(B_data)
C = paddle.to_tensor(C_data)
out = paddle.multi_dot([A, B, C])
out = paddle.
linalg.
multi_dot([A, B, C])
print(out.numpy().shape)
# [10, 7]
...
...
@@ -1735,7 +1735,7 @@ def multi_dot(x, name=None):
def
eigh
(
x
,
UPLO
=
'L'
,
name
=
None
):
"""
Compute the eigenvalues and eigenvectors of a
Compute the eigenvalues and eigenvectors of a
complex Hermitian (conjugate symmetric) or a real symmetric matrix.
Args:
...
...
@@ -1804,7 +1804,7 @@ def eigh(x, UPLO='L', name=None):
def
pinv
(
x
,
rcond
=
1e-15
,
hermitian
=
False
,
name
=
None
):
r
"""
Calculate pseudo inverse via SVD(singular value decomposition)
Calculate pseudo inverse via SVD(singular value decomposition)
of one matrix or batches of regular matrix.
.. math::
...
...
@@ -1815,30 +1815,30 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
else:
x = u * s * ut (eigh)
out = u * 1/s * u.conj().transpose(-2,-1)
If x is hermitian or symmetric matrix, svd will be replaced with eigh.
Args:
x(Tensor): The input tensor. Its shape should be (*, m, n)
where * is zero or more batch dimensions. m and n can be
arbitraty positive number. The data type of x should be
x(Tensor): The input tensor. Its shape should be (*, m, n)
where * is zero or more batch dimensions. m and n can be
arbitraty positive number. The data type of x should be
float32 or float64 or complex64 or complex128. When data
type is complex64 or cpmplex128, hermitian should be set
True.
rcond(Tensor, optional): the tolerance value to determine
when is a singular value zero. Defalut:1e-15.
hermitian(bool, optional): indicates whether x is Hermitian
rcond(Tensor, optional): the tolerance value to determine
when is a singular value zero. Defalut:1e-15.
hermitian(bool, optional): indicates whether x is Hermitian
if complex or symmetric if real. Default: False.
name(str|None): A name for this layer(optional). If set None,
name(str|None): A name for this layer(optional). If set None,
the layer will be named automatically.
Returns:
Tensor: The tensor with same data type with x. it represents
Tensor: The tensor with same data type with x. it represents
pseudo inverse of x. Its shape should be (*, n, m).
Examples:
.. code-block:: python
...
...
@@ -1998,8 +1998,8 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
helper
=
LayerHelper
(
'pinv'
,
**
locals
())
dtype
=
x
.
dtype
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'pinv'
)
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'pinv'
)
if
dtype
==
paddle
.
complex128
:
s_type
=
'float64'
...
...
@@ -2079,40 +2079,40 @@ def solve(x, y, name=None):
Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
a vector/matrix or a batch of vectors/matrices, the equation should be:
.. math::
Out = X^-1 * Y
Specifically,
- This system of linear equations has one solution if and only if input 'X' is invertible.
Args:
x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
more batch dimensions. Its data type should be float32 or float64.
y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
more batch dimensions. Its data type should be float32 or float64.
name(str, optional): Name for the operation (optional, default is None).
name(str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
Its data type should be the same as that of `x`.
Examples:
.. code-block:: python
# a square system of linear equations:
# 2*X0 + X1 = 9
# X0 + 2*X1 = 8
import paddle
import numpy as np
np_x = np.array([[3, 1],[1, 2]])
np_y = np.array([9, 8])
x = paddle.to_tensor(np_x, dtype="float64")
y = paddle.to_tensor(np_y, dtype="float64")
out = paddle.linalg.solve(x, y)
print(out)
# [2., 3.])
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录