未验证 提交 29a0a8e2 编写于 作者: L Ligoml 提交者: GitHub

[docs_epoch1] update 50+ paddle.* API docs (#42794)

* docs_epoch1

* docs_epoch1

* update kron api docs

* update erfinv;test=document_fix

* subtract

* for ci;test=document_fix
上级 384062fa
......@@ -24,7 +24,7 @@ __all__ = []
def set_default_dtype(d):
"""
Set default dtype. The default dtype is initially float32
Set default dtype. The default dtype is initially float32.
Args:
d(string|np.dtype): the dtype to make the default. It only
......
......@@ -57,7 +57,7 @@ def get_cuda_rng_state():
Get random state of cuda generators.
Args:
None
None.
Returns:
GeneratorState: object.
......@@ -80,13 +80,13 @@ def get_cuda_rng_state():
def set_cuda_rng_state(state_list):
"""
Sets generator state for all cuda generators
Sets generator state for all cuda generators.
Args:
state_list(list|tuple): The cuda states to set back to cuda generators. state_list is obtained from get_cuda_rng_state().
Returns:
None
None.
Examples:
.. code-block:: python
......
......@@ -28,10 +28,10 @@ def flops(net, input_size, custom_ops=None, print_detail=False):
Args:
net (paddle.nn.Layer||paddle.static.Program): The network which could be a instance of paddle.nn.Layer in
dygraph or paddle.static.Program in static graph.
input_size (list): size of input tensor. Note that the batch_size in argument 'input_size' only support 1.
input_size (list): size of input tensor. Note that the batch_size in argument ``input_size`` only support 1.
custom_ops (A dict of function, optional): A dictionary which key is the class of specific operation such as
paddle.nn.Conv2D and the value is the function used to count the FLOPs of this operation. This
argument only work when argument 'net' is an instance of paddle.nn.Layer. The details could be found
argument only work when argument ``net`` is an instance of paddle.nn.Layer. The details could be found
in following example code. Default is None.
print_detail (bool, optional): Whether to print the detail information, like FLOPs per layer, about the net FLOPs.
Default is False.
......
......@@ -30,7 +30,7 @@ def summary(net, input_size=None, dtypes=None, input=None):
Args:
net (Layer): the network which must be a subinstance of Layer.
input_size (tuple|InputSpec|list[tuple|InputSpec]): size of input tensor. if model only
input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. if model only
have one input, input_size can be tuple or InputSpec. if model
have multiple input, input_size must be a list which contain
every input's shape. Note that input_size only dim of
......
......@@ -294,12 +294,6 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
Returns:
Tensor: A Tensor constructed from ``data`` .
Raises:
TypeError: If the data type of ``data`` is not scalar, list, tuple, np.ndarray, paddle.Tensor
ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string.
Examples:
.. code-block:: python
......@@ -765,7 +759,7 @@ def full(shape, fill_value, dtype=None, name=None):
def arange(start=0, end=None, step=1, dtype=None, name=None):
"""
This OP returns a 1-D Tensor with spaced values within a given interval.
Returns a 1-D Tensor with spaced values within a given interval.
Values are generated into the half-open interval [``start``, ``end``) with
the ``step``. (the interval including ``start`` but excluding ``end``).
......@@ -789,18 +783,13 @@ def arange(start=0, end=None, step=1, dtype=None, name=None):
dtype(str|np.dtype, optional): The data type of the
output tensor. Supported data types: int32, int64, float32, float64.
If ``dytpe`` is None, the data type is float32. Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
taken with common difference ``step`` beginning from ``start``. Its
data type is set by ``dtype``.
Raises:
TypeError: If ``dtype`` is not int32, int64, float32, float64.
Examples:
.. code-block:: python
......@@ -914,7 +903,7 @@ def _tril_triu_op(helper):
def tril(x, diagonal=0, name=None):
r"""
This op returns the lower triangular part of a matrix (2-D tensor) or batch
Returns the lower triangular part of a matrix (2-D tensor) or batch
of matrices :attr:`x`, the other elements of the result tensor are set
to 0. The lower triangular part of the matrix is defined as the elements
on and below the diagonal.
......@@ -929,48 +918,42 @@ def tril(x, diagonal=0, name=None):
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
it's data type is the same as x's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`x` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
# Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[1 , 2 , 3 , 4 ],
# [5 , 6 , 7 , 8 ],
# [9 , 10, 11, 12]])
x = paddle.to_tensor(data)
tril1 = paddle.tensor.tril(x)
# array([[ 1, 0, 0, 0],
# [ 5, 6, 0, 0],
# [ 9, 10, 11, 0]])
tril1 = paddle.tril(data)
# Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[1 , 0 , 0 , 0 ],
# [5 , 6 , 0 , 0 ],
# [9 , 10, 11, 0 ]])
# example 2, positive diagonal value
tril2 = paddle.tensor.tril(x, diagonal=2)
# array([[ 1, 2, 3, 0],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
tril2 = paddle.tril(data, diagonal=2)
# Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[1 , 2 , 3 , 0 ],
# [5 , 6 , 7 , 8 ],
# [9 , 10, 11, 12]])
# example 3, negative diagonal value
tril3 = paddle.tensor.tril(x, diagonal=-1)
# array([[ 0, 0, 0, 0],
# [ 5, 0, 0, 0],
# [ 9, 10, 0, 0]])
tril3 = paddle.tril(data, diagonal=-1)
# Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[0 , 0 , 0 , 0 ],
# [5 , 0 , 0 , 0 ],
# [9 , 10, 0 , 0 ]])
"""
if in_dygraph_mode():
return _C_ops.final_state_tril_triu(x, diagonal, True)
......@@ -1342,7 +1325,7 @@ def diag(x, offset=0, padding_value=0, name=None):
def empty(shape, dtype=None, name=None):
"""
This Op returns a Tensor with uninitialized data which size is same as ``shape``.
Returns a Tensor with uninitialized data which size is same as ``shape``.
Args:
shape(list|tuple|Tensor): Shape of the Tensor to be created.
......@@ -1362,29 +1345,32 @@ def empty(shape, dtype=None, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.set_device("cpu") # and use cpu device
import paddle
# example 1: argument ``shape`` is a list which doesn't contain Tensor.
data1 = paddle.empty(shape=[2,3], dtype='float32')
#[[4.3612203e+27 1.8176809e+31 1.3555911e-19] # uninitialized
# [1.1699684e-19 1.3563156e-19 3.6408321e-11]] # uninitialized
# example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
shape_data = np.array([2, 3]).astype('int32')
shape = paddle.to_tensor(shape_data)
data2 = paddle.empty(shape=shape, dtype='float32')
#[[1.7192326e-37 4.8125365e-38 1.9866003e-36] # uninitialized
# [1.3284029e-40 7.1117408e-37 2.5353012e+30]] # uninitialized
# example 3: argument ``shape`` is a list which contains Tensor.
dim2_data = np.array([3]).astype('int32')
dim2 = paddle.to_tensor(dim2_data)
data3 = paddle.empty(shape=[2, dim2], dtype='float32')
#[[1.1024214e+24 7.0379409e+22 6.5737699e-34] # uninitialized
# [7.5563101e+31 7.7130405e+31 2.8020654e+20]] # uninitialized
paddle.set_device("cpu") # and use cpu device
# example 1: argument ``shape`` is a list which doesn't contain Tensor.
data1 = paddle.empty(shape=[2, 3], dtype='float32')
print(data1)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[0.00000000, 0. , 0.00000000],
# [0. , 0.29652897, 0.09356152]]) # uninitialized
# example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
shape_data = paddle.to_tensor([2, 3]).astype('int32')
data2 = paddle.empty(shape=shape_data, dtype='float32')
print(data2)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[-0.50543123, -0.09872390, -0.92634487],
# [-0.51007903, -0.02454148, 1.29315734]]) # uninitialized
# example 3: argument ``shape`` is a list which contains Tensor.
dim2 = paddle.to_tensor([3]).astype('int32')
data3 = paddle.empty(shape=[2, dim2], dtype='float32')
print(data3)
# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[ 0.00000000, 0. , -0.92634487],
# [-0.51007903, -0.02454148, 1.29315734]]) # uninitialized
"""
if dtype is None:
......
......@@ -1492,10 +1492,12 @@ def bmm(x, y, name=None):
y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
[[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
out = paddle.bmm(x, y)
#output size: (2, 2, 2)
#output value:
#[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]
out_np = out.numpy()
# Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[[6. , 6. ],
# [12., 12.]],
# [[45., 45.],
# [60., 60.]]])
"""
x_shape = x.shape
......@@ -1530,9 +1532,10 @@ def histogram(input, bins=100, min=0, max=0, name=None):
Args:
input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
should be float32, float64, int32, int64.
bins (int): number of histogram bins
min (int): lower end of the range (inclusive)
max (int): upper end of the range (inclusive)
bins (int, optional): number of histogram bins.
min (int, optional): lower end of the range (inclusive).
max (int, optional): upper end of the range (inclusive).
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor: data type is int64, shape is (nbins,).
......@@ -1640,14 +1643,14 @@ def mv(x, vec, name=None):
# x: [M, N], vec: [N]
# paddle.mv(x, vec) # out: [M]
import numpy as np
import paddle
x_data = np.array([[2, 1, 3], [3, 0, 1]]).astype("float64")
x = paddle.to_tensor(x_data)
vec_data = np.array([3, 5, 1])
vec = paddle.to_tensor(vec_data).astype("float64")
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
vec = paddle.to_tensor([3, 5, 1]).astype("float64")
out = paddle.mv(x, vec)
print(out)
# Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
# [14., 10.])
"""
if in_dygraph_mode():
return _C_ops.final_state_mv(x, vec)
......
......@@ -275,9 +275,10 @@ def is_empty(x, name=None):
def equal_all(x, y, name=None):
"""
This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
**NOTICE**: The output of this OP has no gradient.
Note:
The output has no gradient.
Args:
x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
......@@ -402,7 +403,8 @@ def equal(x, y, name=None):
This layer returns the truth value of :math:`x == y` elementwise.
**NOTICE**: The output of this OP has no gradient.
Note:
The output has no gradient.
Args:
x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
......@@ -459,9 +461,10 @@ def equal(x, y, name=None):
@templatedoc()
def greater_equal(x, y, name=None):
"""
This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
**NOTICE**: The output of this OP has no gradient.
Note:
The output has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
......@@ -469,7 +472,7 @@ def greater_equal(x, y, name=None):
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
Examples:
.. code-block:: python
......@@ -509,9 +512,10 @@ def greater_equal(x, y, name=None):
@templatedoc()
def greater_than(x, y, name=None):
"""
This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
**NOTICE**: The output of this OP has no gradient.
Note:
The output has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
......@@ -519,7 +523,7 @@ def greater_than(x, y, name=None):
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .
Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
Examples:
.. code-block:: python
......@@ -558,9 +562,10 @@ def greater_than(x, y, name=None):
@templatedoc()
def less_equal(x, y, name=None):
"""
This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
**NOTICE**: The output of this OP has no gradient.
Note:
The output has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
......@@ -569,7 +574,7 @@ def less_equal(x, y, name=None):
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
Examples:
.. code-block:: python
......@@ -609,9 +614,10 @@ def less_equal(x, y, name=None):
@templatedoc()
def less_than(x, y, name=None):
"""
This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
**NOTICE**: The output of this OP has no gradient.
Note:
The output has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
......@@ -620,7 +626,7 @@ def less_than(x, y, name=None):
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
Examples:
.. code-block:: python
......@@ -660,9 +666,10 @@ def less_than(x, y, name=None):
@templatedoc()
def not_equal(x, y, name=None):
"""
This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
**NOTICE**: The output of this OP has no gradient.
Note:
The output has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
......@@ -671,7 +678,7 @@ def not_equal(x, y, name=None):
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
Examples:
.. code-block:: python
......
......@@ -970,7 +970,7 @@ def tolist(x):
def concat(x, axis=0, name=None):
"""
This OP concatenates the input along the axis.
Concatenates the input along the axis.
Args:
x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
......@@ -1330,13 +1330,11 @@ def rot90(x, k=1, axes=[0, 1], name=None):
def flatten(x, start_axis=0, stop_axis=-1, name=None):
r"""
**Flatten op**
Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.
Note that the output Tensor will share data with origin Tensor and doesn't have a
Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, please
use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
Note:
The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
For Example:
......@@ -1371,8 +1369,7 @@ def flatten(x, start_axis=0, stop_axis=-1, name=None):
float64, int8, int32, int64, uint8.
start_axis (int): the start axis to flatten
stop_axis (int): the stop axis to flatten
name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
Generally, no setting is required. Default: None.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A tensor with the contents of the input tensor, with input \
......@@ -1565,7 +1562,7 @@ def roll(x, shifts, axis=None, name=None):
def stack(x, axis=0, name=None):
"""
This OP stacks all the input tensors ``x`` along ``axis`` dimemsion.
Stacks all the input tensors ``x`` along ``axis`` dimemsion.
All tensors must be of the same shape and same dtype.
For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
......@@ -1621,7 +1618,7 @@ def stack(x, axis=0, name=None):
axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The stacked tensor with same data type as input.
......@@ -2433,10 +2430,10 @@ def unbind(input, axis=0):
.. code-block:: python
import paddle
import numpy as np
# input is a variable which shape is [3, 4, 5]
np_input = np.random.rand(3, 4, 5).astype('float32')
input = paddle.to_tensor(np_input)
input = paddle.rand([3, 4, 5]).astype('float32')
[x0, x1, x2] = paddle.unbind(input, axis=0)
# x0.shape [4, 5]
# x1.shape [4, 5]
......@@ -2446,7 +2443,6 @@ def unbind(input, axis=0):
# x1.shape [3, 5]
# x2.shape [3, 5]
# x3.shape [3, 5]
"""
if in_dygraph_mode():
return _C_ops.final_state_unbind(input, axis)
......@@ -2933,8 +2929,7 @@ def broadcast_to(x, shape, name=None):
shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
The value -1 in shape means keeping the corresponding dimension unchanged.
name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
......@@ -3097,7 +3092,7 @@ def expand(x, shape, name=None):
def reshape(x, shape, name=None):
"""
This operator changes the shape of ``x`` without changing its data.
Changes the shape of ``x`` without changing its data.
Note that the output Tensor will share data with origin Tensor and doesn't
have a Tensor copy in ``dygraph`` mode.
......@@ -3106,32 +3101,17 @@ def reshape(x, shape, name=None):
Some tricks exist when specifying the target shape.
1. -1 means the value of this dimension is inferred from the total element
number of x and remaining dimensions. Thus one and only one dimension can
be set -1.
- 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
2. 0 means the actual dimension value is going to be copied from the
corresponding dimension of x. The index of 0s in shape can not exceed
the dimension of x.
- 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
Here are some examples to explain it.
1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
is [6, 8], the reshape operator will transform x into a 2-D tensor with
shape [6, 8] and leaving x's data unchanged.
- 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
specified is [2, 3, -1, 2], the reshape operator will transform x into a
4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
case, one dimension of the target shape is set to -1, the value of this
dimension is inferred from the total element number of x and remaining
dimensions.
- 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
besides -1, 0 means the actual dimension value is going to be copied from
the corresponding dimension of x.
- 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
Args:
x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
......@@ -3363,8 +3343,7 @@ def gather_nd(x, index, name=None):
x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
Its dtype should be int32, int64.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
......
......@@ -292,6 +292,7 @@ def multiplex(inputs, index, name=None):
:name: code-example1
import paddle
img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
inputs = [img1, img2]
......@@ -498,6 +499,7 @@ def add(x, y, name=None):
.. code-block:: python
import paddle
x = paddle.to_tensor([2, 3, 4], 'float64')
y = paddle.to_tensor([1, 5, 2], 'float64')
z = paddle.add(x, y)
......@@ -539,8 +541,8 @@ def subtract(x, y, name=None):
.. math::
out = x - y
**Note**:
``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Note:
``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
......@@ -554,35 +556,37 @@ def subtract(x, y, name=None):
.. code-block:: python
import numpy as np
import paddle
x = paddle.to_tensor([[1, 2], [7, 8]])
y = paddle.to_tensor([[5, 6], [3, 4]])
res = paddle.subtract(x, y)
print(res)
# [[-4, -4],
# [4, 4]]
# Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[-4, -4],
# [ 4, 4]])
x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
y = paddle.to_tensor([1, 0, 4])
res = paddle.subtract(x, y)
print(res)
# [[[ 0, 2, -1],
# [ 0, 2, -1]]]
# Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[[ 0, 2, -1],
# [ 0, 2, -1]]])
x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
res = paddle.subtract(x, y)
print(res)
# [ 1., nan, nan]
# Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1. , nan, nan])
x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
y = paddle.to_tensor([1, 4, 5], dtype='float64')
res = paddle.subtract(x, y)
print(res)
# [ 4., inf., -inf.]
# Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
# [ 4. , inf., -inf.])
"""
op_type = 'elementwise_sub'
axis = -1
......@@ -1083,9 +1087,6 @@ def sum(x, axis=None, dtype=None, keepdim=False, name=None):
if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
otherwise it's data type is the same as `x`.
Raises:
TypeError: The type of :attr:`axis` must be int, list or tuple.
Examples:
.. code-block:: python
......@@ -1571,7 +1572,7 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
"""
**addmm**
This operator is used to perform matrix multiplication for input $x$ and $y$.
Perform matrix multiplication for input $x$ and $y$.
$input$ is added to the final result.
The equation is:
......@@ -1584,12 +1585,12 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
input (Tensor): The input Tensor to be added to the final result.
x (Tensor): The first input Tensor for matrix multiplication.
y (Tensor): The second input Tensor for matrix multiplication.
beta (float): Coefficient of $input$.
alpha (float): Coefficient of $x*y$.
beta (float, optional): Coefficient of $input$, default is 1.
alpha (float, optional): Coefficient of $x*y$, default is 1.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The output Tensor of addmm op.
Tensor: The output Tensor of addmm.
Examples:
.. code-block:: python
......@@ -1830,7 +1831,7 @@ def outer(x, y, name=None):
def logsumexp(x, axis=None, keepdim=False, name=None):
r"""
This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
.. math::
logsumexp(x) = \log\sum exp(x)
......@@ -2543,9 +2544,9 @@ def clip(x, min=None, max=None, name=None):
Args:
x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
with shape [1] and type ``int32``, ``float32``, ``float64``.
max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
with shape [1] and type ``int32``, ``float32``, ``float64``.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
......@@ -2661,7 +2662,7 @@ def trace(x, offset=0, axis1=0, axis2=1, name=None):
"""
**trace**
This OP computes the sum along diagonals of the input tensor x.
Computes the sum along diagonals of the input tensor x.
If ``x`` is 2D, returns the sum of diagonal.
......@@ -2862,18 +2863,15 @@ def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
def kron(x, y, name=None):
"""
${comment}
${comment}
Args:
x (Tensor): the fist operand of kron op, data type: float16, float32,
float64, int32 or int64.
y (Tensor): the second operand of kron op, data type: float16,
float32, float64, int32 or int64. Its data type should be the same
with x.
x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
Examples:
.. code-block:: python
......@@ -3135,12 +3133,12 @@ def prod(x, axis=None, keepdim=False, dtype=None, name=None):
multiply all elements of `x` and return a Tensor with a single element,
otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
int32, int64. If specified, the input tensor is casted to dtype before operator performed.
This is very useful for avoiding data type overflows. The default value is None, the dtype
of output is the same as input Tensor `x`.
keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
......@@ -3224,7 +3222,7 @@ def prod(x, axis=None, keepdim=False, dtype=None, name=None):
def sign(x, name=None):
"""
This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Args:
x (Tensor): The input tensor. The data type can be float16, float32 or float64.
......@@ -3856,7 +3854,7 @@ def lerp_(x, y, weight, name=None):
def erfinv(x, name=None):
r"""
The inverse error function of x, .
The inverse error function of x.
Equation:
.. math::
......
......@@ -506,25 +506,27 @@ def erf(x, name=None):
erf.__doc__ = r"""
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).
For more details, see `Error function <https://en.wikipedia.org/wiki/Error_function>`_.
Equation:
.. math::
out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta
out = \frac{2}{\sqrt{\pi}} \int_{0}^{x}e^{- \eta^{2}}d\eta
Args:
x (Tensor): The input tensor, it's data type should be float32, float64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The output of Erf op, dtype: float32 or float64, the same as the input, shape: the same as the input.
Tensor: The output of Erf, dtype: float32 or float64, the same as the input, shape: the same as the input.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.erf(x)
print(out)
......
......@@ -202,7 +202,7 @@ def multinomial(x, num_samples=1, replacement=False, name=None):
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
"""
This OP returns a Tensor filled with random values sampled from a Gaussian
Returns a Tensor filled with random values sampled from a Gaussian
distribution, with ``shape`` and ``dtype``.
Args:
......@@ -219,9 +219,7 @@ def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
Supported data types: float32, float64.
Default is None, use global default dtype (see ``get_default_dtype``
for details).
name (str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a Gaussian
......@@ -335,7 +333,7 @@ def standard_normal(shape, dtype=None, name=None):
def randn(shape, dtype=None, name=None):
"""
This OP returns a Tensor filled with random values sampled from a standard
Returns a Tensor filled with random values sampled from a standard
normal distribution with mean 0 and standard deviation 1, with ``shape``
and ``dtype``.
......@@ -907,7 +905,7 @@ def randint_like(x, low=0, high=None, dtype=None, name=None):
def randperm(n, dtype="int64", name=None):
"""
This OP returns a 1-D Tensor filled with random permutation values from 0
Returns a 1-D Tensor filled with random permutation values from 0
to n-1, with ``dtype``.
Args:
......
......@@ -119,7 +119,7 @@ def argsort(x, axis=-1, descending=False, name=None):
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
"""
This OP computes the indices of the max elements of the input tensor's
Computes the indices of the max elements of the input tensor's
element along the provided axis.
Args:
......@@ -130,23 +130,21 @@ def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
dtype(str|np.dtype, optional): Data type of the output tensor which can
be int32, int64. The default value is 'int64', and it will
be int32, int64. The default value is ``int64`` , and it will
return the int64 indices.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
Tensor, return the tensor of int32 if set :attr:`dtype` is int32, otherwise return the tensor of int64.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]])
x = paddle.to_tensor([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]])
out1 = paddle.argmax(x)
print(out1) # 2
out2 = paddle.argmax(x, axis=0)
......
......@@ -118,30 +118,18 @@ def var(x, axis=None, unbiased=True, keepdim=False, name=None):
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
variance calculations. ``axis`` should be int, list(int) or
tuple(int). If ``axis`` is a list/tuple of dimension(s), variance
is calculated along all element(s) of ``axis`` . ``axis`` or
element(s) of ``axis`` should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less
than 0, it works the same way as :math:`axis + D` . If ``axis`` is
None, variance is calculated over all elements of ``x``. Default
is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int).
- If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
- If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` .
- If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of variance along ``axis`` of ``x``, with the same data
type as ``x``.
Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``.
Examples:
.. code-block:: python
......@@ -223,7 +211,7 @@ def std(x, axis=None, unbiased=True, keepdim=False, name=None):
def numel(x, name=None):
"""
Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
or a scalar value in imperative mode
or a scalar value in imperative mode.
Args:
x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
......@@ -280,21 +268,26 @@ def median(x, axis=None, keepdim=False, name=None):
import paddle
x = paddle.arange(12).reshape([3, 4])
# x is [[0 , 1 , 2 , 3 ],
# [4 , 5 , 6 , 7 ],
# [8 , 9 , 10, 11]]
# Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[0 , 1 , 2 , 3 ],
# [4 , 5 , 6 , 7 ],
# [8 , 9 , 10, 11]])
y1 = paddle.median(x)
# y1 is [5.5]
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [5.50000000])
y2 = paddle.median(x, axis=0)
# y2 is [4., 5., 6., 7.]
# Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
# [4., 5., 6., 7.])
y3 = paddle.median(x, axis=1)
# y3 is [1.5, 5.5, 9.5]
# Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.50000000, 5.50000000, 9.50000000])
y4 = paddle.median(x, axis=0, keepdim=True)
# y4 is [[4., 5., 6., 7.]]
# Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[4., 5., 6., 7.]])
"""
if not isinstance(x, Variable):
......
......@@ -37,7 +37,6 @@ def set_printoptions(precision=None,
sci_mode=None,
linewidth=None):
"""Set the printing options for Tensor.
NOTE: The function is similar with numpy.set_printoptions()
Args:
precision (int, optional): Number of digits of the floating number, default 8.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册