linalg.py 122.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dygraph_mode
28
from .creation import full
29 30 31
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
32

33 34
__all__ = []

35 36 37
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
90
        return _C_ops.transpose(x, perm)
91
    else:
92 93 94 95 96 97 98 99 100 101
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
102
                'uint16',
103 104 105 106
                'complex64',
                'complex128',
            ],
            'transpose',
107
        )
108 109 110 111
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
112
            raise ValueError(
113 114
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
115 116 117 118
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
119
            )
120 121 122 123 124 125 126
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
127

128 129 130 131 132 133 134 135 136 137
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
138 139


S
ShenLiang 已提交
140
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
141
    """
142 143
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
144
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
145

S
ShenLiang 已提交
146 147
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
148 149 150 151 152

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
153 154
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
155 156 157 158 159 160 161 162
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

163 164
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
165
      After the matrix multiply, the prepended dimension is removed.
166 167

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
168 169
      the matrix-vector product is obtained.

170 171 172 173 174 175 176 177 178
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
179
      out will be a (j, k, n, p) tensor.
180 181

    Args:
S
ShenLiang 已提交
182 183
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
184 185 186
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
187 188 189
            will be named automatically.

    Returns:
S
ShenLiang 已提交
190
        Tensor: The output Tensor.
191 192 193

    Examples:

C
Chen Long 已提交
194 195 196 197 198 199 200 201 202
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
203
            # (1,)
C
Chen Long 已提交
204 205 206 207 208 209

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
210
            # (10,)
C
Chen Long 已提交
211 212 213 214 215 216

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
217
            # (10, 5)
C
Chen Long 已提交
218 219 220 221 222 223

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
224
            # (10, 5, 5)
C
Chen Long 已提交
225 226 227 228 229 230

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
231
            # (10, 3, 5, 5)
232 233

    """
234
    if in_dygraph_mode():
235
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
236 237 238 239 240
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
241

242 243 244 245 246 247 248
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
249
                        'uint16',
250 251 252 253 254 255 256 257
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
258

259
        __check_input(x, y)
260

261 262 263 264 265 266 267 268 269
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
376 377
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
378
            if dim is None:
379 380 381
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
382
            )
383

384 385 386 387
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
388

389 390 391 392 393 394 395
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
396

397 398 399
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
400 401 402 403 404 405 406 407
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
408
        if in_dygraph_mode():
409 410
            if axis is None:
                axis = -1
411
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
412 413 414 415 416 417 418 419
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'p_norm'
            )
420

421 422 423 424 425 426 427 428 429 430 431
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
432

433 434 435 436 437 438 439
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
440

441 442 443
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
444
        if in_dygraph_mode():
445
            out = _C_ops.abs(input)
446
            if porder == np.float64('inf'):
447
                return _C_ops.max(out, axis, keepdim)
448
            else:
449
                return _C_ops.min(out, axis, keepdim)
450 451 452 453 454 455 456 457 458 459 460
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
461

462 463 464 465
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
466

467 468 469 470 471 472 473 474 475 476 477 478 479
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
480

481
            return reduce_out
myq406450149's avatar
myq406450149 已提交
482

483
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
484 485 486 487
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
488
        if in_dygraph_mode():
489 490 491
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
492
            out = _C_ops.pow(sum_out, float(1.0 / porder))
493 494
            return out

myq406450149's avatar
myq406450149 已提交
495 496
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
497 498
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
499
        abs_out = block.create_variable_for_type_inference(
500 501 502 503 504
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
505
        pow_out = block.create_variable_for_type_inference(
506 507
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
508

509 510 511 512 513 514
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
515
        sum_out = block.create_variable_for_type_inference(
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
534 535
        return out

536 537 538
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
539
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
540 541
            else:
                raise ValueError(
542
                    f"only valid string values are 'fro', found {p}"
543
                )
544
        elif isinstance(p, (int, float)):
545 546 547 548 549 550 551 552
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
553
        else:
554
            raise ValueError(
555
                f"only valid p type is string or float, found {type(p)}"
556
            )
557

myq406450149's avatar
myq406450149 已提交
558 559
    if isinstance(axis, tuple):
        axis = list(axis)
560 561 562
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

563
    # calculate vector norm, where axis is int or list with only one integer
564
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
565 566
        if isinstance(p, str):
            if p == "fro":
567 568 569 570 571 572 573 574
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
575 576 577

            else:
                raise ValueError(
578
                    f"only valid string values are 'fro', found {p}"
579
                )
myq406450149's avatar
myq406450149 已提交
580
        elif isinstance(p, (int, float)):
581 582 583 584 585 586 587 588
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
589 590
        else:
            raise ValueError(
591 592 593 594 595
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
596 597
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
598 599 600
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
601 602
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
603
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
604 605 606
                    axis
                )
            )
607
        else:
608 609 610
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
611 612
    else:
        raise ValueError(
613 614 615 616
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
617 618


619
def dist(x, y, p=2, name=None):
620
    r"""
S
swtkiwi 已提交
621

622
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
623
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
624
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
649 650 651 652 653 654 655

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
656
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
657 658 659 660 661

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
662
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
663 664 665 666 667 668 669 670 671 672 673 674

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
675 676
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
677
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
678 679
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
680 681

    Returns:
682
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
683 684 685 686 687 688

    Examples:
        .. code-block:: python

            import paddle

689 690
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
691 692
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
693

694 695
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
696

697 698
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
699

700 701
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
702
    """
H
hong 已提交
703
    if in_dygraph_mode():
704
        return _C_ops.dist(x, y, p)
H
hong 已提交
705

Z
Zhang Ting 已提交
706 707 708 709 710 711 712 713 714
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
715 716 717
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
718
    return out
L
liuwei1031 已提交
719 720


721 722 723 724 725 726
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
727 728
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
747 748
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
749 750 751

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
752 753
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
754 755 756

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
757 758
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
759 760 761

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
762 763
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
764 765 766

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
767 768
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
769 770 771

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
772 773
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
774 775 776

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
777 778
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
779 780

            # compute conditional number when order of the norm is inf
781 782 783
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
784 785

            # compute conditional number when order of the norm is -inf
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

802
            a_cond_fro = paddle.linalg.cond(a, p='fro')
803 804 805 806 807 808 809 810 811 812 813 814
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
815
            b_cond_2 = paddle.linalg.cond(b, p=2)
816 817
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
818 819 820

    """

821
    def mat_norm(input, porder=1.0, axis=None):
822 823 824 825 826
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
827 828
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
829
            sum_out = _C_ops.sum(abs_out, axis, None, False)
830 831

            if porder == 1 or porder == np.inf:
832
                return _C_ops.max(sum_out, [-1], False)
833
            if porder == -1 or porder == -np.inf:
834
                return _C_ops.min(sum_out, [-1], False)
835
        else:
836 837
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
838 839
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
840 841
                dtype=block.input_dtype()
            )
842
            sum_out = block.create_variable_for_type_inference(
843 844
                dtype=block.input_dtype()
            )
845
            out = block.create_variable_for_type_inference(
846 847 848 849 850 851 852 853 854 855 856
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
857
                    'keep_dim': False,
858 859 860
                    'reduce_all': reduce_all,
                },
            )
861
            if porder == 1 or porder == np.inf:
862 863 864 865 866 867
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
868
                        'keep_dim': False,
869 870 871
                        'reduce_all': reduce_all,
                    },
                )
872
            if porder == -1 or porder == -np.inf:
873 874 875 876 877 878
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
879
                        'keep_dim': False,
880 881 882
                        'reduce_all': reduce_all,
                    },
                )
883
            return out
884 885 886 887 888 889

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
890
        if in_dygraph_mode():
891
            pow_out = _C_ops.pow(input, porder)
892 893
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
894
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
895
        else:
896
            reduce_all = True if axis is None or axis == [] else False
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
943 944 945 946 947 948 949 950 951

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

952
        if in_dygraph_mode():
953
            if porder == "nuc":
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
977
                )
978 979 980 981 982 983 984
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
985
            block.append_op(
986
                type='reduce_max',
987
                inputs={'X': s},
988
                outputs={'Out': max_out},
989 990
                attrs={
                    'dim': axis,
991
                    'keep_dim': False,
992 993 994 995
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
996 997 998 999 1000 1001 1002 1003
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1004
            )
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1021 1022

    def empty_tensor(input, shape):
1023
        if in_dygraph_mode():
1024
            return input.reshape(shape)
1025 1026 1027
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1028 1029 1030

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1031
        raise ValueError(
1032
            "input should be a matrix or batches of matrices, "
1033
            + f"but the dimention of received input is {len(x_shape)}"
1034
        )
1035
    if p is None:
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1048
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1049 1050
                    x_inv, porder=p, axis=[-2]
                )
1051
            if p in (np.inf, -np.inf):
1052
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1053 1054
                    x_inv, porder=p, axis=[-1]
                )
1055
        else:
1056
            raise ValueError(
1057
                f"only support p is {p} when input is a "
1058 1059
                + "square matrix or batches of square matrices"
            )
1060 1061 1062 1063 1064 1065
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1066
            f"unsupported {p} for p, only supporting ('fro', 'nuc', "
1067 1068
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1069 1070


L
liuwei1031 已提交
1071 1072 1073
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1074

1075
    Note:
1076 1077
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1078 1079

    Parameters:
S
ShenLiang 已提交
1080 1081
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1082 1083
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1084
    Returns:
1085
        Tensor: the calculated result Tensor.
1086

L
liuwei1031 已提交
1087 1088 1089 1090 1091
    Examples:

    .. code-block:: python

        import paddle
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1102
        z = paddle.dot(x, y)
1103
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1104 1105

    """
1106 1107
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1108 1109
    else:
        op_type = 'dot'
1110

1111 1112
        assert x is not None, f'x cannot be None in {op_type}'
        assert y is not None, f'y cannot be None in {op_type}'
L
liuwei1031 已提交
1113

1114 1115 1116 1117 1118 1119
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
        )
L
liuwei1031 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1130
        )
1131
        return out
1132 1133


Z
zhiboniu 已提交
1134 1135 1136 1137 1138
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1139
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1173 1174
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1188 1189
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1190 1191 1192
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1193 1194 1195 1196
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1197 1198 1199
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1200 1201
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1202 1203 1204 1205 1206 1207 1208 1209
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1210 1211 1212 1213 1214
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1215 1216 1217
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1218 1219 1220 1221
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1222 1223 1224
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1225 1226
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1245
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1257 1258
def t(input, name=None):
    """
1259 1260
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1261
    the paddle.transpose function which perm dimensions set 0 and 1.
1262

1263
    Args:
1264
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1265
        name(str, optional): The default value is None.  Normally there is no need for
1266 1267
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1268
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1269

1270
    Examples:
1271

1272 1273 1274
        .. code-block:: python
           :name: code-example
             import paddle
1275

1276
             # Example 1 (0-D tensor)
1277 1278
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1279

1280
             # Example 2 (1-D tensor)
1281 1282 1283
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1284 1285

             # Example 3 (2-D tensor)
1286 1287 1288 1289 1290 1291 1292 1293
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1294

1295 1296 1297 1298 1299
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1300 1301
            "tensor.transpose() instead." % len(input.shape)
        )
1302
    if in_dygraph_mode():
1303
        if len(input.shape) <= 1:
1304 1305 1306
            return input
        # 2-D tensor
        perm = [1, 0]
1307
        out = _C_ops.transpose(input, perm)
1308
        return out
1309 1310 1311 1312 1313 1314 1315
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1316

1317 1318 1319
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1320
        if len(input.shape) <= 1:
1321 1322 1323 1324 1325 1326 1327 1328
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1329 1330
        return out

1331

W
wanghuancoder 已提交
1332
def cross(x, y, axis=9, name=None):
1333
    """
1334
    Computes the cross product between two tensors along an axis.
1335

1336 1337
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1338

1339
    Args:
1340 1341
        x (Tensor): The first input tensor, the data type is float16, float32, float64, int32, int64.
        y (Tensor): The second input tensor, the data type is float16, float32, float64, int32, int64.
W
wanghuancoder 已提交
1342
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1343
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1344 1345

    Returns:
1346
        Tensor. A Tensor with same data type as `x`.
1347

1348 1349
    Examples:
        .. code-block:: python
1350

1351
            import paddle
1352

Z
Zhou Wei 已提交
1353 1354 1355 1356 1357 1358
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1369
    """
J
Jiabin Yang 已提交
1370
    if in_dygraph_mode():
1371
        axis = K_DEFAULT_DIM if axis is None else axis
1372
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1373
    else:
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        check_variable_and_dtype(
            x,
            'x',
            ['float16', 'float32', 'float64', "int32", "int64"],
            'cross',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['float16', 'float32', 'float64', "int32", "int64"],
            'cross',
        )
1386 1387
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
1388
        attrs = {}
1389
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1390

1391 1392 1393 1394 1395 1396 1397
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1398 1399


1400
def cholesky(x, upper=False, name=None):
1401
    r"""
G
Guo Sheng 已提交
1402
    Computes the Cholesky decomposition of one symmetric positive-definite
1403 1404
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1405 1406 1407 1408 1409 1410
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1411
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1412 1413 1414 1415 1416
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1417 1418
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1419 1420

    Returns:
1421 1422
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1423

G
Guo Sheng 已提交
1424 1425 1426 1427 1428
    Examples:
        .. code-block:: python

            import paddle

1429 1430 1431 1432
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1433
            out = paddle.linalg.cholesky(x, upper=False)
1434
            print(out)
G
Guo Sheng 已提交
1435
    """
H
hong 已提交
1436
    if in_dygraph_mode():
1437
        return _C_ops.cholesky(x, upper)
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1450 1451


1452 1453 1454 1455
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1456
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1457
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1458 1459

    Args:
1460 1461 1462 1463
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1464
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1465 1466
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1467
            the lower triangular of the matrix to compute.
1468 1469 1470 1471
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1489

1490
    """
1491 1492 1493 1494 1495 1496 1497
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1498 1499 1500
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1501

1502 1503 1504 1505 1506 1507
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
Z
zhangyuqin1998 已提交
1508
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1509 1510 1511 1512 1513
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1514
        if tol is None:
1515
            attrs['use_default_tol'] = True
1516
        elif isinstance(tol, Variable):
1517
            attrs['use_default_tol'] = False
1518
            if tol.dtype != x.dtype:
1519
                inputs['TolTensor'] = cast(tol, x.dtype)
1520
            else:
1521
                inputs['TolTensor'] = tol
1522
        else:
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1535 1536


1537 1538 1539 1540 1541 1542 1543 1544 1545
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1546 1547
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1548 1549 1550 1551
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1552
        Tensor: The product Tensor.
1553 1554

    Examples:
S
sunzhongkai588 已提交
1555 1556 1557
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1558

S
sunzhongkai588 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1568 1569 1570 1571 1572 1573
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1574

1575
    """
1576
    if in_dygraph_mode():
1577
        return _C_ops.bmm(x, y)
1578
    else:
W
Weilong Wu 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1599 1600 1601 1602 1603 1604
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1605 1606


1607
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1608
    """
1609
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1610 1611 1612
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1613
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1614
            should be float32, float64, int32, int64.
1615 1616 1617 1618
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1619 1620

    Returns:
1621
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1622

1623
    Examples:
Q
Qi Li 已提交
1624
        .. code-block:: python
1625

Q
Qi Li 已提交
1626
            import paddle
1627

1628
            inputs = paddle.to_tensor([1, 2, 1])
1629 1630
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1631
    """
H
hong 已提交
1632
    if in_dygraph_mode():
1633
        return _C_ops.histogram(input, bins, min, max)
1634 1635 1636 1637
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1638
        )
1639 1640 1641 1642 1643 1644 1645 1646
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1647 1648 1649 1650


def bincount(x, weights=None, minlength=0, name=None):
    """
1651
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1679 1680
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
1681 1682
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1683

1684
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1701
        )
1702
        return out
1703 1704 1705 1706 1707 1708 1709


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1710
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1711
            should be one of float32, float64.
F
furnace 已提交
1712
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1728 1729
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1730
            out = paddle.mv(x, vec)
1731 1732 1733
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1734
    """
J
Jiabin Yang 已提交
1735
    if in_dygraph_mode():
1736
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1737
    else:
1738

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1751
                    )
1752 1753 1754 1755 1756
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1757
                    )
1758
                )
J
Jiabin Yang 已提交
1759

1760
        __check_input(x, vec)
J
Jiabin Yang 已提交
1761

1762 1763 1764 1765 1766 1767
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1768 1769


1770
def det(x, name=None):
H
huangxu96 已提交
1771
    """
1772

H
huangxu96 已提交
1773
    Calculates determinant value of a square matrix or batches of square matrices.
1774

H
huangxu96 已提交
1775
    Args:
1776
        x (Tensor): the input matrix of size `(n, n)` or the
1777 1778
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1779 1780
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1781

H
huangxu96 已提交
1782
    Returns:
1783
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1784

1785
    Examples:
H
huangxu96 已提交
1786 1787
        .. code-block:: python

1788
            import paddle
H
huangxu96 已提交
1789

1790
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1791

1792
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1793

1794
            print(A)
1795

1796
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1797

1798

H
huangxu96 已提交
1799
    """
C
chentianyu03 已提交
1800
    if in_dygraph_mode():
1801
        return _C_ops.det(x)
1802 1803
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')
C
chentianyu03 已提交
1804

1805 1806 1807 1808 1809
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1810

1811 1812
        assert (
            input_shape[-1] == input_shape[-2]
1813
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1814 1815 1816 1817 1818
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1819

1820 1821 1822 1823
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1824 1825


1826
def slogdet(x, name=None):
H
huangxu96 已提交
1827
    """
1828

H
huangxu96 已提交
1829
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1830
    The determinant can be computed with ``sign * exp`` (logabsdet)
1831

H
huangxu96 已提交
1832 1833 1834
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1835

H
huangxu96 已提交
1836 1837 1838 1839 1840
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1841
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1842 1843
        of the absolute value of determinant, respectively.

1844
    Examples:
1845
        .. code-block:: python
H
huangxu96 已提交
1846

1847
            import paddle
H
huangxu96 已提交
1848

1849
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1850

1851
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1852

1853
            print(A)
1854

1855 1856
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1857 1858

    """
1859
    if in_dygraph_mode():
1860
        return _C_ops.slogdet(x)
1861 1862
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1863

1864 1865 1866 1867 1868
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1869

1870 1871
        assert (
            input_shape[-1] == input_shape[-2]
1872
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1873 1874 1875 1876 1877
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1878

1879 1880 1881 1882 1883 1884
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1885 1886


1887 1888
def svd(x, full_matrices=False, name=None):
    r"""
1889 1890 1891 1892 1893
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1894 1895
        X = U * diag(S) * VT

1896 1897
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1898
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1899 1900
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1901
        full_matrices (bool, optional): A flag to control the behavor of svd.
1902
            If full_matrices = True, svd op will compute full U and V matrics,
1903
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1904
            If full_matrices = False, svd op will use a economic method to store U and V.
1905
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1906
            Default value is False.
1907
        name (str, optional): Name for the operation (optional, default is None).
1908
            For more information, please refer to :ref:`api_guide_Name`.
1909 1910

    Returns:
Z
Zman 已提交
1911 1912 1913 1914 1915
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1916

1917 1918 1919 1920
    Examples:
        .. code-block:: python

            import paddle
1921 1922 1923

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1924
            u, s, vh = paddle.linalg.svd(x)
1925 1926 1927 1928 1929
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1930
            print (s)
1931
            #S = [8.14753743, 0.78589688]
1932
            print (vh)
1933 1934
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1935

1936
            # one can verify : U * S * VT == X
1937
            #                  U * UH == I
1938
            #                  V * VH == I
1939
    """
1940

1941
    if in_dygraph_mode():
1942
        return _C_ops.svd(x, full_matrices)
1943 1944 1945 1946 1947 1948 1949
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
1950
        attrs = {}
1951 1952 1953 1954 1955 1956 1957 1958
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1959 1960


1961 1962
def matrix_power(x, n, name=None):
    r"""
1963

1964
    Computes the n-th power of a square matrix or a batch of square matrices.
1965

1966 1967 1968 1969 1970
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1971

1972 1973
    Specifically,

1974
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1975

1976 1977
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1978
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1979 1980 1981 1982 1983 1984

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1985
        name (str, optional): Name for the operation (optional, default is None).
1986 1987 1988
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1989 1990
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
1991 1992 1993 1994 1995 1996 1997 1998 1999

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2000
            print(paddle.linalg.matrix_power(x, 2))
2001 2002 2003 2004
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2005
            print(paddle.linalg.matrix_power(x, 0))
2006 2007 2008 2009
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2010
            print(paddle.linalg.matrix_power(x, -2))
2011 2012 2013 2014
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2015
    if in_dygraph_mode():
2016
        return _C_ops.matrix_power(x, n)
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2031 2032


2033 2034 2035 2036 2037 2038 2039
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2040 2041
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2042
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2043
            If mode = "reduced", qr op will return reduced Q and R matrices,
2044
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2045
            If mode = "complete", qr op will return complete Q and R matrices,
2046 2047 2048 2049 2050
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2051

2052
    Returns:
2053
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2054
        If mode = "r", qr will return a tensor which represents R.
2055 2056

    Examples:
2057 2058
        .. code-block:: python

2059
            import paddle
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2072 2073

            # one can verify : X = Q * R ;
2074
    """
Y
Yulong Ao 已提交
2075
    if in_dygraph_mode():
2076
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2077 2078 2079 2080
        if mode == "r":
            return r
        else:
            return q, r
2081 2082 2083 2084 2085 2086
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
2087
        attrs = {}
2088 2089 2090 2091
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2092 2093 2094 2095 2096 2097
        if mode == "r":
            return r
        else:
            return q, r


2098 2099
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2100
    Computes the LU factorization of an N-D(N>=2) matrix x.
2101

2102
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2103 2104 2105 2106
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2107 2108 2109 2110 2111 2112

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2124

2125
    Returns:
2126
        factorization (Tensor), LU matrix, the factorization of input X.
2127

2128 2129 2130
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2131

2132 2133 2134
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2135

2136 2137

    Examples:
2138 2139
        .. code-block:: python

2140
            import paddle
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2156

2157 2158 2159 2160 2161 2162
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2163
            # [1., 0., 0.]]),
2164 2165 2166 2167
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2168
            # [0.60000000, 0.50000000]]),
2169 2170 2171 2172 2173
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2174 2175

            # one can verify : X = P @ L @ U ;
2176
    """
L
Lin Manhui 已提交
2177 2178

    if in_dygraph_mode():
2179
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2180 2181 2182 2183 2184 2185
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
2186
        attrs = {}
L
Lin Manhui 已提交
2187
        attrs['pivot'] = pivot
2188 2189 2190 2191 2192 2193
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2194 2195 2196 2197 2198 2199 2200 2201
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2202
    Unpack L U and P to single matrix tensor .
2203 2204 2205
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2206 2207 2208 2209 2210

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2224

2225
    Returns:
2226
        P (Tensor), Permutation matrix P of lu factorization.
2227

2228
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2229

2230
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2231

2232 2233

    Examples:
2234 2235
        .. code-block:: python

2236
            import paddle
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2252

2253 2254 2255 2256 2257 2258
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2259
            # [1., 0., 0.]]),
2260 2261 2262 2263
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2264
            # [0.60000000, 0.50000000]]),
2265 2266 2267 2268 2269
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2270
            # one can verify : X = P @ L @ U ;
2271 2272
    """

2273
    if in_dygraph_mode():
2274
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2275
        return P, L, U
2276 2277 2278
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2279
        )
2280 2281 2282 2283
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2284

2285
        attrs = {}
2286 2287 2288 2289 2290 2291 2292 2293 2294
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2295 2296


L
Lijunhui 已提交
2297 2298
def eig(x, name=None):
    """
2299
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2300

2301 2302 2303 2304 2305 2306
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2307 2308 2309 2310

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2311
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2325
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2326
                               [9.956216,  8.749598,  6.066444 ],
2327
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2328
            w, v = paddle.linalg.eig(x)
2329
            print(v)
L
Lijunhui 已提交
2330 2331 2332 2333 2334 2335 2336 2337
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2338
            print(w)
L
Lijunhui 已提交
2339 2340 2341 2342
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2343

2344
    if in_dygraph_mode():
2345
        return _C_ops.eig(x)
2346 2347 2348 2349 2350
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2351

2352 2353
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2354

2355 2356 2357
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2358

2359
        return w, v
L
Lijunhui 已提交
2360 2361


2362 2363 2364
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2365 2366 2367

    Warning:
        The gradient kernel of this operator does not yet developed.
2368 2369 2370 2371
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2372
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2373
            Its data type should be float32, float64, complex64, or complex128.
2374
        name (str, optional): Name for the operation (optional, default is None).
2375
            For more information, please refer to :ref:`api_guide_Name`.
2376

2377
    Returns:
2378 2379
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2380 2381 2382 2383 2384

    Examples:
        .. code-block:: python

            import paddle
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2401 2402 2403 2404
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2405 2406 2407

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2408 2409 2410 2411
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2412

R
Ruibiao Chen 已提交
2413
    if in_dygraph_mode():
2414
        return _C_ops.eigvals(x)
2415
    else:
2416 2417 2418 2419 2420 2421
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2422 2423 2424 2425
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2426 2427


2428 2429 2430 2431
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2432
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2469 2470
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2471
        out = paddle.linalg.multi_dot([A, B])
2472
        print(out.shape)
2473 2474 2475
        # [3, 5]

        # A * B * C
2476 2477 2478
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2479
        out = paddle.linalg.multi_dot([A, B, C])
2480
        print(out.shape)
2481 2482 2483
        # [10, 7]

    """
2484
    if in_dygraph_mode():
2485
        return _C_ops.multi_dot(x)
2486 2487 2488 2489 2490 2491
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
2492
                ['float16', 'float32', 'float64', 'uint16'],
2493 2494 2495 2496 2497 2498
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2499

2500 2501 2502 2503 2504
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2505
        )
2506
        return out
2507 2508 2509 2510


def eigh(x, UPLO='L', name=None):
    """
2511
    Compute the eigenvalues and eigenvectors of a
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2523 2524 2525 2526
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2527 2528 2529 2530 2531 2532

    Examples:
        .. code-block:: python

            import paddle

2533
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2534
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2535 2536 2537 2538 2539 2540 2541
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2542
    if in_dygraph_mode():
2543
        return _C_ops.eigh(x, UPLO)
2544
    else:
H
hong 已提交
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
2561
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
2562
                )
2563

2564
        __check_input(x, UPLO)
2565

2566 2567 2568 2569 2570 2571 2572
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2573

2574 2575
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2576

2577 2578 2579 2580 2581 2582 2583
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2584 2585 2586 2587


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2588
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2599

A
andyjpaddle 已提交
2600 2601 2602
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2603 2604 2605
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2606 2607 2608 2609
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2610
        rcond(Tensor, optional): the tolerance value to determine
2611
            when is a singular value zero. Default:1e-15.
2612 2613

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2614
            if complex or symmetric if real. Default: False.
2615 2616

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2617
            the layer will be named automatically.
2618

A
andyjpaddle 已提交
2619
    Returns:
2620
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2621
        pseudo inverse of x. Its shape should be (*, n, m).
2622

A
andyjpaddle 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2649 2650 2651
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2652 2653
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2654 2655 2656 2657
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2658

2659 2660 2661 2662 2663 2664
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2665
            st = _C_ops.unsqueeze(singular, [-2])
2666 2667 2668

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2669
            v = _C_ops.transpose(vt, perm)
2670 2671

            out_1 = v * st
2672
            out_2 = _C_ops.matmul(out_1, u, False, True)
2673 2674 2675
            return out_2
        else:
            # combine eigh and matmul op
2676
            s, u = _C_ops.eigh(x, 'UPLO')
2677
            s_abs = paddle.abs(s)
2678
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2690
            st = _C_ops.unsqueeze(singular, [-2])
2691 2692

            out_1 = u * st
2693 2694
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2695
            return out_2
A
andyjpaddle 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2708
                outputs={'U': u, 'VH': vt, 'S': s},
2709 2710
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2711 2712

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2713 2714 2715 2716 2717 2718
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2719

2720
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2721 2722
            cutoff = rcond * max_singular_val
            y = float('inf')
2723
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2724 2725

            condition = s > cutoff
2726 2727 2728 2729 2730
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2731 2732 2733

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2734 2735 2736 2737 2738 2739
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2740 2741 2742 2743 2744

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2745 2746 2747 2748 2749 2750
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2751 2752

            out_1 = helper.create_variable_for_type_inference(dtype)
2753 2754 2755 2756 2757 2758
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2759 2760 2761 2762 2763
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2764
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2765
                outputs={'Out': out_2},
2766
                attrs={'trans_x': False, 'trans_y': True},
2767
            )
A
andyjpaddle 已提交
2768 2769 2770 2771 2772
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2773 2774 2775 2776 2777
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2788 2789 2790 2791 2792 2793
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2794
            s_abs = helper.create_variable_for_type_inference(s_type)
2795 2796 2797
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2798
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2799 2800 2801 2802 2803 2804
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2805

2806
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2807 2808
            cutoff = rcond * max_singular_val
            y = float('inf')
2809
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2810 2811

            condition = s_abs > cutoff
2812 2813 2814 2815 2816
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2817 2818 2819

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2820 2821 2822 2823 2824 2825
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2826 2827

            out_1 = helper.create_variable_for_type_inference(dtype)
2828 2829 2830 2831 2832 2833
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2834 2835 2836
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2837 2838 2839
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2840 2841 2842 2843

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2844
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2845
                outputs={'Out': out_2},
2846
                attrs={'trans_x': False, 'trans_y': True},
2847
            )
A
andyjpaddle 已提交
2848
            return out_2
W
Weilong Wu 已提交
2849 2850 2851 2852


def solve(x, y, name=None):
    r"""
2853

W
Weilong Wu 已提交
2854
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2855
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2856
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2857

W
Weilong Wu 已提交
2858 2859
    .. math::
        Out = X^-1 * Y
2860 2861

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2862

W
Weilong Wu 已提交
2863
    Args:
2864
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2865
            more batch dimensions. Its data type should be float32 or float64.
2866
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2867
            more batch dimensions. Its data type should be float32 or float64.
2868
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2869
            For more information, please refer to :ref:`api_guide_Name`.
2870

W
Weilong Wu 已提交
2871
    Returns:
2872
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2873
        Its data type should be the same as that of `x`.
2874

W
Weilong Wu 已提交
2875
    Examples:
2876

2877
        .. code-block:: python
2878

2879 2880 2881
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2882

2883 2884 2885 2886 2887
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2888

2889 2890
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2891
    """
2892
    if in_dygraph_mode():
2893
        return _C_ops.solve(x, y)
2894 2895 2896 2897 2898 2899
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2900

2901 2902 2903 2904
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2905 2906


2907 2908 2909
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2910
    r"""
2911 2912
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2926 2927 2928 2929

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2930
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2931
            zero or more batch dimensions. Its data type should be float32 or float64.
2932
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2933 2934
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2935
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2936 2937 2938 2939 2940 2941 2942 2943
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2944
        .. code-block:: python
2945

2946 2947 2948 2949
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2950

2951 2952 2953 2954 2955 2956
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2957

2958 2959
            print(out)
            # [7, -2, -5]
2960
    """
H
hong 已提交
2961
    if in_dygraph_mode():
2962
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2963 2964 2965 2966 2967
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2968
        )
2969 2970 2971 2972
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2973

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2985 2986


Z
zhiboniu 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2997
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3007
        .. code-block:: python
Z
zhiboniu 已提交
3008

3009
            import paddle
Z
zhiboniu 已提交
3010

3011 3012 3013 3014 3015
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3016

3017 3018
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3019
    """
H
hong 已提交
3020
    if in_dygraph_mode():
3021
        return _C_ops.cholesky_solve(x, y, upper)
3022 3023 3024 3025 3026 3027 3028 3029 3030
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3031

3032 3033 3034 3035 3036 3037 3038
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3039 3040


3041 3042
def eigvalsh(x, UPLO='L', name=None):
    """
3043
    Computes the eigenvalues of a
3044 3045 3046
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3047
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3061
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3062 3063
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3064 3065
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3066
    """
3067
    if in_dygraph_mode():
3068
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3069
        return values
3070
    else:
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
3087
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
3088
                )
3089

3090
        __check_input(x, UPLO)
3091

3092 3093 3094 3095 3096 3097 3098
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3099

3100 3101
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3102

3103 3104 3105 3106 3107 3108 3109 3110
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3111 3112


3113 3114 3115 3116 3117 3118 3119 3120
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3121
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3122
            should be one of float32, float64.
3123 3124
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3125
            machine precision of x_dtype.
3126 3127 3128
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3129
            for CUDA inputs.
3130
        name(str, optional): The default value is None. Normally there is no need for user to set
3131 3132 3133
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3134 3135 3136 3137 3138 3139 3140
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3173 3174 3175
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3176 3177 3178 3179
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3180 3181 3182 3183
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3184 3185 3186 3187
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3188 3189 3190 3191
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3192
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3193 3194 3195 3196
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3212 3213 3214 3215 3216 3217
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3218 3219 3220 3221
    if in_dygraph_mode():
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3222 3223 3224 3225 3226 3227 3228
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3243

3244 3245 3246 3247 3248 3249
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3250

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3262

3263 3264 3265 3266 3267 3268 3269 3270 3271
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3272

3273
        return solution, residuals, rank, singular_values
3274 3275 3276 3277


def corrcoef(x, rowvar=True, name=None):
    """
3278

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3317 3318
            "length of Input(input) is %s." % len(x.shape)
        )
3319 3320 3321
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3322
    if c.ndim == 0:
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3337 3338 3339
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3340 3341 3342 3343
    else:
        c = paddle.clip(c, -1, 1)

    return c