Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4ebb4764
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4ebb4764
编写于
6月 13, 2023
作者:
N
NetPunk
提交者:
GitHub
6月 13, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【Hackathon 4 No.9】Add pca_lowrank API to Paddle (#53743)
上级
7309f8ab
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
648 addition
and
0 deletion
+648
-0
python/paddle/linalg.py
python/paddle/linalg.py
+2
-0
python/paddle/sparse/__init__.py
python/paddle/sparse/__init__.py
+2
-0
python/paddle/sparse/unary.py
python/paddle/sparse/unary.py
+203
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-0
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+153
-0
test/legacy_test/test_pca_lowrank.py
test/legacy_test/test_pca_lowrank.py
+139
-0
test/legacy_test/test_sparse_pca_lowrank.py
test/legacy_test/test_sparse_pca_lowrank.py
+147
-0
未找到文件。
python/paddle/linalg.py
浏览文件 @
4ebb4764
...
...
@@ -29,6 +29,7 @@ from .tensor.linalg import matrix_power # noqa: F401
from
.tensor.linalg
import
matrix_rank
# noqa: F401
from
.tensor.linalg
import
multi_dot
# noqa: F401
from
.tensor.linalg
import
norm
# noqa: F401
from
.tensor.linalg
import
pca_lowrank
# noqa: F401
from
.tensor.linalg
import
pinv
# noqa: F401
from
.tensor.linalg
import
qr
# noqa: F401
from
.tensor.linalg
import
slogdet
# noqa: F401
...
...
@@ -50,6 +51,7 @@ __all__ = [
'matrix_rank'
,
'svd'
,
'qr'
,
'pca_lowrank'
,
'lu'
,
'lu_unpack'
,
'matrix_power'
,
...
...
python/paddle/sparse/__init__.py
浏览文件 @
4ebb4764
...
...
@@ -28,6 +28,7 @@ from .unary import square
from
.unary
import
log1p
from
.unary
import
abs
from
.unary
import
pow
from
.unary
import
pca_lowrank
from
.unary
import
cast
from
.unary
import
neg
from
.unary
import
coalesce
...
...
@@ -69,6 +70,7 @@ __all__ = [
'log1p'
,
'abs'
,
'pow'
,
'pca_lowrank'
,
'cast'
,
'neg'
,
'deg2rad'
,
...
...
python/paddle/sparse/unary.py
浏览文件 @
4ebb4764
...
...
@@ -14,6 +14,7 @@
import
numpy
as
np
import
paddle
from
paddle
import
_C_ops
,
in_dynamic_mode
from
paddle.common_ops_import
import
Variable
from
paddle.fluid.data_feeder
import
check_type
,
check_variable_and_dtype
...
...
@@ -920,3 +921,205 @@ def slice(x, axes, starts, ends, name=None):
type
=
op_type
,
inputs
=
{
'x'
:
x
},
outputs
=
{
'out'
:
out
},
attrs
=
attrs
)
return
out
def
pca_lowrank
(
x
,
q
=
None
,
center
=
True
,
niter
=
2
,
name
=
None
):
r
"""
Performs linear Principal Component Analysis (PCA) on a sparse matrix.
Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:
.. math::
X = U * diag(S) * V^{T}
Args:
x (Tensor): The input tensor. Its shape should be `[N, M]`,
N and M can be arbitraty positive number.
The data type of x should be float32 or float64.
q (int, optional): a slightly overestimated rank of :math:`X`.
Default value is :math:`q=min(6,N,M)`.
center (bool, optional): if True, center the input tensor.
Default value is True.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
- Tensor U, is N x q matrix.
- Tensor S, is a vector with length q.
- Tensor V, is M x q matrix.
tuple (U, S, V): which is the nearly optimal approximation of a singular value decomposition of a centered matrix :math:`X`.
Examples:
.. code-block:: python
import paddle
format = "coo"
dense_x = paddle.randn((5, 5), dtype='float64')
if format == "coo":
sparse_x = dense_x.to_sparse_coo(len(dense_x.shape))
else:
sparse_x = dense_x.to_sparse_csr()
print("sparse.pca_lowrank API only support CUDA 11.x")
U, S, V = None, None, None
# use code blow when your device CUDA version >= 11.0
# U, S, V = paddle.sparse.pca_lowrank(sparse_x)
print(U)
# Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [[ 0.02206024, 0.53170082, -0.22392168, -0.48450657, 0.65720625],
# [ 0.02206024, 0.53170082, -0.22392168, -0.32690402, -0.74819812],
# [ 0.02206024, 0.53170082, -0.22392168, 0.81141059, 0.09099187],
# [ 0.15045792, 0.37840027, 0.91333217, -0.00000000, 0.00000000],
# [ 0.98787775, -0.09325209, -0.12410317, -0.00000000, -0.00000000]])
print(S)
# Tensor(shape=[5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [2.28621761, 0.93618564, 0.53234942, 0.00000000, 0.00000000])
print(V)
# Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [[ 0.26828910, -0.57116436, -0.26548201, 0.67342660, -0.27894114],
# [-0.19592125, -0.31629129, 0.02001645, -0.50484498, -0.77865626],
# [-0.82913017, -0.09391036, 0.37975388, 0.39938099, -0.00241046],
# [-0.41163516, 0.27490410, -0.86666276, 0.03382656, -0.05230341],
# [ 0.18092947, 0.69952818, 0.18385126, 0.36190987, -0.55959343]])
"""
def
get_floating_dtype
(
x
):
dtype
=
x
.
dtype
if
dtype
in
(
paddle
.
float16
,
paddle
.
float32
,
paddle
.
float64
):
return
dtype
return
paddle
.
float32
def
conjugate
(
x
):
if
x
.
is_complex
():
return
x
.
conj
()
return
x
def
transpose
(
x
):
shape
=
x
.
shape
perm
=
list
(
range
(
0
,
len
(
shape
)))
perm
=
perm
[:
-
2
]
+
[
perm
[
-
1
]]
+
[
perm
[
-
2
]]
if
x
.
is_sparse
():
return
paddle
.
sparse
.
transpose
(
x
,
perm
)
return
paddle
.
transpose
(
x
,
perm
)
def
transjugate
(
x
):
return
conjugate
(
transpose
(
x
))
def
get_approximate_basis
(
x
,
q
,
niter
=
2
,
M
=
None
):
niter
=
2
if
niter
is
None
else
niter
m
,
n
=
x
.
shape
[
-
2
:]
qr
=
paddle
.
linalg
.
qr
R
=
paddle
.
randn
((
n
,
q
),
dtype
=
x
.
dtype
)
A_t
=
transpose
(
x
)
A_H
=
conjugate
(
A_t
)
if
M
is
None
:
Q
=
qr
(
paddle
.
sparse
.
matmul
(
x
,
R
))[
0
]
for
i
in
range
(
niter
):
Q
=
qr
(
paddle
.
sparse
.
matmul
(
A_H
,
Q
))[
0
]
Q
=
qr
(
paddle
.
sparse
.
matmul
(
x
,
Q
))[
0
]
else
:
M_H
=
transjugate
(
M
)
Q
=
qr
(
paddle
.
sparse
.
matmul
(
x
,
R
)
-
paddle
.
matmul
(
M
,
R
))[
0
]
for
i
in
range
(
niter
):
Q
=
qr
(
paddle
.
sparse
.
matmul
(
A_H
,
Q
)
-
paddle
.
matmul
(
M_H
,
Q
))[
0
]
Q
=
qr
(
paddle
.
sparse
.
matmul
(
x
,
Q
)
-
paddle
.
matmul
(
M
,
Q
))[
0
]
return
Q
def
svd_lowrank
(
x
,
q
=
6
,
niter
=
2
,
M
=
None
):
q
=
6
if
q
is
None
else
q
m
,
n
=
x
.
shape
[
-
2
:]
if
M
is
None
:
M_t
=
None
else
:
M_t
=
transpose
(
M
)
A_t
=
transpose
(
x
)
if
m
<
n
or
n
>
q
:
Q
=
get_approximate_basis
(
A_t
,
q
,
niter
=
niter
,
M
=
M_t
)
Q_c
=
conjugate
(
Q
)
if
M
is
None
:
B_t
=
paddle
.
sparse
.
matmul
(
x
,
Q_c
)
else
:
B_t
=
paddle
.
sparse
.
matmul
(
x
,
Q_c
)
-
paddle
.
matmul
(
M
,
Q_c
)
assert
B_t
.
shape
[
-
2
]
==
m
,
(
B_t
.
shape
,
m
)
assert
B_t
.
shape
[
-
1
]
==
q
,
(
B_t
.
shape
,
q
)
assert
B_t
.
shape
[
-
1
]
<=
B_t
.
shape
[
-
2
],
B_t
.
shape
U
,
S
,
Vh
=
paddle
.
linalg
.
svd
(
B_t
,
full_matrices
=
False
)
V
=
transjugate
(
Vh
)
V
=
Q
.
matmul
(
V
)
else
:
Q
=
get_approximate_basis
(
x
,
q
,
niter
=
niter
,
M
=
M
)
Q_c
=
conjugate
(
Q
)
if
M
is
None
:
B
=
paddle
.
sparse
.
matmul
(
A_t
,
Q_c
)
else
:
B
=
paddle
.
sparse
.
matmul
(
A_t
,
Q_c
)
-
paddle
.
matmul
(
M_t
,
Q_c
)
B_t
=
transpose
(
B
)
assert
B_t
.
shape
[
-
2
]
==
q
,
(
B_t
.
shape
,
q
)
assert
B_t
.
shape
[
-
1
]
==
n
,
(
B_t
.
shape
,
n
)
assert
B_t
.
shape
[
-
1
]
<=
B_t
.
shape
[
-
2
],
B_t
.
shape
U
,
S
,
Vh
=
paddle
.
linalg
.
svd
(
B_t
,
full_matrices
=
False
)
V
=
transjugate
(
Vh
)
U
=
Q
.
matmul
(
U
)
return
U
,
S
,
V
if
not
paddle
.
is_tensor
(
x
):
raise
ValueError
(
f
'Input must be tensor, but got
{
type
(
x
)
}
'
)
if
not
x
.
is_sparse
():
raise
ValueError
(
'Input must be sparse, but got dense'
)
cuda_version
=
paddle
.
version
.
cuda
()
if
(
cuda_version
is
None
or
cuda_version
==
'False'
or
int
(
cuda_version
.
split
(
'.'
)[
0
])
<
11
):
raise
ValueError
(
'sparse.pca_lowrank API only support CUDA 11.x'
)
(
m
,
n
)
=
x
.
shape
[
-
2
:]
if
q
is
None
:
q
=
min
(
6
,
m
,
n
)
elif
not
(
q
>=
0
and
q
<=
min
(
m
,
n
)):
raise
ValueError
(
'q(={}) must be non-negative integer'
' and not greater than min(m, n)={}'
.
format
(
q
,
min
(
m
,
n
))
)
if
not
(
niter
>=
0
):
raise
ValueError
(
f
'niter(=
{
niter
}
) must be non-negative integer'
)
dtype
=
get_floating_dtype
(
x
)
if
not
center
:
return
svd_lowrank
(
x
,
q
,
niter
=
niter
,
M
=
None
)
if
len
(
x
.
shape
)
!=
2
:
raise
ValueError
(
'input is expected to be 2-dimensional tensor'
)
# TODO: complement sparse_csr_tensor test
# when sparse.sum with axis(-2) is implemented
s_sum
=
paddle
.
sparse
.
sum
(
x
,
axis
=-
2
)
s_val
=
s_sum
.
values
()
/
m
c
=
paddle
.
sparse
.
sparse_coo_tensor
(
s_sum
.
indices
(),
s_val
,
dtype
=
s_sum
.
dtype
,
place
=
s_sum
.
place
)
column_indices
=
c
.
indices
()[
0
]
indices
=
paddle
.
zeros
((
2
,
len
(
column_indices
)),
dtype
=
column_indices
.
dtype
)
indices
[
0
]
=
column_indices
C_t
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
c
.
values
(),
(
n
,
1
),
dtype
=
dtype
,
place
=
x
.
place
)
ones_m1_t
=
paddle
.
ones
(
x
.
shape
[:
-
2
]
+
[
1
,
m
],
dtype
=
dtype
)
M
=
transpose
(
paddle
.
matmul
(
C_t
.
to_dense
(),
ones_m1_t
))
return
svd_lowrank
(
x
,
q
,
niter
=
niter
,
M
=
M
)
python/paddle/tensor/__init__.py
浏览文件 @
4ebb4764
...
...
@@ -46,6 +46,7 @@ from .linalg import dot # noqa: F401
from
.linalg
import
cov
# noqa: F401
from
.linalg
import
corrcoef
# noqa: F401
from
.linalg
import
norm
# noqa: F401
from
.linalg
import
pca_lowrank
# noqa: F401
from
.linalg
import
cond
# noqa: F401
from
.linalg
import
transpose
# noqa: F401
from
.linalg
import
lstsq
# noqa: F401
...
...
@@ -333,6 +334,7 @@ tensor_method_func = [ # noqa
'mv'
,
'matrix_power'
,
'qr'
,
'pca_lowrank'
,
'eigvals'
,
'eigvalsh'
,
'abs'
,
...
...
python/paddle/tensor/linalg.py
浏览文件 @
4ebb4764
...
...
@@ -1963,6 +1963,159 @@ def svd(x, full_matrices=False, name=None):
return
u
,
s
,
vh
def
pca_lowrank
(
x
,
q
=
None
,
center
=
True
,
niter
=
2
,
name
=
None
):
r
"""
Performs linear Principal Component Analysis (PCA) on a low-rank matrix or batches of such matrices.
Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:
.. math::
X = U * diag(S) * V^{T}
Args:
x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
where `...` is zero or more batch dimensions. N and M can be arbitraty
positive number. The data type of x should be float32 or float64.
q (int, optional): a slightly overestimated rank of :math:`X`.
Default value is :math:`q=min(6,N,M)`.
center (bool, optional): if True, center the input tensor.
Default value is True.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
- Tensor U, is N x q matrix.
- Tensor S, is a vector with length q.
- Tensor V, is M x q matrix.
tuple (U, S, V): which is the nearly optimal approximation of a singular value decomposition of a centered matrix :math:`X`.
Examples:
.. code-block:: python
import paddle
x = paddle.randn((5, 5), dtype='float64')
U, S, V = paddle.linalg.pca_lowrank(x)
print(U)
# Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [[ 0.41057070, 0.40364287, 0.59099574, -0.34529432, 0.44721360],
# [-0.30243321, 0.55670611, -0.15025419, 0.61321785, 0.44721360],
# [ 0.57427340, -0.15936327, -0.66414981, -0.06097905, 0.44721360],
# [-0.63897516, -0.09968973, -0.17298615, -0.59316819, 0.44721360],
# [-0.04343573, -0.70129598, 0.39639442, 0.38622370, 0.44721360]])
print(S)
# Tensor(shape=[5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [3.33724265, 2.57573259, 1.69479048, 0.68069312, 0.00000000])
print(V)
# Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [[ 0.09800724, -0.32627008, -0.23593953, 0.81840445, 0.39810690],
# [-0.60100303, 0.63741176, -0.01953663, 0.09023999, 0.47326173],
# [ 0.25073864, -0.21305240, -0.32662950, -0.54786156, 0.69634740],
# [ 0.33057205, 0.48282641, -0.75998527, 0.06744040, -0.27472705],
# [ 0.67604895, 0.45688227, 0.50959437, 0.13179682, 0.23908071]])
"""
def
conjugate
(
x
):
if
x
.
is_complex
():
return
x
.
conj
()
return
x
def
transpose
(
x
):
shape
=
x
.
shape
perm
=
list
(
range
(
0
,
len
(
shape
)))
perm
=
perm
[:
-
2
]
+
[
perm
[
-
1
]]
+
[
perm
[
-
2
]]
return
paddle
.
transpose
(
x
,
perm
)
def
transjugate
(
x
):
return
conjugate
(
transpose
(
x
))
def
get_approximate_basis
(
x
,
q
,
niter
=
2
,
M
=
None
):
niter
=
2
if
niter
is
None
else
niter
m
,
n
=
x
.
shape
[
-
2
:]
qr
=
paddle
.
linalg
.
qr
R
=
paddle
.
randn
((
n
,
q
),
dtype
=
x
.
dtype
)
A_t
=
transpose
(
x
)
A_H
=
conjugate
(
A_t
)
if
M
is
None
:
Q
=
qr
(
paddle
.
matmul
(
x
,
R
))[
0
]
for
i
in
range
(
niter
):
Q
=
qr
(
paddle
.
matmul
(
A_H
,
Q
))[
0
]
Q
=
qr
(
paddle
.
matmul
(
x
,
Q
))[
0
]
else
:
M_H
=
transjugate
(
M
)
Q
=
qr
(
paddle
.
matmul
(
x
,
R
)
-
paddle
.
matmul
(
M
,
R
))[
0
]
for
i
in
range
(
niter
):
Q
=
qr
(
paddle
.
matmul
(
A_H
,
Q
)
-
paddle
.
matmul
(
M_H
,
Q
))[
0
]
Q
=
qr
(
paddle
.
matmul
(
x
,
Q
)
-
paddle
.
matmul
(
M
,
Q
))[
0
]
return
Q
def
svd_lowrank
(
x
,
q
=
6
,
niter
=
2
,
M
=
None
):
q
=
6
if
q
is
None
else
q
m
,
n
=
x
.
shape
[
-
2
:]
if
M
is
None
:
M_t
=
None
else
:
M_t
=
transpose
(
M
)
A_t
=
transpose
(
x
)
if
m
<
n
or
n
>
q
:
Q
=
get_approximate_basis
(
A_t
,
q
,
niter
=
niter
,
M
=
M_t
)
Q_c
=
conjugate
(
Q
)
if
M
is
None
:
B_t
=
paddle
.
matmul
(
x
,
Q_c
)
else
:
B_t
=
paddle
.
matmul
(
x
,
Q_c
)
-
paddle
.
matmul
(
M
,
Q_c
)
assert
B_t
.
shape
[
-
2
]
==
m
,
(
B_t
.
shape
,
m
)
assert
B_t
.
shape
[
-
1
]
==
q
,
(
B_t
.
shape
,
q
)
assert
B_t
.
shape
[
-
1
]
<=
B_t
.
shape
[
-
2
],
B_t
.
shape
U
,
S
,
Vh
=
paddle
.
linalg
.
svd
(
B_t
,
full_matrices
=
False
)
V
=
transjugate
(
Vh
)
V
=
Q
.
matmul
(
V
)
else
:
Q
=
get_approximate_basis
(
x
,
q
,
niter
=
niter
,
M
=
M
)
Q_c
=
conjugate
(
Q
)
if
M
is
None
:
B
=
paddle
.
matmul
(
A_t
,
Q_c
)
else
:
B
=
paddle
.
matmul
(
A_t
,
Q_c
)
-
paddle
.
matmul
(
M_t
,
Q_c
)
B_t
=
transpose
(
B
)
assert
B_t
.
shape
[
-
2
]
==
q
,
(
B_t
.
shape
,
q
)
assert
B_t
.
shape
[
-
1
]
==
n
,
(
B_t
.
shape
,
n
)
assert
B_t
.
shape
[
-
1
]
<=
B_t
.
shape
[
-
2
],
B_t
.
shape
U
,
S
,
Vh
=
paddle
.
linalg
.
svd
(
B_t
,
full_matrices
=
False
)
V
=
transjugate
(
Vh
)
U
=
Q
.
matmul
(
U
)
return
U
,
S
,
V
if
not
paddle
.
is_tensor
(
x
):
raise
ValueError
(
f
'Input must be tensor, but got
{
type
(
x
)
}
'
)
(
m
,
n
)
=
x
.
shape
[
-
2
:]
if
q
is
None
:
q
=
min
(
6
,
m
,
n
)
elif
not
(
q
>=
0
and
q
<=
min
(
m
,
n
)):
raise
ValueError
(
'q(={}) must be non-negative integer'
' and not greater than min(m, n)={}'
.
format
(
q
,
min
(
m
,
n
))
)
if
not
(
niter
>=
0
):
raise
ValueError
(
f
'niter(=
{
niter
}
) must be non-negative integer'
)
if
not
center
:
return
svd_lowrank
(
x
,
q
,
niter
=
niter
,
M
=
None
)
C
=
x
.
mean
(
axis
=-
2
,
keepdim
=
True
)
return
svd_lowrank
(
x
-
C
,
q
,
niter
=
niter
,
M
=
None
)
def
matrix_power
(
x
,
n
,
name
=
None
):
r
"""
...
...
test/legacy_test/test_pca_lowrank.py
0 → 100644
浏览文件 @
4ebb4764
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
class
TestPcaLowrankAPI
(
unittest
.
TestCase
):
def
transpose
(
self
,
x
):
shape
=
x
.
shape
perm
=
list
(
range
(
0
,
len
(
shape
)))
perm
=
perm
[:
-
2
]
+
[
perm
[
-
1
]]
+
[
perm
[
-
2
]]
return
paddle
.
transpose
(
x
,
perm
)
def
random_matrix
(
self
,
rows
,
columns
,
*
batch_dims
,
**
kwargs
):
dtype
=
kwargs
.
get
(
'dtype'
,
paddle
.
float64
)
x
=
paddle
.
randn
(
batch_dims
+
(
rows
,
columns
),
dtype
=
dtype
)
if
x
.
numel
()
==
0
:
return
x
u
,
_
,
vh
=
paddle
.
linalg
.
svd
(
x
,
full_matrices
=
False
)
k
=
min
(
rows
,
columns
)
s
=
paddle
.
linspace
(
1
/
(
k
+
1
),
1
,
k
,
dtype
=
dtype
)
return
(
u
*
s
.
unsqueeze
(
-
2
))
@
vh
def
random_lowrank_matrix
(
self
,
rank
,
rows
,
columns
,
*
batch_dims
,
**
kwargs
):
B
=
self
.
random_matrix
(
rows
,
rank
,
*
batch_dims
,
**
kwargs
)
C
=
self
.
random_matrix
(
rank
,
columns
,
*
batch_dims
,
**
kwargs
)
return
B
.
matmul
(
C
)
def
run_subtest
(
self
,
guess_rank
,
actual_rank
,
matrix_size
,
batches
,
pca
,
**
options
):
if
isinstance
(
matrix_size
,
int
):
rows
=
columns
=
matrix_size
else
:
rows
,
columns
=
matrix_size
a_input
=
self
.
random_lowrank_matrix
(
actual_rank
,
rows
,
columns
,
*
batches
)
a
=
a_input
u
,
s
,
v
=
pca
(
a_input
,
q
=
guess_rank
,
**
options
)
self
.
assertEqual
(
s
.
shape
[
-
1
],
guess_rank
)
self
.
assertEqual
(
u
.
shape
[
-
2
],
rows
)
self
.
assertEqual
(
u
.
shape
[
-
1
],
guess_rank
)
self
.
assertEqual
(
v
.
shape
[
-
1
],
guess_rank
)
self
.
assertEqual
(
v
.
shape
[
-
2
],
columns
)
A1
=
u
.
matmul
(
paddle
.
nn
.
functional
.
diag_embed
(
s
)).
matmul
(
self
.
transpose
(
v
)
)
ones_m1
=
paddle
.
ones
(
batches
+
(
rows
,
1
),
dtype
=
a
.
dtype
)
c
=
a
.
sum
(
axis
=-
2
)
/
rows
c
=
c
.
reshape
(
batches
+
(
1
,
columns
))
A2
=
a
-
ones_m1
.
matmul
(
c
)
np
.
testing
.
assert_allclose
(
A1
.
numpy
(),
A2
.
numpy
(),
atol
=
1e-5
)
detect_rank
=
(
s
.
abs
()
>
1e-5
).
sum
(
axis
=-
1
)
left
=
actual_rank
*
paddle
.
ones
(
batches
,
dtype
=
paddle
.
int64
)
if
not
left
.
shape
:
np
.
testing
.
assert_allclose
(
int
(
left
),
int
(
detect_rank
))
else
:
np
.
testing
.
assert_allclose
(
left
.
numpy
(),
detect_rank
.
numpy
())
S
=
paddle
.
linalg
.
svd
(
A2
,
full_matrices
=
False
)[
1
]
left
=
s
[...,
:
actual_rank
]
right
=
S
[...,
:
actual_rank
]
np
.
testing
.
assert_allclose
(
left
.
numpy
(),
right
.
numpy
())
def
test_forward
(
self
):
pca_lowrank
=
paddle
.
linalg
.
pca_lowrank
all_batches
=
[(),
(
1
,),
(
3
,),
(
2
,
3
)]
for
actual_rank
,
size
in
[
(
2
,
(
17
,
4
)),
(
2
,
(
100
,
4
)),
(
6
,
(
100
,
40
)),
]:
for
batches
in
all_batches
:
for
guess_rank
in
[
actual_rank
,
actual_rank
+
2
,
actual_rank
+
6
,
]:
if
guess_rank
<=
min
(
*
size
):
self
.
run_subtest
(
guess_rank
,
actual_rank
,
size
,
batches
,
pca_lowrank
)
self
.
run_subtest
(
guess_rank
,
actual_rank
,
size
[::
-
1
],
batches
,
pca_lowrank
,
)
x
=
np
.
random
.
randn
(
5
,
5
).
astype
(
'float64'
)
x
=
paddle
.
to_tensor
(
x
)
q
=
None
U
,
S
,
V
=
pca_lowrank
(
x
,
q
,
center
=
False
)
def
test_errors
(
self
):
pca_lowrank
=
paddle
.
linalg
.
pca_lowrank
x
=
np
.
random
.
randn
(
5
,
5
).
astype
(
'float64'
)
x
=
paddle
.
to_tensor
(
x
)
def
test_x_not_tensor
():
U
,
S
,
V
=
pca_lowrank
(
x
.
numpy
())
self
.
assertRaises
(
ValueError
,
test_x_not_tensor
)
def
test_q_range
():
q
=
-
1
U
,
S
,
V
=
pca_lowrank
(
x
,
q
)
self
.
assertRaises
(
ValueError
,
test_q_range
)
def
test_niter_range
():
n
=
-
1
U
,
S
,
V
=
pca_lowrank
(
x
,
niter
=
n
)
self
.
assertRaises
(
ValueError
,
test_niter_range
)
if
__name__
==
"__main__"
:
unittest
.
main
()
test/legacy_test/test_sparse_pca_lowrank.py
0 → 100644
浏览文件 @
4ebb4764
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
random
import
re
import
unittest
import
numpy
as
np
import
paddle
def
get_cuda_version
():
result
=
os
.
popen
(
"nvcc --version"
).
read
()
regex
=
r
'release (\S+),'
match
=
re
.
search
(
regex
,
result
)
if
match
:
num
=
str
(
match
.
group
(
1
))
integer
,
decimal
=
num
.
split
(
'.'
)
return
int
(
integer
)
*
1000
+
int
(
float
(
decimal
)
*
10
)
else
:
return
-
1
class
TestSparsePcaLowrankAPI
(
unittest
.
TestCase
):
def
transpose
(
self
,
x
):
shape
=
x
.
shape
perm
=
list
(
range
(
0
,
len
(
shape
)))
perm
=
perm
[:
-
2
]
+
[
perm
[
-
1
]]
+
[
perm
[
-
2
]]
return
paddle
.
transpose
(
x
,
perm
)
def
random_sparse_matrix
(
self
,
rows
,
columns
,
density
=
0.01
,
**
kwargs
):
dtype
=
kwargs
.
get
(
'dtype'
,
paddle
.
float64
)
nonzero_elements
=
max
(
min
(
rows
,
columns
),
int
(
rows
*
columns
*
density
)
)
row_indices
=
[
i
%
rows
for
i
in
range
(
nonzero_elements
)]
column_indices
=
[
i
%
columns
for
i
in
range
(
nonzero_elements
)]
random
.
shuffle
(
column_indices
)
indices
=
[
row_indices
,
column_indices
]
values
=
paddle
.
randn
((
nonzero_elements
,),
dtype
=
dtype
)
values
*=
paddle
.
to_tensor
(
[
-
float
(
i
-
j
)
**
2
for
i
,
j
in
zip
(
*
indices
)],
dtype
=
dtype
).
exp
()
indices_tensor
=
paddle
.
to_tensor
(
indices
)
x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices_tensor
,
values
,
(
rows
,
columns
)
)
return
paddle
.
sparse
.
coalesce
(
x
)
def
run_subtest
(
self
,
guess_rank
,
matrix_size
,
batches
,
pca
,
**
options
):
density
=
options
.
pop
(
'density'
,
0.5
)
if
isinstance
(
matrix_size
,
int
):
rows
=
columns
=
matrix_size
else
:
rows
,
columns
=
matrix_size
a_input
=
self
.
random_sparse_matrix
(
rows
,
columns
,
density
)
a
=
a_input
.
to_dense
()
u
,
s
,
v
=
pca
(
a_input
,
q
=
guess_rank
,
**
options
)
self
.
assertEqual
(
s
.
shape
[
-
1
],
guess_rank
)
self
.
assertEqual
(
u
.
shape
[
-
2
],
rows
)
self
.
assertEqual
(
u
.
shape
[
-
1
],
guess_rank
)
self
.
assertEqual
(
v
.
shape
[
-
1
],
guess_rank
)
self
.
assertEqual
(
v
.
shape
[
-
2
],
columns
)
A1
=
u
.
matmul
(
paddle
.
nn
.
functional
.
diag_embed
(
s
)).
matmul
(
self
.
transpose
(
v
)
)
ones_m1
=
paddle
.
ones
(
batches
+
(
rows
,
1
),
dtype
=
a
.
dtype
)
c
=
a
.
sum
(
axis
=-
2
)
/
rows
c
=
c
.
reshape
(
batches
+
(
1
,
columns
))
A2
=
a
-
ones_m1
.
matmul
(
c
)
np
.
testing
.
assert_allclose
(
A1
.
numpy
(),
A2
.
numpy
(),
atol
=
1e-5
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_cuda
()
or
get_cuda_version
()
<
11000
,
"only support cuda>=11.0"
,
)
def
test_sparse
(
self
):
pca_lowrank
=
paddle
.
sparse
.
pca_lowrank
for
guess_rank
,
size
in
[
(
4
,
(
17
,
4
)),
(
4
,
(
4
,
17
)),
(
16
,
(
17
,
17
)),
(
21
,
(
100
,
40
)),
]:
for
density
in
[
0.005
,
0.01
]:
self
.
run_subtest
(
guess_rank
,
size
,
(),
pca_lowrank
,
density
=
density
)
def
test_errors
(
self
):
pca_lowrank
=
paddle
.
sparse
.
pca_lowrank
x
=
np
.
random
.
randn
(
5
,
5
).
astype
(
'float64'
)
dense_x
=
paddle
.
to_tensor
(
x
)
sparse_x
=
dense_x
.
to_sparse_coo
(
len
(
x
.
shape
))
def
test_x_not_tensor
():
U
,
S
,
V
=
pca_lowrank
(
x
)
self
.
assertRaises
(
ValueError
,
test_x_not_tensor
)
def
test_x_not_sparse
():
U
,
S
,
V
=
pca_lowrank
(
sparse_x
.
to_dense
())
self
.
assertRaises
(
ValueError
,
test_x_not_sparse
)
def
test_q_range
():
q
=
-
1
U
,
S
,
V
=
pca_lowrank
(
sparse_x
,
q
)
self
.
assertRaises
(
ValueError
,
test_q_range
)
def
test_niter_range
():
n
=
-
1
U
,
S
,
V
=
pca_lowrank
(
sparse_x
,
niter
=
n
)
self
.
assertRaises
(
ValueError
,
test_niter_range
)
def
test_x_wrong_shape
():
x
=
np
.
random
.
randn
(
5
,
5
,
5
).
astype
(
'float64'
)
dense_x
=
paddle
.
to_tensor
(
x
)
sparse_x
=
dense_x
.
to_sparse_coo
(
len
(
x
.
shape
))
U
,
S
,
V
=
pca_lowrank
(
sparse_x
)
self
.
assertRaises
(
ValueError
,
test_x_wrong_shape
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录