linalg.py 122.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dygraph_mode
28
from .creation import full
29 30 31
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
32

33 34
__all__ = []

35 36 37
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
90
        return _C_ops.transpose(x, perm)
91
    else:
92 93 94 95 96 97 98 99 100 101 102 103 104 105
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'transpose',
106
        )
107 108 109 110
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
111
            raise ValueError(
112 113 114 115
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
                "but received dimension of Input(x) is %s, "
                "the length of Input(perm) is %s." % (len(x.shape), len(perm))
116
            )
117 118 119 120 121 122 123
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
124

125 126 127 128 129 130 131 132 133 134
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
135 136


S
ShenLiang 已提交
137
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
138
    """
139 140
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
141
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
142

S
ShenLiang 已提交
143 144
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
145 146 147 148 149

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
150 151
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
152 153 154 155 156 157 158 159
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

160 161
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
162
      After the matrix multiply, the prepended dimension is removed.
163 164

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
165 166
      the matrix-vector product is obtained.

167 168 169 170 171 172 173 174 175
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
176
      out will be a (j, k, n, p) tensor.
177 178

    Args:
S
ShenLiang 已提交
179 180
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
181 182 183
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
184 185 186
            will be named automatically.

    Returns:
S
ShenLiang 已提交
187
        Tensor: The output Tensor.
188 189 190

    Examples:

C
Chen Long 已提交
191 192 193 194 195 196 197 198 199
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
200
            # (1,)
C
Chen Long 已提交
201 202 203 204 205 206

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
207
            # (10,)
C
Chen Long 已提交
208 209 210 211 212 213

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
214
            # (10, 5)
C
Chen Long 已提交
215 216 217 218 219 220

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
221
            # (10, 5, 5)
C
Chen Long 已提交
222 223 224 225 226 227

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
228
            # (10, 3, 5, 5)
229 230

    """
231
    if in_dygraph_mode():
232
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
233 234 235 236 237
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
254

255
        __check_input(x, y)
256

257 258 259 260 261 262 263 264 265
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
266 267


myq406450149's avatar
myq406450149 已提交
268
def norm(x, p='fro', axis=None, keepdim=False, name=None):
269
    """
S
swtkiwi 已提交
270

271 272 273
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

274
    Note:
275 276 277 278 279
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

280
    Args:
myq406450149's avatar
myq406450149 已提交
281
        x (Tensor): The input tensor could be N-D tensor, and the input data
282
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
283
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
284
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
285
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
286 287
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
288
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
289
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
290
            Default value is `None`.
291 292 293 294 295 296 297 298
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
299
        Tensor: results of norm operation on the specified axis of input tensor,
300
        it's data type is the same as input's Tensor.
301

302 303
    Examples:
        .. code-block:: python
304

305
            import paddle
306 307 308 309 310 311 312 313 314
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
315

316
            # compute frobenius norm along last two dimensions.
317
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
318 319
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
320

321
            # compute 2-order vector norm along last dimension.
322
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
323 324 325
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
326 327

            # compute 2-order  norm along [0,1] dimension.
328
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
329 330
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
331 332

            # compute inf-order  norm
333 334 335 336 337 338 339 340 341
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
342 343

            # compute -inf-order  norm
344 345 346 347 348 349 350 351 352
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
353 354
    """

myq406450149's avatar
myq406450149 已提交
355
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
356 357 358 359 360 361 362 363 364 365 366
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
367 368 369

        if in_dygraph_mode():
            if dim is None:
370 371
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
372 373
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
374
            if dim is None:
375 376 377
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
378
            )
379

380 381 382 383
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
384

385 386 387 388 389 390 391
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
392

393 394 395
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
396 397 398 399 400 401 402 403
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
404
        if in_dygraph_mode():
405 406
            if axis is None:
                axis = -1
407
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
408 409 410 411 412 413 414 415
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'p_norm'
            )
416

417 418 419 420 421 422 423 424 425 426 427
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
428

429 430 431 432 433 434 435
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
436

437 438 439
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
440
        if in_dygraph_mode():
441
            out = _C_ops.abs(input)
442
            if porder == np.float64('inf'):
443
                return _C_ops.max(out, axis, keepdim)
444
            else:
445
                return _C_ops.min(out, axis, keepdim)
446 447 448 449 450 451 452 453 454 455 456
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
457

458 459 460 461
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
462

463 464 465 466 467 468 469 470 471 472 473 474 475
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
476

477
            return reduce_out
myq406450149's avatar
myq406450149 已提交
478

479
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
480 481 482 483
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
484
        if in_dygraph_mode():
485 486 487
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
488
            out = _C_ops.pow(sum_out, float(1.0 / porder))
489 490
            return out

myq406450149's avatar
myq406450149 已提交
491 492
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
493 494
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
495
        abs_out = block.create_variable_for_type_inference(
496 497 498 499 500
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
501
        pow_out = block.create_variable_for_type_inference(
502 503
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
504

505 506 507 508 509 510
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
511
        sum_out = block.create_variable_for_type_inference(
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
530 531
        return out

532 533 534
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
535
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
536 537
            else:
                raise ValueError(
538 539
                    "only valid string values are 'fro', found {}".format(p)
                )
540
        elif isinstance(p, (int, float)):
541 542 543 544 545 546 547 548
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
549
        else:
550
            raise ValueError(
551 552
                "only valid p type is string or float, found {}".format(type(p))
            )
553

myq406450149's avatar
myq406450149 已提交
554 555
    if isinstance(axis, tuple):
        axis = list(axis)
556 557 558
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

559
    # calculate vector norm, where axis is int or list with only one integer
560
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
561 562
        if isinstance(p, str):
            if p == "fro":
563 564 565 566 567 568 569 570
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
571 572 573

            else:
                raise ValueError(
574 575
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
576
        elif isinstance(p, (int, float)):
577 578 579 580 581 582 583 584
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
585 586
        else:
            raise ValueError(
587 588 589 590 591
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
592 593
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
594 595 596
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
597 598
        elif p == 0:
            raise ValueError(
599 600 601 602
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
603
        else:
604 605 606
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
607 608
    else:
        raise ValueError(
609 610 611 612
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
613 614


615
def dist(x, y, p=2, name=None):
616
    r"""
S
swtkiwi 已提交
617

618
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
619
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
620
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
645 646 647 648 649 650 651

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
652
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
653 654 655 656 657

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
658
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
659 660 661 662 663 664 665 666 667 668 669 670

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
671 672
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
673
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
674 675
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
676 677

    Returns:
678
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
679 680 681 682 683 684

    Examples:
        .. code-block:: python

            import paddle

685 686
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
687 688
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
689

690 691
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
692

693 694
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
695

696 697
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
698
    """
H
hong 已提交
699
    if in_dygraph_mode():
700
        return _C_ops.dist(x, y, p)
H
hong 已提交
701

Z
Zhang Ting 已提交
702 703 704 705 706 707 708 709 710
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
711 712 713
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
714
    return out
L
liuwei1031 已提交
715 716


717 718 719 720 721 722
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
723 724
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
743 744
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
745 746 747

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
748 749
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
750 751 752

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
753 754
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
755 756 757

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
758 759
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
760 761 762

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
763 764
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
765 766 767

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
768 769
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
770 771 772

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
773 774
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
775 776

            # compute conditional number when order of the norm is inf
777 778 779
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
780 781

            # compute conditional number when order of the norm is -inf
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

798
            a_cond_fro = paddle.linalg.cond(a, p='fro')
799 800 801 802 803 804 805 806 807 808 809 810
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
811
            b_cond_2 = paddle.linalg.cond(b, p=2)
812 813
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
814 815 816

    """

817
    def mat_norm(input, porder=1.0, axis=None):
818 819 820 821 822
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
823 824
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
825
            sum_out = _C_ops.sum(abs_out, axis, None, False)
826 827

            if porder == 1 or porder == np.inf:
828
                return _C_ops.max(sum_out, [-1], False)
829
            if porder == -1 or porder == -np.inf:
830
                return _C_ops.min(sum_out, [-1], False)
831
        else:
832 833
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
834 835
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
836 837
                dtype=block.input_dtype()
            )
838
            sum_out = block.create_variable_for_type_inference(
839 840
                dtype=block.input_dtype()
            )
841
            out = block.create_variable_for_type_inference(
842 843 844 845 846 847 848 849 850 851 852
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
853
                    'keep_dim': False,
854 855 856
                    'reduce_all': reduce_all,
                },
            )
857
            if porder == 1 or porder == np.inf:
858 859 860 861 862 863
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
864
                        'keep_dim': False,
865 866 867
                        'reduce_all': reduce_all,
                    },
                )
868
            if porder == -1 or porder == -np.inf:
869 870 871 872 873 874
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
875
                        'keep_dim': False,
876 877 878
                        'reduce_all': reduce_all,
                    },
                )
879
            return out
880 881 882 883 884 885

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
886
        if in_dygraph_mode():
887
            pow_out = _C_ops.pow(input, porder)
888 889
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
890
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
891
        else:
892
            reduce_all = True if axis is None or axis == [] else False
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
939 940 941 942 943 944 945 946 947

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

948
        if in_dygraph_mode():
949
            if porder == "nuc":
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
973
                )
974 975 976 977 978 979 980
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
981
            block.append_op(
982
                type='reduce_max',
983
                inputs={'X': s},
984
                outputs={'Out': max_out},
985 986
                attrs={
                    'dim': axis,
987
                    'keep_dim': False,
988 989 990 991
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
992 993 994 995 996 997 998 999
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1000
            )
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1017 1018

    def empty_tensor(input, shape):
1019
        if in_dygraph_mode():
1020
            return input.reshape(shape)
1021 1022 1023
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1024 1025 1026

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1027
        raise ValueError(
1028 1029 1030
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1031
    if p is None:
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1044
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1045 1046
                    x_inv, porder=p, axis=[-2]
                )
1047
            if p in (np.inf, -np.inf):
1048
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1049 1050
                    x_inv, porder=p, axis=[-1]
                )
1051
        else:
1052 1053 1054 1055
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1056 1057 1058 1059 1060 1061
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1062 1063 1064
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1065 1066


L
liuwei1031 已提交
1067 1068 1069
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1070

1071
    Note:
1072 1073
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1074 1075

    Parameters:
S
ShenLiang 已提交
1076 1077
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1078 1079
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1080
    Returns:
1081
        Tensor: the calculated result Tensor.
1082

L
liuwei1031 已提交
1083 1084 1085 1086 1087
    Examples:

    .. code-block:: python

        import paddle
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1098
        z = paddle.dot(x, y)
1099
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1100 1101

    """
1102 1103
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1104 1105
    else:
        op_type = 'dot'
1106

1107 1108
        assert x is not None, 'x cannot be None in {}'.format(op_type)
        assert y is not None, 'y cannot be None in {}'.format(op_type)
L
liuwei1031 已提交
1109

1110 1111 1112 1113 1114 1115
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
        )
L
liuwei1031 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1126
        )
1127
        return out
1128 1129


Z
zhiboniu 已提交
1130 1131 1132 1133 1134
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1135
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1169 1170
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1184 1185
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1186 1187 1188
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1189 1190 1191 1192
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1193 1194 1195
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1196 1197
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1198 1199 1200 1201 1202 1203 1204 1205
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1206 1207 1208 1209 1210
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1211 1212 1213
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1214 1215 1216 1217
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1218 1219 1220
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1221 1222
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1241
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1253 1254
def t(input, name=None):
    """
1255 1256
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1257
    the paddle.transpose function which perm dimensions set 0 and 1.
1258

1259
    Args:
1260
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1261
        name(str, optional): The default value is None.  Normally there is no need for
1262 1263
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1264
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1265

1266
    Examples:
1267

1268 1269 1270
        .. code-block:: python
           :name: code-example
             import paddle
1271

1272
             # Example 1 (0-D tensor)
1273 1274
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1275

1276
             # Example 2 (1-D tensor)
1277 1278 1279
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1280 1281

             # Example 3 (2-D tensor)
1282 1283 1284 1285 1286 1287 1288 1289
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1290

1291 1292 1293 1294 1295
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1296 1297
            "tensor.transpose() instead." % len(input.shape)
        )
1298
    if in_dygraph_mode():
1299
        if len(input.shape) <= 1:
1300 1301 1302
            return input
        # 2-D tensor
        perm = [1, 0]
1303
        out = _C_ops.transpose(input, perm)
1304
        return out
1305 1306 1307 1308 1309 1310 1311
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1312

1313 1314 1315
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1316
        if len(input.shape) <= 1:
1317 1318 1319 1320 1321 1322 1323 1324
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1325 1326
        return out

1327

W
wanghuancoder 已提交
1328
def cross(x, y, axis=9, name=None):
1329
    """
1330
    Computes the cross product between two tensors along an axis.
1331

1332 1333
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1334

1335
    Args:
1336 1337
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1338
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1339
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1340 1341

    Returns:
1342
        Tensor. A Tensor with same data type as `x`.
1343

1344 1345
    Examples:
        .. code-block:: python
1346

1347
            import paddle
1348

Z
Zhou Wei 已提交
1349 1350 1351 1352 1353 1354
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1365
    """
J
Jiabin Yang 已提交
1366
    if in_dygraph_mode():
1367
        axis = K_DEFAULT_DIM if axis is None else axis
1368
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1369
    else:
1370 1371 1372 1373
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        attrs = dict()
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1374

1375 1376 1377 1378 1379 1380 1381
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1382 1383


1384
def cholesky(x, upper=False, name=None):
1385
    r"""
G
Guo Sheng 已提交
1386
    Computes the Cholesky decomposition of one symmetric positive-definite
1387 1388
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1389 1390 1391 1392 1393 1394
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1395
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1396 1397 1398 1399 1400
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1401 1402
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1403 1404

    Returns:
1405 1406
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1407

G
Guo Sheng 已提交
1408 1409 1410 1411 1412
    Examples:
        .. code-block:: python

            import paddle

1413 1414 1415 1416
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1417
            out = paddle.linalg.cholesky(x, upper=False)
1418
            print(out)
G
Guo Sheng 已提交
1419
    """
H
hong 已提交
1420
    if in_dygraph_mode():
1421
        return _C_ops.cholesky(x, upper)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1434 1435


1436 1437 1438 1439
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1440
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1441
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1442 1443

    Args:
1444 1445 1446 1447
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1448
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1449 1450
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1451
            the lower triangular of the matrix to compute.
1452 1453 1454 1455
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1473

1474
    """
1475 1476 1477 1478 1479 1480 1481
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1482 1483 1484
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1485

1486 1487 1488 1489 1490 1491
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1492
        return _C_ops.matrix_rank(x, tol_attr, hermitian, use_default_tol)
1493 1494 1495 1496 1497
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1498
        if tol is None:
1499
            attrs['use_default_tol'] = True
1500
        elif isinstance(tol, Variable):
1501
            attrs['use_default_tol'] = False
1502
            if tol.dtype != x.dtype:
1503
                inputs['TolTensor'] = cast(tol, x.dtype)
1504
            else:
1505
                inputs['TolTensor'] = tol
1506
        else:
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1519 1520


1521 1522 1523 1524 1525 1526 1527 1528 1529
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1530 1531
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1532 1533 1534 1535
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1536
        Tensor: The product Tensor.
1537 1538

    Examples:
S
sunzhongkai588 已提交
1539 1540 1541
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1542

S
sunzhongkai588 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1552 1553 1554 1555 1556 1557
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1558

1559
    """
1560
    if in_dygraph_mode():
1561
        return _C_ops.bmm(x, y)
1562
    else:
W
Weilong Wu 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1583 1584 1585 1586 1587 1588
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1589 1590


1591
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1592
    """
1593
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1594 1595 1596
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1597
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1598
            should be float32, float64, int32, int64.
1599 1600 1601 1602
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1603 1604

    Returns:
1605
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1606

1607
    Examples:
Q
Qi Li 已提交
1608
        .. code-block:: python
1609

Q
Qi Li 已提交
1610
            import paddle
1611

1612
            inputs = paddle.to_tensor([1, 2, 1])
1613 1614
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1615
    """
H
hong 已提交
1616
    if in_dygraph_mode():
1617
        return _C_ops.histogram(input, bins, min, max)
1618 1619 1620 1621
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1622
        )
1623 1624 1625 1626 1627 1628 1629 1630
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1631 1632 1633 1634


def bincount(x, weights=None, minlength=0, name=None):
    """
1635
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1663 1664
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
1665 1666
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1667

1668
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1685
        )
1686
        return out
1687 1688 1689 1690 1691 1692 1693


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1694
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1695
            should be one of float32, float64.
F
furnace 已提交
1696
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1712 1713
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1714
            out = paddle.mv(x, vec)
1715 1716 1717
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1718
    """
J
Jiabin Yang 已提交
1719
    if in_dygraph_mode():
1720
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1721
    else:
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1735
                    )
1736 1737 1738 1739 1740
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1741
                    )
1742
                )
J
Jiabin Yang 已提交
1743

1744
        __check_input(x, vec)
J
Jiabin Yang 已提交
1745

1746 1747 1748 1749 1750 1751
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1752 1753


1754
def det(x, name=None):
H
huangxu96 已提交
1755
    """
1756

H
huangxu96 已提交
1757
    Calculates determinant value of a square matrix or batches of square matrices.
1758

H
huangxu96 已提交
1759
    Args:
1760
        x (Tensor): the input matrix of size `(n, n)` or the
1761 1762
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1763 1764
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1765

H
huangxu96 已提交
1766
    Returns:
1767
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1768

1769
    Examples:
H
huangxu96 已提交
1770 1771
        .. code-block:: python

1772
            import paddle
H
huangxu96 已提交
1773

1774
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1775

1776
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1777

1778
            print(A)
1779

1780
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1781

1782

H
huangxu96 已提交
1783
    """
C
chentianyu03 已提交
1784
    if in_dygraph_mode():
1785
        return _C_ops.det(x)
1786 1787
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')
C
chentianyu03 已提交
1788

1789 1790 1791 1792 1793
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1794

1795 1796 1797 1798 1799 1800 1801 1802
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1803

1804 1805 1806 1807
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1808 1809


1810
def slogdet(x, name=None):
H
huangxu96 已提交
1811
    """
1812

H
huangxu96 已提交
1813
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1814
    The determinant can be computed with ``sign * exp`` (logabsdet)
1815

H
huangxu96 已提交
1816 1817 1818
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1819

H
huangxu96 已提交
1820 1821 1822 1823 1824
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1825
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1826 1827
        of the absolute value of determinant, respectively.

1828
    Examples:
1829
        .. code-block:: python
H
huangxu96 已提交
1830

1831
            import paddle
H
huangxu96 已提交
1832

1833
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1834

1835
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1836

1837
            print(A)
1838

1839 1840
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1841 1842

    """
1843
    if in_dygraph_mode():
1844
        return _C_ops.slogdet(x)
1845 1846
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1847

1848 1849 1850 1851 1852
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1853

1854 1855 1856 1857 1858 1859 1860 1861
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1862

1863 1864 1865 1866 1867 1868
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1869 1870


1871 1872
def svd(x, full_matrices=False, name=None):
    r"""
1873 1874 1875 1876 1877
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1878 1879
        X = U * diag(S) * VT

1880 1881
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1882
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1883 1884
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1885
        full_matrices (bool, optional): A flag to control the behavor of svd.
1886
            If full_matrices = True, svd op will compute full U and V matrics,
1887
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1888
            If full_matrices = False, svd op will use a economic method to store U and V.
1889
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1890
            Default value is False.
1891
        name (str, optional): Name for the operation (optional, default is None).
1892
            For more information, please refer to :ref:`api_guide_Name`.
1893 1894

    Returns:
Z
Zman 已提交
1895 1896 1897 1898 1899
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1900

1901 1902 1903 1904
    Examples:
        .. code-block:: python

            import paddle
1905 1906 1907

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1908
            u, s, vh = paddle.linalg.svd(x)
1909 1910 1911 1912 1913
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1914
            print (s)
1915
            #S = [8.14753743, 0.78589688]
1916
            print (vh)
1917 1918
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1919

1920
            # one can verify : U * S * VT == X
1921
            #                  U * UH == I
1922
            #                  V * VH == I
1923
    """
1924

1925
    if in_dygraph_mode():
1926
        return _C_ops.svd(x, full_matrices)
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1943 1944


1945 1946
def matrix_power(x, n, name=None):
    r"""
1947

1948
    Computes the n-th power of a square matrix or a batch of square matrices.
1949

1950 1951 1952 1953 1954
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1955

1956 1957
    Specifically,

1958
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1959

1960 1961
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1962
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1963 1964 1965 1966 1967 1968

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1969
        name (str, optional): Name for the operation (optional, default is None).
1970 1971 1972
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1973 1974
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
1975 1976 1977 1978 1979 1980 1981 1982 1983

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1984
            print(paddle.linalg.matrix_power(x, 2))
1985 1986 1987 1988
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1989
            print(paddle.linalg.matrix_power(x, 0))
1990 1991 1992 1993
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1994
            print(paddle.linalg.matrix_power(x, -2))
1995 1996 1997 1998
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
1999
    if in_dygraph_mode():
2000
        return _C_ops.matrix_power(x, n)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2015 2016


2017 2018 2019 2020 2021 2022 2023
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2024 2025
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2026
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2027
            If mode = "reduced", qr op will return reduced Q and R matrices,
2028
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2029
            If mode = "complete", qr op will return complete Q and R matrices,
2030 2031 2032 2033 2034
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2035

2036
    Returns:
2037
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2038
        If mode = "r", qr will return a tensor which represents R.
2039 2040

    Examples:
2041 2042
        .. code-block:: python

2043
            import paddle
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2056 2057

            # one can verify : X = Q * R ;
2058
    """
Y
Yulong Ao 已提交
2059
    if in_dygraph_mode():
2060
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2061 2062 2063 2064
        if mode == "r":
            return r
        else:
            return q, r
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2076 2077 2078 2079 2080 2081
        if mode == "r":
            return r
        else:
            return q, r


2082 2083
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2084
    Computes the LU factorization of an N-D(N>=2) matrix x.
2085

2086
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2087 2088 2089 2090
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2091 2092 2093 2094 2095 2096

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2108

2109
    Returns:
2110
        factorization (Tensor), LU matrix, the factorization of input X.
2111

2112 2113 2114
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2115

2116 2117 2118
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2119

2120 2121

    Examples:
2122 2123
        .. code-block:: python

2124
            import paddle
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2140

2141 2142 2143 2144 2145 2146
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2147
            # [1., 0., 0.]]),
2148 2149 2150 2151
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2152
            # [0.60000000, 0.50000000]]),
2153 2154 2155 2156 2157
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2158 2159

            # one can verify : X = P @ L @ U ;
2160
    """
L
Lin Manhui 已提交
2161 2162

    if in_dygraph_mode():
2163
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2164 2165 2166 2167 2168 2169 2170 2171
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2172 2173 2174 2175 2176 2177
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2178 2179 2180 2181 2182 2183 2184 2185
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2186
    Unpack L U and P to single matrix tensor .
2187 2188 2189
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2190 2191 2192 2193 2194

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2208

2209
    Returns:
2210
        P (Tensor), Permutation matrix P of lu factorization.
2211

2212
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2213

2214
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2215

2216 2217

    Examples:
2218 2219
        .. code-block:: python

2220
            import paddle
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2236

2237 2238 2239 2240 2241 2242
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2243
            # [1., 0., 0.]]),
2244 2245 2246 2247
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2248
            # [0.60000000, 0.50000000]]),
2249 2250 2251 2252 2253
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2254
            # one can verify : X = P @ L @ U ;
2255 2256
    """

2257
    if in_dygraph_mode():
2258
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2259
        return P, L, U
2260 2261 2262
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2263
        )
2264 2265 2266 2267
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
        attrs = dict()
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2279 2280


L
Lijunhui 已提交
2281 2282
def eig(x, name=None):
    """
2283
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2284

2285 2286 2287 2288 2289 2290
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2291 2292 2293 2294

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2295
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2309
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2310
                               [9.956216,  8.749598,  6.066444 ],
2311
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2312
            w, v = paddle.linalg.eig(x)
2313
            print(v)
L
Lijunhui 已提交
2314 2315 2316 2317 2318 2319 2320 2321
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2322
            print(w)
L
Lijunhui 已提交
2323 2324 2325 2326
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2327

2328
    if in_dygraph_mode():
2329
        return _C_ops.eig(x)
2330 2331 2332 2333 2334
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2335

2336 2337
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2338

2339 2340 2341
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2342

2343
        return w, v
L
Lijunhui 已提交
2344 2345


2346 2347 2348
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2349 2350 2351

    Warning:
        The gradient kernel of this operator does not yet developed.
2352 2353 2354 2355
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2356
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2357
            Its data type should be float32, float64, complex64, or complex128.
2358
        name (str, optional): Name for the operation (optional, default is None).
2359
            For more information, please refer to :ref:`api_guide_Name`.
2360

2361
    Returns:
2362 2363
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2364 2365 2366 2367 2368

    Examples:
        .. code-block:: python

            import paddle
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2385 2386 2387 2388
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2389 2390 2391

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2392 2393 2394 2395
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2396

R
Ruibiao Chen 已提交
2397
    if in_dygraph_mode():
2398
        return _C_ops.eigvals(x)
2399
    else:
2400 2401 2402 2403 2404 2405
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2406 2407 2408 2409
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2410 2411


2412 2413 2414 2415
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2416
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2453 2454
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2455
        out = paddle.linalg.multi_dot([A, B])
2456
        print(out.shape)
2457 2458 2459
        # [3, 5]

        # A * B * C
2460 2461 2462
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2463
        out = paddle.linalg.multi_dot([A, B, C])
2464
        print(out.shape)
2465 2466 2467
        # [10, 7]

    """
2468
    if in_dygraph_mode():
2469
        return _C_ops.multi_dot(x)
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
                ['float16', 'float32', 'float64'],
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2483

2484 2485 2486 2487 2488
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2489
        )
2490
        return out
2491 2492 2493 2494


def eigh(x, UPLO='L', name=None):
    """
2495
    Compute the eigenvalues and eigenvectors of a
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2507 2508 2509 2510
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2511 2512 2513 2514 2515 2516

    Examples:
        .. code-block:: python

            import paddle

2517
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2518
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2519 2520 2521 2522 2523 2524 2525
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2526
    if in_dygraph_mode():
2527
        return _C_ops.eigh(x, UPLO)
2528
    else:
H
hong 已提交
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
2546
                )
2547

2548
        __check_input(x, UPLO)
2549

2550 2551 2552 2553 2554 2555 2556
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2557

2558 2559
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2560

2561 2562 2563 2564 2565 2566 2567
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2568 2569 2570 2571


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2572
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2583

A
andyjpaddle 已提交
2584 2585 2586
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2587 2588 2589
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2590 2591 2592 2593
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2594
        rcond(Tensor, optional): the tolerance value to determine
2595
            when is a singular value zero. Default:1e-15.
2596 2597

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2598
            if complex or symmetric if real. Default: False.
2599 2600

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2601
            the layer will be named automatically.
2602

A
andyjpaddle 已提交
2603
    Returns:
2604
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2605
        pseudo inverse of x. Its shape should be (*, n, m).
2606

A
andyjpaddle 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2633 2634 2635
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2636 2637
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2638 2639 2640 2641
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2642

2643 2644 2645 2646 2647 2648
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2649
            st = _C_ops.unsqueeze(singular, [-2])
2650 2651 2652

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2653
            v = _C_ops.transpose(vt, perm)
2654 2655

            out_1 = v * st
2656
            out_2 = _C_ops.matmul(out_1, u, False, True)
2657 2658 2659
            return out_2
        else:
            # combine eigh and matmul op
2660
            s, u = _C_ops.eigh(x, 'UPLO')
2661
            s_abs = paddle.abs(s)
2662
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2674
            st = _C_ops.unsqueeze(singular, [-2])
2675 2676

            out_1 = u * st
2677 2678
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2679
            return out_2
A
andyjpaddle 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2692
                outputs={'U': u, 'VH': vt, 'S': s},
2693 2694
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2695 2696

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2697 2698 2699 2700 2701 2702
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2703

2704
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2705 2706
            cutoff = rcond * max_singular_val
            y = float('inf')
2707
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2708 2709

            condition = s > cutoff
2710 2711 2712 2713 2714
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2715 2716 2717

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2718 2719 2720 2721 2722 2723
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2724 2725 2726 2727 2728

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2729 2730 2731 2732 2733 2734
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2735 2736

            out_1 = helper.create_variable_for_type_inference(dtype)
2737 2738 2739 2740 2741 2742
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2743 2744 2745 2746 2747
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2748
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2749
                outputs={'Out': out_2},
2750
                attrs={'trans_x': False, 'trans_y': True},
2751
            )
A
andyjpaddle 已提交
2752 2753 2754 2755 2756
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2757 2758 2759 2760 2761
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2772 2773 2774 2775 2776 2777
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2778
            s_abs = helper.create_variable_for_type_inference(s_type)
2779 2780 2781
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2782
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2783 2784 2785 2786 2787 2788
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2789

2790
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2791 2792
            cutoff = rcond * max_singular_val
            y = float('inf')
2793
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2794 2795

            condition = s_abs > cutoff
2796 2797 2798 2799 2800
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2801 2802 2803

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2804 2805 2806 2807 2808 2809
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2810 2811

            out_1 = helper.create_variable_for_type_inference(dtype)
2812 2813 2814 2815 2816 2817
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2818 2819 2820
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2821 2822 2823
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2824 2825 2826 2827

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2828
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2829
                outputs={'Out': out_2},
2830
                attrs={'trans_x': False, 'trans_y': True},
2831
            )
A
andyjpaddle 已提交
2832
            return out_2
W
Weilong Wu 已提交
2833 2834 2835 2836


def solve(x, y, name=None):
    r"""
2837

W
Weilong Wu 已提交
2838
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2839
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2840
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2841

W
Weilong Wu 已提交
2842 2843
    .. math::
        Out = X^-1 * Y
2844 2845

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2846

W
Weilong Wu 已提交
2847
    Args:
2848
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2849
            more batch dimensions. Its data type should be float32 or float64.
2850
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2851
            more batch dimensions. Its data type should be float32 or float64.
2852
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2853
            For more information, please refer to :ref:`api_guide_Name`.
2854

W
Weilong Wu 已提交
2855
    Returns:
2856
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2857
        Its data type should be the same as that of `x`.
2858

W
Weilong Wu 已提交
2859
    Examples:
2860

2861
        .. code-block:: python
2862

2863 2864 2865
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2866

2867 2868 2869 2870 2871
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2872

2873 2874
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2875
    """
2876
    if in_dygraph_mode():
2877
        return _C_ops.solve(x, y)
2878 2879 2880 2881 2882 2883
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2884

2885 2886 2887 2888
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2889 2890


2891 2892 2893
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2894
    r"""
2895 2896
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2910 2911 2912 2913

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2914
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2915
            zero or more batch dimensions. Its data type should be float32 or float64.
2916
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2917 2918
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2919
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2920 2921 2922 2923 2924 2925 2926 2927
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2928
        .. code-block:: python
2929

2930 2931 2932 2933
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2934

2935 2936 2937 2938 2939 2940
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2941

2942 2943
            print(out)
            # [7, -2, -5]
2944
    """
H
hong 已提交
2945
    if in_dygraph_mode():
2946
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2947 2948 2949 2950 2951
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2952
        )
2953 2954 2955 2956
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2969 2970


Z
zhiboniu 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2981
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
2991
        .. code-block:: python
Z
zhiboniu 已提交
2992

2993
            import paddle
Z
zhiboniu 已提交
2994

2995 2996 2997 2998 2999
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3000

3001 3002
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3003
    """
H
hong 已提交
3004
    if in_dygraph_mode():
3005
        return _C_ops.cholesky_solve(x, y, upper)
3006 3007 3008 3009 3010 3011 3012 3013 3014
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3015

3016 3017 3018 3019 3020 3021 3022
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3023 3024


3025 3026
def eigvalsh(x, UPLO='L', name=None):
    """
3027
    Computes the eigenvalues of a
3028 3029 3030
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3031
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3045
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3046 3047
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3048 3049
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3050
    """
3051
    if in_dygraph_mode():
3052
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3053
        return values
3054
    else:
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
3072
                )
3073

3074
        __check_input(x, UPLO)
3075

3076 3077 3078 3079 3080 3081 3082
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3083

3084 3085
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3086

3087 3088 3089 3090 3091 3092 3093 3094
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3095 3096


3097 3098 3099 3100 3101 3102 3103 3104
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3105
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3106
            should be one of float32, float64.
3107 3108
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3109
            machine precision of x_dtype.
3110 3111 3112
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3113
            for CUDA inputs.
3114
        name(str, optional): The default value is None. Normally there is no need for user to set
3115 3116 3117
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3118 3119 3120 3121 3122 3123 3124
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3157 3158 3159
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3160 3161 3162 3163
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3164 3165 3166 3167
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3168 3169 3170 3171
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3172 3173 3174 3175
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3176
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3177 3178 3179 3180
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3196 3197 3198 3199 3200 3201
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3202 3203 3204 3205
    if in_dygraph_mode():
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3206 3207 3208 3209 3210 3211 3212
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3227

3228 3229 3230 3231 3232 3233
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3256

3257
        return solution, residuals, rank, singular_values
3258 3259 3260 3261


def corrcoef(x, rowvar=True, name=None):
    """
3262

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3301 3302
            "length of Input(input) is %s." % len(x.shape)
        )
3303 3304 3305
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3306
    if c.ndim == 0:
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3321 3322 3323
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3324 3325 3326 3327
    else:
        c = paddle.clip(c, -1, 1)

    return c