linalg.py 126.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _non_static_mode, in_dygraph_mode
18 19 20 21 22
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
Z
zhiboniu 已提交
23
from ..static import Variable
24 25
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
26 27 28
from .math import multiply, add
from .logic import logical_not
from .creation import full
29

A
andyjpaddle 已提交
30
import paddle
31
from paddle.common_ops_import import VarDesc
32
from paddle import _C_ops, _legacy_C_ops
33

34 35
__all__ = []

36 37 38
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
91
        return _C_ops.transpose(x, perm)
92 93
    else:
        if _in_legacy_dygraph():
94
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
95 96
            return out

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
112 113 114 115 116 117 118 119
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
120 121
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
122 123 124 125 126
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
127 128
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
129 130 131 132

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
133 134 135 136 137 138
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
139 140 141
    return out


S
ShenLiang 已提交
142
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
143
    """
144 145
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
146
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
147

S
ShenLiang 已提交
148 149
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
150 151 152 153 154

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
155 156
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
157 158 159 160 161 162 163 164
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

165 166
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
167
      After the matrix multiply, the prepended dimension is removed.
168 169

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
170 171
      the matrix-vector product is obtained.

172 173 174 175 176 177 178 179 180
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
181
      out will be a (j, k, n, p) tensor.
182 183

    Args:
S
ShenLiang 已提交
184 185
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
186 187 188 189 190 191
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
192
        Tensor: The output Tensor.
193 194 195

    Examples:

C
Chen Long 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
234 235

    """
236
    if in_dygraph_mode():
237
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
238 239 240

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
241
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
242 243
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

244
    attrs = {
S
ShenLiang 已提交
245 246
        'trans_x': transpose_x,
        'trans_y': transpose_y,
247 248 249 250 251
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
252
            check_variable_and_dtype(
253 254
                val,
                name,
255
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
256 257
                'matmul',
            )
258 259 260

    __check_input(x, y)

S
ShenLiang 已提交
261
    helper = LayerHelper('matmul_v2', **locals())
262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
263 264 265 266 267 268
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
269
    return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
376
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
377
            if dim is None:
378 379 380 381 382 383
                return _legacy_C_ops.frobenius_norm(
                    input, 'keep_dim', keepdim, 'reduce_all', True
                )
            return _legacy_C_ops.frobenius_norm(
                input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False
            )
myq406450149's avatar
myq406450149 已提交
384 385
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
386
            attrs['reduce_all'] = True
387 388 389
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'frobenius_norm'
        )
390 391

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
392
        out = helper.create_variable_for_type_inference(
393 394
            dtype=helper.input_dtype()
        )
395

396 397 398 399 400 401
        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
402 403
        return out

404 405 406
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
407 408 409 410 411 412 413 414
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
415
        if in_dygraph_mode():
416 417
            if axis is None:
                axis = -1
418
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
419 420

        if _in_legacy_dygraph():
421 422 423 424 425 426 427 428 429 430 431 432 433
            if axis is None:
                axis = -1
            return _legacy_C_ops.p_norm(
                input,
                'porder',
                porder,
                'axis',
                axis,
                'keepdim',
                keepdim,
                'asvector',
                asvector,
            )
434

435 436 437 438
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
439 440 441
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'p_norm'
        )
myq406450149's avatar
myq406450149 已提交
442

443 444 445 446
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
447
            'asvector': asvector,
448 449 450
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
451
        out = helper.create_variable_for_type_inference(
452 453
            dtype=helper.input_dtype()
        )
454

455 456 457 458 459 460
        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
461 462
        return out

463 464 465
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
466
        if in_dygraph_mode():
467
            out = _C_ops.abs(input)
468 469 470 471 472
            reduce_all = (
                True
                if axis == None or axis == [] or asvector == True
                else False
            )
473 474 475 476
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
477
                return _C_ops.max(out, axis, keepdim)
478
            else:
479
                return _C_ops.min(out, axis, keepdim)
480

O
OccupyMars2025 已提交
481
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
482
        out = helper.create_variable_for_type_inference(
483 484
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
485 486
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
487 488
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
489

490 491 492
        reduce_all = (
            True if axis == None or axis == [] or asvector == True else False
        )
myq406450149's avatar
myq406450149 已提交
493 494
        axis = axis if axis != None and axis != [] else [0]

495 496 497 498 499 500 501 502 503
        reduce_type = (
            'reduce_max' if porder == np.float64('inf') else 'reduce_min'
        )
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
myq406450149's avatar
myq406450149 已提交
504 505 506

        return reduce_out

507
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
508 509 510 511
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
512
        if in_dygraph_mode():
513 514 515
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
516
            out = _C_ops.pow(sum_out, float(1.0 / porder))
517 518
            return out

myq406450149's avatar
myq406450149 已提交
519 520
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
521 522
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
523
        abs_out = block.create_variable_for_type_inference(
524 525 526 527 528
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
529
        pow_out = block.create_variable_for_type_inference(
530 531
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
532

533 534 535 536 537 538
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
539
        sum_out = block.create_variable_for_type_inference(
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
558 559
        return out

560 561 562
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
563
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
564 565
            else:
                raise ValueError(
566 567
                    "only valid string values are 'fro', found {}".format(p)
                )
568
        elif isinstance(p, (int, float)):
569 570 571 572 573 574 575 576
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
577
        else:
578
            raise ValueError(
579 580
                "only valid p type is string or float, found {}".format(type(p))
            )
581

myq406450149's avatar
myq406450149 已提交
582 583
    if isinstance(axis, tuple):
        axis = list(axis)
584 585 586
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

587
    # calculate vector norm, where axis is int or list with only one integer
588
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
589 590
        if isinstance(p, str):
            if p == "fro":
591 592 593 594 595 596 597 598
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
599 600 601

            else:
                raise ValueError(
602 603
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
604
        elif isinstance(p, (int, float)):
605 606 607 608 609 610 611 612
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
613 614
        else:
            raise ValueError(
615 616 617 618 619
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
620 621
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
622 623 624
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
625 626
        elif p == 0:
            raise ValueError(
627 628 629 630
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
631
        else:
632 633 634
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
635 636
    else:
        raise ValueError(
637 638 639 640
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
641 642


643
def dist(x, y, p=2, name=None):
644
    r"""
S
swtkiwi 已提交
645

Z
Zhang Ting 已提交
646
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
647 648
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
673 674 675 676 677 678 679

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
680
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
681 682 683 684 685

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
686
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
687 688 689 690 691 692 693 694 695 696 697 698

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
699 700
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
701 702 703
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
704
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
705 706 707 708 709 710

    Examples:
        .. code-block:: python

            import paddle

711 712
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
713 714
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
715

716 717
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
718

719 720
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
721

722 723
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
724
    """
H
hong 已提交
725
    if in_dygraph_mode():
726
        return _C_ops.dist(x, y, p)
H
hong 已提交
727

Z
Zhang Ting 已提交
728 729 730 731 732 733 734 735 736
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
737 738 739
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
740
    return out
L
liuwei1031 已提交
741 742


743 744 745 746 747 748
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
749 750
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
805
            # a.numpy()
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

830
    def mat_norm(input, porder=1.0, axis=None):
831 832 833 834 835 836 837 838 839
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

840 841 842 843 844 845 846 847 848 849 850
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
851 852 853 854 855 856 857 858 859
            sum_out = _legacy_C_ops.reduce_sum(
                abs_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
860
            if porder == 1 or porder == np.inf:
861 862 863 864 865 866 867 868 869
                return _legacy_C_ops.reduce_max(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
870
            if porder == -1 or porder == -np.inf:
871 872 873 874 875 876 877 878 879
                return _legacy_C_ops.reduce_min(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
880 881 882
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
883 884
                dtype=block.input_dtype()
            )
885
            sum_out = block.create_variable_for_type_inference(
886 887
                dtype=block.input_dtype()
            )
888
            out = block.create_variable_for_type_inference(
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
904
            if porder == 1 or porder == np.inf:
905 906 907 908 909 910 911 912 913 914
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
915
            if porder == -1 or porder == -np.inf:
916 917 918 919 920 921 922 923 924 925
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
926
            return out
927 928 929 930 931 932 933 934 935

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

936
        if in_dygraph_mode():
937
            pow_out = _C_ops.pow(input, porder)
938 939
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
940
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
941
        elif paddle.in_dynamic_mode():
942
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
            sum_out_1 = _legacy_C_ops.reduce_sum(
                pow_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            sum_out_2 = _legacy_C_ops.reduce_sum(
                sum_out_1,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1.0 / porder))
962 963 964

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
965 966
            dtype=block.input_dtype()
        )
967
        sum_out_1 = block.create_variable_for_type_inference(
968 969
            dtype=block.input_dtype()
        )
970
        sum_out_2 = block.create_variable_for_type_inference(
971 972
            dtype=block.input_dtype()
        )
973
        out = block.create_variable_for_type_inference(
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
            dtype=block.input_dtype()
        )
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

1013
        if _non_static_mode():
1014
            if porder == "nuc":
1015
                if in_dygraph_mode():
1016
                    return _C_ops.sum(s, axis, None, keepdim)
1017
                else:
1018 1019 1020 1021 1022 1023 1024 1025 1026
                    return _legacy_C_ops.reduce_sum(
                        s,
                        'dim',
                        axis,
                        'keepdim',
                        keepdim,
                        'reduce_all',
                        reduce_all,
                    )
1027 1028 1029 1030
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
1031
                    return _C_ops.divide(max_out, min_out)
1032
                if porder == -2:
1033
                    return _C_ops.divide(min_out, max_out)
1034 1035

            else:
1036 1037 1038 1039 1040 1041
                max_out = _legacy_C_ops.reduce_max(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
                min_out = _legacy_C_ops.reduce_min(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
1042 1043
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
1044 1045
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False
                    )
1046 1047
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
1048 1049
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False
                    )
1050 1051 1052

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
1053 1054
            dtype=block.input_dtype()
        )
1055
        if porder == "nuc":
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
1066 1067
            return out
        max_out = block.create_variable_for_type_inference(
1068 1069
            dtype=block.input_dtype()
        )
1070
        min_out = block.create_variable_for_type_inference(
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
1085
        if porder == 2:
1086 1087 1088 1089 1090 1091
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out, 'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1092 1093
            return out
        if porder == -2:
1094 1095 1096 1097 1098 1099
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out, 'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1100 1101 1102
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1103
        if paddle.in_dynamic_mode():
1104 1105 1106 1107 1108
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1109
        raise ValueError(
1110 1111 1112
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1126
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1127 1128
                    x_inv, porder=p, axis=[-2]
                )
1129
            if p in (np.inf, -np.inf):
1130
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1131 1132
                    x_inv, porder=p, axis=[-1]
                )
1133
        else:
1134 1135 1136 1137
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1138 1139 1140 1141 1142 1143
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1144 1145 1146
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1147 1148


L
liuwei1031 已提交
1149 1150 1151
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1152

1153
    Note:
1154 1155
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1156 1157

    Parameters:
S
ShenLiang 已提交
1158 1159
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1160 1161
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1162
    Returns:
1163
        Tensor: the calculated result Tensor.
1164

L
liuwei1031 已提交
1165 1166 1167 1168 1169
    Examples:

    .. code-block:: python

        import paddle
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1180
        z = paddle.dot(x, y)
1181
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1182 1183

    """
1184 1185
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1186 1187
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1188

L
liuwei1031 已提交
1189
    op_type = 'dot'
1190

L
liuwei1031 已提交
1191 1192 1193
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

1194 1195 1196 1197 1198 1199
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
    )
    check_variable_and_dtype(
        y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
    )
L
liuwei1031 已提交
1200 1201 1202 1203 1204

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1205 1206 1207 1208 1209 1210
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
    helper.append_op(
        type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
    )
L
liuwei1031 已提交
1211
    return out
1212 1213


Z
zhiboniu 已提交
1214 1215 1216 1217 1218
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1219
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1253 1254
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1268 1269
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1270 1271 1272
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1273 1274 1275 1276
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1277 1278 1279
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1280 1281
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1282 1283 1284 1285 1286 1287 1288 1289
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1290 1291 1292 1293 1294
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1295 1296 1297
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1298 1299 1300 1301
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1302 1303 1304
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1305 1306
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1337 1338
def t(input, name=None):
    """
1339 1340
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1341
    the paddle.transpose function which perm dimensions set 0 and 1.
1342

1343
    Args:
1344
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1345
        name(str, optional): The default value is None.  Normally there is no need for
1346 1347
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1348
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1349

1350
    Examples:
1351

1352 1353 1354
        .. code-block:: python
           :name: code-example
             import paddle
1355

1356
             # Example 1 (0-D tensor)
1357 1358
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1359

1360
             # Example 2 (1-D tensor)
1361 1362 1363
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1364 1365

             # Example 3 (2-D tensor)
1366 1367 1368 1369 1370 1371 1372 1373
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1374

1375 1376 1377 1378 1379
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1380 1381
            "tensor.transpose() instead." % len(input.shape)
        )
1382 1383 1384 1385 1386
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1387
        out = _C_ops.transpose(input, perm)
1388 1389 1390
        return out

    if _in_legacy_dygraph():
1391 1392 1393 1394
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1395
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1396 1397 1398
        return out

    check_variable_and_dtype(
1399 1400 1401 1402 1403
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose',
    )
1404 1405 1406 1407 1408 1409 1410

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1411 1412 1413 1414 1415 1416
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': [1, 0]},
        )
1417
    return out
1418 1419


W
wanghuancoder 已提交
1420
def cross(x, y, axis=9, name=None):
1421
    """
1422
    Computes the cross product between two tensors along an axis.
1423

1424 1425
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1426

1427
    Args:
1428 1429
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1430
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1431
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1432 1433

    Returns:
1434
        Tensor. A Tensor with same data type as `x`.
1435

1436 1437
    Examples:
        .. code-block:: python
1438

1439
            import paddle
1440

Z
Zhou Wei 已提交
1441 1442 1443 1444 1445 1446
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1457
    """
J
Jiabin Yang 已提交
1458
    if in_dygraph_mode():
1459
        axis = K_DEFAULT_DIM if axis is None else axis
1460
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1461 1462 1463
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1464
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1465
            else:
1466
                return _legacy_C_ops.cross(x, y)
1467
        else:
J
Jiabin Yang 已提交
1468 1469 1470 1471 1472
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1473 1474 1475 1476 1477 1478
            helper.append_op(
                type='cross',
                inputs={'X': x, 'Y': y},
                outputs={'Out': out},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1479
            return out
1480 1481


1482
def cholesky(x, upper=False, name=None):
1483
    r"""
G
Guo Sheng 已提交
1484
    Computes the Cholesky decomposition of one symmetric positive-definite
1485 1486
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1487 1488 1489 1490 1491 1492
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1493
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1494 1495 1496 1497 1498
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1499 1500
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1501 1502

    Returns:
1503 1504
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1505

G
Guo Sheng 已提交
1506 1507 1508 1509 1510 1511
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1512 1513 1514
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1515
            x = paddle.to_tensor(x_data)
1516
            out = paddle.linalg.cholesky(x, upper=False)
1517
            print(out)
1518 1519 1520
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1521 1522

    """
H
hong 已提交
1523
    if in_dygraph_mode():
1524
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1525 1526

    if _in_legacy_dygraph():
1527
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1528

G
Guo Sheng 已提交
1529 1530 1531 1532
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1533 1534 1535 1536 1537 1538
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
G
Guo Sheng 已提交
1539 1540 1541
    return out


1542 1543 1544 1545
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1546
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1547
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1548 1549

    Args:
1550 1551 1552 1553
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1554
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1555 1556
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1557
            the lower triangular of the matrix to compute.
1558 1559 1560 1561
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1579

1580
    """
1581 1582 1583 1584 1585 1586 1587
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1588 1589 1590
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1591

1592 1593 1594 1595 1596 1597
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1598
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1599 1600

    if _in_legacy_dygraph():
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        return _legacy_C_ops.matrix_rank(
            x,
            tol_tensor,
            "tol",
            tol_attr,
            'hermitian',
            hermitian,
            'use_default_tol',
            use_default_tol,
        )
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1648 1649 1650
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1651 1652 1653
    return out


1654 1655 1656 1657 1658 1659 1660 1661 1662
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1663 1664
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1665 1666 1667 1668
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1669
        Tensor: The product Tensor.
1670 1671

    Examples:
S
sunzhongkai588 已提交
1672 1673 1674
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1675

S
sunzhongkai588 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1685 1686 1687 1688 1689 1690
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1691

1692
    """
Y
yaoxuefeng 已提交
1693 1694 1695 1696
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1697 1698 1699 1700
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1701 1702
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1703 1704 1705 1706
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1707 1708
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1709 1710 1711 1712
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1713

1714
    if in_dygraph_mode():
1715
        return _C_ops.bmm(x, y)
1716

Z
zhiboniu 已提交
1717
    if paddle.in_dynamic_mode():
1718
        return _legacy_C_ops.bmm(x, y)
1719 1720

    helper = LayerHelper('bmm', **locals())
1721 1722 1723
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1724 1725


1726
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1727
    """
1728
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1729 1730 1731
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1732
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1733
            should be float32, float64, int32, int64.
1734 1735 1736 1737
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1738 1739

    Returns:
1740
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1741

1742
    Examples:
Q
Qi Li 已提交
1743
        .. code-block:: python
1744

Q
Qi Li 已提交
1745
            import paddle
1746

1747
            inputs = paddle.to_tensor([1, 2, 1])
1748 1749
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1750
    """
H
hong 已提交
1751
    if in_dygraph_mode():
1752
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1753 1754

    if _in_legacy_dygraph():
1755 1756 1757
        return _legacy_C_ops.histogram(
            input, "bins", bins, "min", min, "max", max
        )
Q
Qi Li 已提交
1758 1759

    helper = LayerHelper('histogram', **locals())
1760 1761 1762
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
    )
Q
Qi Li 已提交
1763
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1764 1765 1766 1767 1768 1769
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins, 'min': min, 'max': max},
    )
Q
Qi Li 已提交
1770
    return out
S
smallv0221 已提交
1771 1772 1773 1774


def bincount(x, weights=None, minlength=0, name=None):
    """
1775
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1803 1804 1805
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1806
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1807 1808 1809 1810 1811 1812

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
1813 1814 1815 1816 1817 1818
        check_variable_and_dtype(
            weights,
            'Weights',
            ['int32', 'int64', 'float32', 'float64'],
            'bincount',
        )
S
smallv0221 已提交
1819 1820 1821
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1822 1823 1824 1825 1826 1827
    helper.append_op(
        type='bincount',
        inputs={'X': x, 'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength},
    )
S
smallv0221 已提交
1828
    return out
1829 1830 1831 1832 1833 1834 1835


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1836
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1837
            should be one of float32, float64.
F
furnace 已提交
1838
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1854 1855
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1856
            out = paddle.mv(x, vec)
1857 1858 1859
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1860
    """
J
Jiabin Yang 已提交
1861
    if in_dygraph_mode():
1862
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1863 1864
    else:
        if _in_legacy_dygraph():
1865
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1866 1867
            return out
        else:
1868

J
Jiabin Yang 已提交
1869 1870 1871
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
1872 1873 1874
                    check_variable_and_dtype(
                        val, name, ['float32', 'float64'], 'mv'
                    )
J
Jiabin Yang 已提交
1875 1876 1877 1878
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1879 1880 1881 1882
                        "x should be 2-dimensional. But received x's dimention: {}".format(
                            x_shape
                        )
                    )
J
Jiabin Yang 已提交
1883 1884
                if len(vec_shape) != 1:
                    raise ValueError(
1885 1886 1887 1888
                        "vec should be 1-dimensional. But received vec's dimention: {}".format(
                            vec_shape
                        )
                    )
J
Jiabin Yang 已提交
1889 1890 1891 1892 1893

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1894 1895 1896
            helper.append_op(
                type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
            )
J
Jiabin Yang 已提交
1897
            return out
1898 1899


1900
def det(x, name=None):
H
huangxu96 已提交
1901 1902
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1903

H
huangxu96 已提交
1904
    Args:
1905 1906 1907 1908
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1909
    Returns:
1910
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1911

1912
    Examples:
H
huangxu96 已提交
1913 1914
        .. code-block:: python

1915
            import paddle
H
huangxu96 已提交
1916

1917
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1918

1919
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1920

1921
            print(A)
1922

1923
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1924

1925

H
huangxu96 已提交
1926
    """
C
chentianyu03 已提交
1927
    if in_dygraph_mode():
1928
        return _C_ops.det(x)
C
chentianyu03 已提交
1929 1930

    if _in_legacy_dygraph():
1931
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1932 1933 1934 1935

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
1936 1937 1938 1939
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1940

1941 1942 1943 1944 1945 1946
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1947 1948 1949
    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1950 1951 1952
    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1953 1954 1955
    return out


1956
def slogdet(x, name=None):
H
huangxu96 已提交
1957 1958 1959
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1960

H
huangxu96 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1972
    Examples:
1973
        .. code-block:: python
H
huangxu96 已提交
1974

1975
            import paddle
H
huangxu96 已提交
1976

1977
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1978

1979
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1980

1981
            print(A)
1982

1983 1984
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1985 1986

    """
1987
    if in_dygraph_mode():
1988
        return _C_ops.slogdet(x)
1989 1990

    elif paddle.in_dynamic_mode():
1991
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1992 1993 1994 1995

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
1996 1997 1998 1999
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
2000

2001 2002 2003 2004 2005 2006
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
2007 2008 2009
    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2010 2011 2012
    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
2013 2014 2015
    return out


2016 2017
def svd(x, full_matrices=False, name=None):
    r"""
2018 2019 2020 2021 2022
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
2023 2024
        X = U * diag(S) * VT

2025 2026
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
2027
            where `...` is zero or more batch dimensions. N and M can be arbitraty
2028 2029 2030 2031
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
2032
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
2033
            If full_matrices = False, svd op will use a economic method to store U and V.
2034
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
2035
        name (str, optional): Name for the operation (optional, default is None).
2036
            For more information, please refer to :ref:`api_guide_Name`.
2037 2038

    Returns:
2039
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2040

2041 2042 2043 2044
    Examples:
        .. code-block:: python

            import paddle
2045 2046 2047

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
2048
            u, s, vh = paddle.linalg.svd(x)
2049 2050 2051 2052 2053
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

2054
            print (s)
2055
            #S = [8.14753743, 0.78589688]
2056
            print (vh)
2057 2058
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
2059

2060
            # one can verify : U * S * VT == X
2061
            #                  U * UH == I
2062
            #                  V * VH == I
2063
    """
2064
    if in_dygraph_mode():
2065
        return _C_ops.svd(x, full_matrices)
2066
    if _in_legacy_dygraph():
2067
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
2079
        outputs={'U': u, 'VH': vh, 'S': s},
2080 2081
        attrs=attrs,
    )
2082 2083 2084
    return u, s, vh


2085 2086 2087
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
2088

2089 2090 2091 2092 2093
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2094

2095 2096
    Specifically,

2097
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
2098

2099 2100
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

2101
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
2102 2103 2104 2105 2106 2107

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2108
        name (str, optional): Name for the operation (optional, default is None).
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2123
            print(paddle.linalg.matrix_power(x, 2))
2124 2125 2126 2127
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2128
            print(paddle.linalg.matrix_power(x, 0))
2129 2130 2131 2132
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2133
            print(paddle.linalg.matrix_power(x, -2))
2134 2135 2136 2137
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2138
    if in_dygraph_mode():
2139
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2140 2141

    if _in_legacy_dygraph():
2142
        return _legacy_C_ops.matrix_power(x, "n", n)
2143 2144 2145 2146 2147

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2148 2149 2150 2151 2152 2153
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n},
    )
2154
    return out
2155 2156


2157 2158 2159 2160 2161 2162 2163
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2164 2165
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2166
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2167
            If mode = "reduced", qr op will return reduced Q and R matrices,
2168
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2169
            If mode = "complete", qr op will return complete Q and R matrices,
2170 2171 2172 2173 2174
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2175

2176
    Returns:
2177
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2178
        If mode = "r", qr will return a tensor which represents R.
2179 2180

    Examples:
2181 2182
        .. code-block:: python

2183
            import paddle
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2196 2197

            # one can verify : X = Q * R ;
2198
    """
Y
Yulong Ao 已提交
2199
    if in_dygraph_mode():
2200
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2201 2202 2203 2204 2205
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2206
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2218 2219 2220
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
    )
2221 2222 2223 2224 2225 2226
    if mode == "r":
        return r
    else:
        return q, r


2227 2228
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2229
    Computes the LU factorization of an N-D(N>=2) matrix x.
2230

2231
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2232 2233 2234 2235
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2236 2237 2238 2239 2240 2241

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2253

2254
    Returns:
2255
        factorization (Tensor), LU matrix, the factorization of input X.
2256

2257 2258 2259
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2260

2261 2262 2263
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2264

2265 2266

    Examples:
2267 2268
        .. code-block:: python

2269
            import paddle
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2285

2286 2287 2288 2289 2290 2291
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2292
            # [1., 0., 0.]]),
2293 2294 2295 2296
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2297
            # [0.60000000, 0.50000000]]),
2298 2299 2300 2301 2302
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2303 2304

            # one can verify : X = P @ L @ U ;
2305
    """
L
Lin Manhui 已提交
2306 2307

    if in_dygraph_mode():
2308
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2309
    elif paddle.in_dynamic_mode():
2310
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2311 2312 2313 2314 2315 2316 2317 2318
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2319 2320 2321 2322 2323 2324
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2325 2326 2327 2328 2329 2330 2331 2332
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2333
    Unpack L U and P to single matrix tensor .
2334 2335 2336
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2337 2338 2339 2340 2341

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2355

2356
    Returns:
2357
        P (Tensor), Permutation matrix P of lu factorization.
2358

2359
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2360

2361
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2362

2363 2364

    Examples:
2365 2366
        .. code-block:: python

2367
            import paddle
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2383

2384 2385 2386 2387 2388 2389
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2390
            # [1., 0., 0.]]),
2391 2392 2393 2394
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2395
            # [0.60000000, 0.50000000]]),
2396 2397 2398 2399 2400
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2401
            # one can verify : X = P @ L @ U ;
2402 2403
    """

2404
    if in_dygraph_mode():
2405
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2406 2407
        return P, L, U

Z
zhiboniu 已提交
2408
    if paddle.in_dynamic_mode():
2409 2410 2411
        P, L, U = _legacy_C_ops.lu_unpack(
            x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots
        )
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2423 2424 2425 2426 2427 2428
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x, 'Pivots': y},
        outputs={'Pmat': p, 'L': l, 'U': u},
        attrs=attrs,
    )
2429 2430 2431
    return p, l, u


L
Lijunhui 已提交
2432 2433
def eig(x, name=None):
    """
2434
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2435

2436 2437 2438 2439 2440 2441
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2442 2443 2444 2445

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2446
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2460
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2461
                               [9.956216,  8.749598,  6.066444 ],
2462
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2463
            w, v = paddle.linalg.eig(x)
2464
            print(v)
L
Lijunhui 已提交
2465 2466 2467 2468 2469 2470 2471 2472
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2473
            print(w)
L
Lijunhui 已提交
2474 2475 2476 2477
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2478
    if in_dygraph_mode():
2479
        return _C_ops.eig(x)
2480
    elif paddle.in_dynamic_mode():
2481
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2482 2483
        return w, v

2484 2485 2486
    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
    )
L
Lijunhui 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2499 2500 2501
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2502 2503 2504

    Warning:
        The gradient kernel of this operator does not yet developed.
2505 2506 2507 2508
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2509
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2510
            Its data type should be float32, float64, complex64, or complex128.
2511
        name (str, optional): Name for the operation (optional, default is None).
2512
            For more information, please refer to :ref:`api_guide_Name`.
2513

2514
    Returns:
2515 2516
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2517 2518 2519 2520 2521

    Examples:
        .. code-block:: python

            import paddle
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

2535 2536 2537
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2538 2539 2540 2541

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2542 2543 2544 2545
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2546 2547 2548

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2549 2550 2551 2552
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2553

R
Ruibiao Chen 已提交
2554
    if in_dygraph_mode():
2555
        return _C_ops.eigvals(x)
2556 2557
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2558 2559 2560 2561 2562 2563 2564

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2565 2566 2567 2568
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2569
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2606 2607
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2608
        out = paddle.linalg.multi_dot([A, B])
2609
        print(out.shape)
2610 2611 2612
        # [3, 5]

        # A * B * C
2613 2614 2615
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2616
        out = paddle.linalg.multi_dot([A, B, C])
2617
        print(out.shape)
2618 2619 2620
        # [10, 7]

    """
2621
    if _in_legacy_dygraph():
2622
        return _legacy_C_ops.multi_dot(x)
2623
    if in_dygraph_mode():
2624
        return _C_ops.multi_dot(x)
2625 2626 2627

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
2628 2629 2630 2631 2632 2633
        check_variable_and_dtype(
            item,
            'x[' + str(id) + ']',
            ['float16', 'float32', 'float64'],
            'multi_dot',
        )
2634 2635
        if item.dtype != x[0].dtype:
            raise TypeError(
2636 2637
                "All the Tensors in the input must have the same data type."
            )
2638 2639 2640 2641 2642 2643

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2644 2645 2646 2647


def eigh(x, UPLO='L', name=None):
    """
2648
    Compute the eigenvalues and eigenvectors of a
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2660 2661 2662 2663
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2664 2665 2666 2667 2668 2669

    Examples:
        .. code-block:: python

            import paddle

2670
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2671
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2672 2673 2674 2675 2676 2677 2678
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2679
    if in_dygraph_mode():
2680
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2681 2682

    if _in_legacy_dygraph():
2683
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2684 2685 2686 2687 2688 2689

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
2690 2691
                "length of Input(input) is %s." % len(x.shape)
            )
2692 2693
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2694 2695 2696 2697
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
2698
        if UPLO != 'L' and UPLO != 'U':
2699
            raise ValueError(
2700 2701
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
2702 2703 2704 2705

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2706 2707 2708
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh'
    )
2709 2710 2711 2712

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2713 2714 2715 2716 2717 2718
    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO},
    )
2719
    return out_value, out_vector
A
andyjpaddle 已提交
2720 2721 2722 2723


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2724
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2735

A
andyjpaddle 已提交
2736 2737 2738
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2739 2740 2741
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2742 2743 2744 2745
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2746
        rcond(Tensor, optional): the tolerance value to determine
2747
            when is a singular value zero. Default:1e-15.
2748 2749

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2750
            if complex or symmetric if real. Default: False.
2751 2752

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2753
            the layer will be named automatically.
2754

A
andyjpaddle 已提交
2755
    Returns:
2756
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2757
        pseudo inverse of x. Its shape should be (*, n, m).
2758

A
andyjpaddle 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2785 2786 2787
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2788 2789
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2790 2791 2792 2793
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2794

2795 2796 2797 2798 2799 2800
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2801
            st = _C_ops.unsqueeze(singular, [-2])
2802 2803 2804

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2805
            v = _C_ops.transpose(vt, perm)
2806 2807

            out_1 = v * st
2808
            out_2 = _C_ops.matmul(out_1, u, False, True)
2809 2810 2811
            return out_2
        else:
            # combine eigh and matmul op
2812
            s, u = _C_ops.eigh(x, 'UPLO')
2813
            s_abs = paddle.abs(s)
2814
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2826
            st = _C_ops.unsqueeze(singular, [-2])
2827 2828

            out_1 = u * st
2829 2830
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2831 2832 2833
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2834 2835
        if not hermitian:
            # combine svd and matmul op
2836
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
2837 2838 2839
            max_singular_val = _legacy_C_ops.reduce_max(
                s, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2840 2841 2842 2843 2844 2845
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2846 2847 2848 2849 2850
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2851
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2852 2853 2854

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2855
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2856 2857

            out_1 = v * st
2858
            if in_dygraph_mode():
2859
                out_2 = _C_ops.matmul(out_1, u, False, True)
2860
            else:
2861 2862 2863
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2864 2865 2866
            return out_2
        else:
            # combine eigh and matmul op
2867
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2868
            s_abs = paddle.abs(s)
2869 2870 2871
            max_singular_val = _legacy_C_ops.reduce_max(
                s_abs, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2872 2873 2874 2875 2876 2877
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2878 2879 2880 2881 2882
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2883
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2884 2885

            out_1 = u * st
2886
            u_conj = _legacy_C_ops.conj(u)
2887
            if in_dygraph_mode():
2888
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2889
            else:
2890 2891 2892
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u_conj, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2906
                outputs={'U': u, 'VH': vt, 'S': s},
2907 2908
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2909 2910

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2911 2912 2913 2914 2915 2916
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2917

2918
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2919 2920
            cutoff = rcond * max_singular_val
            y = float('inf')
2921
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2922 2923

            condition = s > cutoff
2924 2925 2926 2927 2928
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2929 2930 2931

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2932 2933 2934 2935 2936 2937
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2938 2939 2940 2941 2942

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2943 2944 2945 2946 2947 2948
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2949 2950

            out_1 = helper.create_variable_for_type_inference(dtype)
2951 2952 2953 2954 2955 2956
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2957 2958 2959 2960 2961
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2962
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2963
                outputs={'Out': out_2},
2964
                attrs={'trans_x': False, 'trans_y': True},
2965
            )
A
andyjpaddle 已提交
2966 2967 2968 2969 2970
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2971 2972 2973 2974 2975
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2986 2987 2988 2989 2990 2991
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2992
            s_abs = helper.create_variable_for_type_inference(s_type)
2993 2994 2995
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2996
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2997 2998 2999 3000 3001 3002
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
3003

3004
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
3005 3006
            cutoff = rcond * max_singular_val
            y = float('inf')
3007
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
3008 3009

            condition = s_abs > cutoff
3010 3011 3012 3013 3014
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
3015 3016 3017

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
3018 3019 3020 3021 3022 3023
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3024 3025

            out_1 = helper.create_variable_for_type_inference(dtype)
3026 3027 3028 3029 3030 3031
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3032 3033 3034
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
3035 3036 3037
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3038 3039 3040 3041

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
3042
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3043
                outputs={'Out': out_2},
3044
                attrs={'trans_x': False, 'trans_y': True},
3045
            )
A
andyjpaddle 已提交
3046
            return out_2
W
Weilong Wu 已提交
3047 3048 3049 3050 3051 3052 3053


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3054

W
Weilong Wu 已提交
3055 3056
    .. math::
        Out = X^-1 * Y
3057 3058

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
3059

W
Weilong Wu 已提交
3060 3061 3062 3063 3064
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3065
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3066
            For more information, please refer to :ref:`api_guide_Name`.
3067

W
Weilong Wu 已提交
3068
    Returns:
3069
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3070
        Its data type should be the same as that of `x`.
3071

W
Weilong Wu 已提交
3072
    Examples:
3073

3074
        .. code-block:: python
3075

3076 3077 3078
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
3079

3080 3081 3082 3083 3084
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
3085

3086 3087
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
3088
    """
3089
    if in_dygraph_mode():
3090
        return _C_ops.solve(x, y)
3091 3092

    if _in_legacy_dygraph():
3093
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
3094 3095 3096 3097 3098 3099 3100

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3101 3102 3103
    helper.append_op(
        type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
    )
W
Weilong Wu 已提交
3104
    return out
3105 3106


3107 3108 3109
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3110
    r"""
3111 3112
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3126 3127 3128 3129

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3130
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3131
            zero or more batch dimensions. Its data type should be float32 or float64.
3132
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3133 3134
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3135
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3136 3137 3138 3139 3140 3141 3142 3143
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3144
        .. code-block:: python
3145

3146 3147 3148 3149
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3150

3151 3152 3153 3154 3155 3156
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3157

3158 3159
            print(out)
            # [7, -2, -5]
3160
    """
H
hong 已提交
3161
    if in_dygraph_mode():
3162
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3163

Z
zhiboniu 已提交
3164
    if paddle.in_dynamic_mode():
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
        return _legacy_C_ops.triangular_solve(
            x,
            y,
            'upper',
            upper,
            'transpose',
            transpose,
            'unitriangular',
            unitriangular,
        )
3175 3176 3177 3178 3179 3180 3181

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
    helper.append_op(
        type='triangular_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular,
        },
    )
3192 3193 3194
    return out


Z
zhiboniu 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3205
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3215
        .. code-block:: python
Z
zhiboniu 已提交
3216

3217
            import paddle
Z
zhiboniu 已提交
3218

3219 3220 3221 3222 3223
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3224

3225 3226
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3227
    """
H
hong 已提交
3228
    if in_dygraph_mode():
3229
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3230 3231

    if _in_legacy_dygraph():
3232
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3233 3234 3235 3236 3237 3238

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3239 3240 3241 3242 3243 3244
    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
Z
zhiboniu 已提交
3245 3246 3247
    return out


3248 3249
def eigvalsh(x, UPLO='L', name=None):
    """
3250
    Computes the eigenvalues of a
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3268
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3269 3270
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3271 3272
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3273
    """
3274
    if in_dygraph_mode():
3275
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3276 3277 3278
        return values

    elif paddle.in_dynamic_mode():
3279
        is_test = x.stop_gradient
3280
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3281 3282 3283 3284 3285 3286 3287
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
3288 3289
                "length of Input(input) is %s." % len(x.shape)
            )
3290 3291
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3292 3293 3294 3295
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
3296
        if UPLO != 'L' and UPLO != 'U':
3297
            raise ValueError(
3298 3299
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
3300 3301 3302 3303

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
3304 3305 3306 3307 3308 3309
    check_variable_and_dtype(
        x,
        'dtype',
        ['float32', 'float64', 'complex64', 'complex128'],
        'eigvalsh',
    )
3310 3311 3312 3313 3314

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3315 3316 3317 3318 3319 3320
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO, 'is_test': is_test},
    )
3321
    return out_value
3322 3323


3324 3325 3326 3327 3328 3329 3330 3331
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3332
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3333
            should be one of float32, float64.
3334 3335
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3336
            machine precision of x_dtype.
3337 3338 3339
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3340
            for CUDA inputs.
3341
        name(str, optional): The default value is None. Normally there is no need for user to set
3342 3343 3344
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3345 3346 3347 3348 3349 3350 3351
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3384 3385 3386
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3387 3388 3389 3390
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3391 3392 3393 3394
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3395 3396 3397 3398
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3399 3400 3401 3402
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3416
    if _non_static_mode():
3417
        if in_dygraph_mode():
3418
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3419 3420
                x, y, rcond, driver
            )
3421
        else:
3422
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3423 3424
                x, y, 'rcond', rcond, 'driver', driver
            )
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3435 3436 3437 3438 3439 3440
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
3441 3442 3443 3444 3445 3446

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    helper.append_op(
        type='lstsq',
        inputs={'X': x, 'Y': y},
        outputs={
            'Solution': solution,
            'Residuals': residuals,
            'Rank': rank,
            'SingularValues': singular_values,
        },
        attrs={'rcond': rcond, 'driver': driver},
    )
3458 3459 3460 3461 3462 3463 3464 3465

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3466 3467 3468 3469


def corrcoef(x, rowvar=True, name=None):
    """
3470

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3509 3510
            "length of Input(input) is %s." % len(x.shape)
        )
3511 3512 3513
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3514
    if c.ndim == 0:
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3529 3530 3531
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3532 3533 3534 3535
    else:
        c = paddle.clip(c, -1, 1)

    return c