linalg.py 122.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dygraph_mode
28
from .creation import full
29 30 31
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
32

33 34
__all__ = []

35 36 37
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
90
        return _C_ops.transpose(x, perm)
91
    else:
92 93 94 95 96 97 98 99 100 101
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
102
                'uint16',
103 104 105 106
                'complex64',
                'complex128',
            ],
            'transpose',
107
        )
108 109 110 111
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
112
            raise ValueError(
113 114 115 116
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
                "but received dimension of Input(x) is %s, "
                "the length of Input(perm) is %s." % (len(x.shape), len(perm))
117
            )
118 119 120 121 122 123 124
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
125

126 127 128 129 130 131 132 133 134 135
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
136 137


S
ShenLiang 已提交
138
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
139
    """
140 141
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
142
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
143

S
ShenLiang 已提交
144 145
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
146 147 148 149 150

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
151 152
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
153 154 155 156 157 158 159 160
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

161 162
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
163
      After the matrix multiply, the prepended dimension is removed.
164 165

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
166 167
      the matrix-vector product is obtained.

168 169 170 171 172 173 174 175 176
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
177
      out will be a (j, k, n, p) tensor.
178 179

    Args:
S
ShenLiang 已提交
180 181
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
182 183 184
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
185 186 187
            will be named automatically.

    Returns:
S
ShenLiang 已提交
188
        Tensor: The output Tensor.
189 190 191

    Examples:

C
Chen Long 已提交
192 193 194 195 196 197 198 199 200
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
201
            # (1,)
C
Chen Long 已提交
202 203 204 205 206 207

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
208
            # (10,)
C
Chen Long 已提交
209 210 211 212 213 214

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
215
            # (10, 5)
C
Chen Long 已提交
216 217 218 219 220 221

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
222
            # (10, 5, 5)
C
Chen Long 已提交
223 224 225 226 227 228

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
229
            # (10, 3, 5, 5)
230 231

    """
232
    if in_dygraph_mode():
233
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
234 235 236 237 238
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
255

256
        __check_input(x, y)
257

258 259 260 261 262 263 264 265 266
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
267 268


myq406450149's avatar
myq406450149 已提交
269
def norm(x, p='fro', axis=None, keepdim=False, name=None):
270
    """
S
swtkiwi 已提交
271

272 273 274
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

275
    Note:
276 277 278 279 280
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

281
    Args:
myq406450149's avatar
myq406450149 已提交
282
        x (Tensor): The input tensor could be N-D tensor, and the input data
283
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
284
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
285
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
286
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
287 288
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
289
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
290
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
291
            Default value is `None`.
292 293 294 295 296 297 298 299
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
300
        Tensor: results of norm operation on the specified axis of input tensor,
301
        it's data type is the same as input's Tensor.
302

303 304
    Examples:
        .. code-block:: python
305

306
            import paddle
307 308 309 310 311 312 313 314 315
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
316

317
            # compute frobenius norm along last two dimensions.
318
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
319 320
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
321

322
            # compute 2-order vector norm along last dimension.
323
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
324 325 326
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
327 328

            # compute 2-order  norm along [0,1] dimension.
329
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
330 331
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
332 333

            # compute inf-order  norm
334 335 336 337 338 339 340 341 342
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
343 344

            # compute -inf-order  norm
345 346 347 348 349 350 351 352 353
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
354 355
    """

myq406450149's avatar
myq406450149 已提交
356
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
357 358 359 360 361 362 363 364 365 366 367
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
368 369 370

        if in_dygraph_mode():
            if dim is None:
371 372
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
373 374
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
375
            if dim is None:
376 377 378
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
379
            )
380

381 382 383 384
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
385

386 387 388 389 390 391 392
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
393

394 395 396
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
397 398 399 400 401 402 403 404
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
405
        if in_dygraph_mode():
406 407
            if axis is None:
                axis = -1
408
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
409 410 411 412 413 414 415 416
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'p_norm'
            )
417

418 419 420 421 422 423 424 425 426 427 428
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
429

430 431 432 433 434 435 436
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
437

438 439 440
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
441
        if in_dygraph_mode():
442
            out = _C_ops.abs(input)
443
            if porder == np.float64('inf'):
444
                return _C_ops.max(out, axis, keepdim)
445
            else:
446
                return _C_ops.min(out, axis, keepdim)
447 448 449 450 451 452 453 454 455 456 457
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
458

459 460 461 462
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
463

464 465 466 467 468 469 470 471 472 473 474 475 476
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
477

478
            return reduce_out
myq406450149's avatar
myq406450149 已提交
479

480
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
481 482 483 484
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
485
        if in_dygraph_mode():
486 487 488
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
489
            out = _C_ops.pow(sum_out, float(1.0 / porder))
490 491
            return out

myq406450149's avatar
myq406450149 已提交
492 493
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
494 495
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
496
        abs_out = block.create_variable_for_type_inference(
497 498 499 500 501
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
502
        pow_out = block.create_variable_for_type_inference(
503 504
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
505

506 507 508 509 510 511
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
512
        sum_out = block.create_variable_for_type_inference(
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
531 532
        return out

533 534 535
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
536
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
537 538
            else:
                raise ValueError(
539 540
                    "only valid string values are 'fro', found {}".format(p)
                )
541
        elif isinstance(p, (int, float)):
542 543 544 545 546 547 548 549
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
550
        else:
551
            raise ValueError(
552 553
                "only valid p type is string or float, found {}".format(type(p))
            )
554

myq406450149's avatar
myq406450149 已提交
555 556
    if isinstance(axis, tuple):
        axis = list(axis)
557 558 559
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

560
    # calculate vector norm, where axis is int or list with only one integer
561
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
562 563
        if isinstance(p, str):
            if p == "fro":
564 565 566 567 568 569 570 571
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
572 573 574

            else:
                raise ValueError(
575 576
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
577
        elif isinstance(p, (int, float)):
578 579 580 581 582 583 584 585
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
586 587
        else:
            raise ValueError(
588 589 590 591 592
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
593 594
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
595 596 597
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
598 599
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
600
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
601 602 603
                    axis
                )
            )
604
        else:
605 606 607
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
608 609
    else:
        raise ValueError(
610 611 612 613
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
614 615


616
def dist(x, y, p=2, name=None):
617
    r"""
S
swtkiwi 已提交
618

619
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
620
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
621
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
646 647 648 649 650 651 652

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
653
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
654 655 656 657 658

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
659
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
660 661 662 663 664 665 666 667 668 669 670 671

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
672 673
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
674
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
675 676
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
677 678

    Returns:
679
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
680 681 682 683 684 685

    Examples:
        .. code-block:: python

            import paddle

686 687
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
688 689
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
690

691 692
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
693

694 695
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
696

697 698
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
699
    """
H
hong 已提交
700
    if in_dygraph_mode():
701
        return _C_ops.dist(x, y, p)
H
hong 已提交
702

Z
Zhang Ting 已提交
703 704 705 706 707 708 709 710 711
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
712 713 714
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
715
    return out
L
liuwei1031 已提交
716 717


718 719 720 721 722 723
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
724 725
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
744 745
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
746 747 748

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
749 750
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
751 752 753

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
754 755
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
756 757 758

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
759 760
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
761 762 763

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
764 765
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
766 767 768

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
769 770
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
771 772 773

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
774 775
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
776 777

            # compute conditional number when order of the norm is inf
778 779 780
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
781 782

            # compute conditional number when order of the norm is -inf
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

799
            a_cond_fro = paddle.linalg.cond(a, p='fro')
800 801 802 803 804 805 806 807 808 809 810 811
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
812
            b_cond_2 = paddle.linalg.cond(b, p=2)
813 814
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
815 816 817

    """

818
    def mat_norm(input, porder=1.0, axis=None):
819 820 821 822 823
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
824 825
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
826
            sum_out = _C_ops.sum(abs_out, axis, None, False)
827 828

            if porder == 1 or porder == np.inf:
829
                return _C_ops.max(sum_out, [-1], False)
830
            if porder == -1 or porder == -np.inf:
831
                return _C_ops.min(sum_out, [-1], False)
832
        else:
833 834
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
835 836
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
837 838
                dtype=block.input_dtype()
            )
839
            sum_out = block.create_variable_for_type_inference(
840 841
                dtype=block.input_dtype()
            )
842
            out = block.create_variable_for_type_inference(
843 844 845 846 847 848 849 850 851 852 853
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
854
                    'keep_dim': False,
855 856 857
                    'reduce_all': reduce_all,
                },
            )
858
            if porder == 1 or porder == np.inf:
859 860 861 862 863 864
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
865
                        'keep_dim': False,
866 867 868
                        'reduce_all': reduce_all,
                    },
                )
869
            if porder == -1 or porder == -np.inf:
870 871 872 873 874 875
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
876
                        'keep_dim': False,
877 878 879
                        'reduce_all': reduce_all,
                    },
                )
880
            return out
881 882 883 884 885 886

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
887
        if in_dygraph_mode():
888
            pow_out = _C_ops.pow(input, porder)
889 890
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
891
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
892
        else:
893
            reduce_all = True if axis is None or axis == [] else False
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
940 941 942 943 944 945 946 947 948

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

949
        if in_dygraph_mode():
950
            if porder == "nuc":
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
974
                )
975 976 977 978 979 980 981
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
982
            block.append_op(
983
                type='reduce_max',
984
                inputs={'X': s},
985
                outputs={'Out': max_out},
986 987
                attrs={
                    'dim': axis,
988
                    'keep_dim': False,
989 990 991 992
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
993 994 995 996 997 998 999 1000
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1001
            )
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1018 1019

    def empty_tensor(input, shape):
1020
        if in_dygraph_mode():
1021
            return input.reshape(shape)
1022 1023 1024
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1025 1026 1027

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1028
        raise ValueError(
1029 1030 1031
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1032
    if p is None:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1045
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1046 1047
                    x_inv, porder=p, axis=[-2]
                )
1048
            if p in (np.inf, -np.inf):
1049
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1050 1051
                    x_inv, porder=p, axis=[-1]
                )
1052
        else:
1053 1054 1055 1056
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1057 1058 1059 1060 1061 1062
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1063 1064 1065
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1066 1067


L
liuwei1031 已提交
1068 1069 1070
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1071

1072
    Note:
1073 1074
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1075 1076

    Parameters:
S
ShenLiang 已提交
1077 1078
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1079 1080
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1081
    Returns:
1082
        Tensor: the calculated result Tensor.
1083

L
liuwei1031 已提交
1084 1085 1086 1087 1088
    Examples:

    .. code-block:: python

        import paddle
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1099
        z = paddle.dot(x, y)
1100
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1101 1102

    """
1103 1104
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1105 1106
    else:
        op_type = 'dot'
1107

1108 1109
        assert x is not None, 'x cannot be None in {}'.format(op_type)
        assert y is not None, 'y cannot be None in {}'.format(op_type)
L
liuwei1031 已提交
1110

1111 1112 1113 1114 1115 1116
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
        )
L
liuwei1031 已提交
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1127
        )
1128
        return out
1129 1130


Z
zhiboniu 已提交
1131 1132 1133 1134 1135
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1136
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1170 1171
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1185 1186
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1187 1188 1189
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1190 1191 1192 1193
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1194 1195 1196
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1197 1198
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1199 1200 1201 1202 1203 1204 1205 1206
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1207 1208 1209 1210 1211
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1212 1213 1214
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1215 1216 1217 1218
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1219 1220 1221
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1222 1223
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1242
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1254 1255
def t(input, name=None):
    """
1256 1257
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1258
    the paddle.transpose function which perm dimensions set 0 and 1.
1259

1260
    Args:
1261
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1262
        name(str, optional): The default value is None.  Normally there is no need for
1263 1264
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1265
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1266

1267
    Examples:
1268

1269 1270 1271
        .. code-block:: python
           :name: code-example
             import paddle
1272

1273
             # Example 1 (0-D tensor)
1274 1275
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1276

1277
             # Example 2 (1-D tensor)
1278 1279 1280
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1281 1282

             # Example 3 (2-D tensor)
1283 1284 1285 1286 1287 1288 1289 1290
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1291

1292 1293 1294 1295 1296
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1297 1298
            "tensor.transpose() instead." % len(input.shape)
        )
1299
    if in_dygraph_mode():
1300
        if len(input.shape) <= 1:
1301 1302 1303
            return input
        # 2-D tensor
        perm = [1, 0]
1304
        out = _C_ops.transpose(input, perm)
1305
        return out
1306 1307 1308 1309 1310 1311 1312
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1313

1314 1315 1316
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1317
        if len(input.shape) <= 1:
1318 1319 1320 1321 1322 1323 1324 1325
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1326 1327
        return out

1328

W
wanghuancoder 已提交
1329
def cross(x, y, axis=9, name=None):
1330
    """
1331
    Computes the cross product between two tensors along an axis.
1332

1333 1334
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1335

1336
    Args:
1337 1338
        x (Tensor): The first input tensor, the data type is float16, float32, float64, int32, int64.
        y (Tensor): The second input tensor, the data type is float16, float32, float64, int32, int64.
W
wanghuancoder 已提交
1339
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1340
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1341 1342

    Returns:
1343
        Tensor. A Tensor with same data type as `x`.
1344

1345 1346
    Examples:
        .. code-block:: python
1347

1348
            import paddle
1349

Z
Zhou Wei 已提交
1350 1351 1352 1353 1354 1355
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1366
    """
J
Jiabin Yang 已提交
1367
    if in_dygraph_mode():
1368
        axis = K_DEFAULT_DIM if axis is None else axis
1369
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1370
    else:
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        check_variable_and_dtype(
            x,
            'x',
            ['float16', 'float32', 'float64', "int32", "int64"],
            'cross',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['float16', 'float32', 'float64', "int32", "int64"],
            'cross',
        )
1383 1384 1385 1386
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        attrs = dict()
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1387

1388 1389 1390 1391 1392 1393 1394
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1395 1396


1397
def cholesky(x, upper=False, name=None):
1398
    r"""
G
Guo Sheng 已提交
1399
    Computes the Cholesky decomposition of one symmetric positive-definite
1400 1401
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1402 1403 1404 1405 1406 1407
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1408
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1409 1410 1411 1412 1413
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1414 1415
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1416 1417

    Returns:
1418 1419
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1420

G
Guo Sheng 已提交
1421 1422 1423 1424 1425
    Examples:
        .. code-block:: python

            import paddle

1426 1427 1428 1429
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1430
            out = paddle.linalg.cholesky(x, upper=False)
1431
            print(out)
G
Guo Sheng 已提交
1432
    """
H
hong 已提交
1433
    if in_dygraph_mode():
1434
        return _C_ops.cholesky(x, upper)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1447 1448


1449 1450 1451 1452
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1453
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1454
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1455 1456

    Args:
1457 1458 1459 1460
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1461
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1462 1463
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1464
            the lower triangular of the matrix to compute.
1465 1466 1467 1468
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1486

1487
    """
1488 1489 1490 1491 1492 1493 1494
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1495 1496 1497
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1498

1499 1500 1501 1502 1503 1504
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1505
        return _C_ops.matrix_rank(x, tol_attr, hermitian, use_default_tol)
1506 1507 1508 1509 1510
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1511
        if tol is None:
1512
            attrs['use_default_tol'] = True
1513
        elif isinstance(tol, Variable):
1514
            attrs['use_default_tol'] = False
1515
            if tol.dtype != x.dtype:
1516
                inputs['TolTensor'] = cast(tol, x.dtype)
1517
            else:
1518
                inputs['TolTensor'] = tol
1519
        else:
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1532 1533


1534 1535 1536 1537 1538 1539 1540 1541 1542
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1543 1544
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1545 1546 1547 1548
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1549
        Tensor: The product Tensor.
1550 1551

    Examples:
S
sunzhongkai588 已提交
1552 1553 1554
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1555

S
sunzhongkai588 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1565 1566 1567 1568 1569 1570
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1571

1572
    """
1573
    if in_dygraph_mode():
1574
        return _C_ops.bmm(x, y)
1575
    else:
W
Weilong Wu 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1596 1597 1598 1599 1600 1601
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1602 1603


1604
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1605
    """
1606
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1607 1608 1609
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1610
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1611
            should be float32, float64, int32, int64.
1612 1613 1614 1615
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1616 1617

    Returns:
1618
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1619

1620
    Examples:
Q
Qi Li 已提交
1621
        .. code-block:: python
1622

Q
Qi Li 已提交
1623
            import paddle
1624

1625
            inputs = paddle.to_tensor([1, 2, 1])
1626 1627
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1628
    """
H
hong 已提交
1629
    if in_dygraph_mode():
1630
        return _C_ops.histogram(input, bins, min, max)
1631 1632 1633 1634
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1635
        )
1636 1637 1638 1639 1640 1641 1642 1643
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1644 1645 1646 1647


def bincount(x, weights=None, minlength=0, name=None):
    """
1648
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1676 1677
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
1678 1679
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1680

1681
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1698
        )
1699
        return out
1700 1701 1702 1703 1704 1705 1706


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1707
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1708
            should be one of float32, float64.
F
furnace 已提交
1709
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1725 1726
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1727
            out = paddle.mv(x, vec)
1728 1729 1730
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1731
    """
J
Jiabin Yang 已提交
1732
    if in_dygraph_mode():
1733
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1734
    else:
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1748
                    )
1749 1750 1751 1752 1753
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1754
                    )
1755
                )
J
Jiabin Yang 已提交
1756

1757
        __check_input(x, vec)
J
Jiabin Yang 已提交
1758

1759 1760 1761 1762 1763 1764
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1765 1766


1767
def det(x, name=None):
H
huangxu96 已提交
1768
    """
1769

H
huangxu96 已提交
1770
    Calculates determinant value of a square matrix or batches of square matrices.
1771

H
huangxu96 已提交
1772
    Args:
1773
        x (Tensor): the input matrix of size `(n, n)` or the
1774 1775
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1776 1777
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1778

H
huangxu96 已提交
1779
    Returns:
1780
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1781

1782
    Examples:
H
huangxu96 已提交
1783 1784
        .. code-block:: python

1785
            import paddle
H
huangxu96 已提交
1786

1787
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1788

1789
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1790

1791
            print(A)
1792

1793
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1794

1795

H
huangxu96 已提交
1796
    """
C
chentianyu03 已提交
1797
    if in_dygraph_mode():
1798
        return _C_ops.det(x)
1799 1800
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')
C
chentianyu03 已提交
1801

1802 1803 1804 1805 1806
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1807

1808 1809 1810 1811 1812 1813 1814 1815
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1816

1817 1818 1819 1820
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1821 1822


1823
def slogdet(x, name=None):
H
huangxu96 已提交
1824
    """
1825

H
huangxu96 已提交
1826
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1827
    The determinant can be computed with ``sign * exp`` (logabsdet)
1828

H
huangxu96 已提交
1829 1830 1831
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1832

H
huangxu96 已提交
1833 1834 1835 1836 1837
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1838
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1839 1840
        of the absolute value of determinant, respectively.

1841
    Examples:
1842
        .. code-block:: python
H
huangxu96 已提交
1843

1844
            import paddle
H
huangxu96 已提交
1845

1846
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1847

1848
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1849

1850
            print(A)
1851

1852 1853
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1854 1855

    """
1856
    if in_dygraph_mode():
1857
        return _C_ops.slogdet(x)
1858 1859
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1860

1861 1862 1863 1864 1865
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1866

1867 1868 1869 1870 1871 1872 1873 1874
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1875

1876 1877 1878 1879 1880 1881
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1882 1883


1884 1885
def svd(x, full_matrices=False, name=None):
    r"""
1886 1887 1888 1889 1890
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1891 1892
        X = U * diag(S) * VT

1893 1894
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1895
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1896 1897
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1898
        full_matrices (bool, optional): A flag to control the behavor of svd.
1899
            If full_matrices = True, svd op will compute full U and V matrics,
1900
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1901
            If full_matrices = False, svd op will use a economic method to store U and V.
1902
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1903
            Default value is False.
1904
        name (str, optional): Name for the operation (optional, default is None).
1905
            For more information, please refer to :ref:`api_guide_Name`.
1906 1907

    Returns:
Z
Zman 已提交
1908 1909 1910 1911 1912
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1913

1914 1915 1916 1917
    Examples:
        .. code-block:: python

            import paddle
1918 1919 1920

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1921
            u, s, vh = paddle.linalg.svd(x)
1922 1923 1924 1925 1926
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1927
            print (s)
1928
            #S = [8.14753743, 0.78589688]
1929
            print (vh)
1930 1931
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1932

1933
            # one can verify : U * S * VT == X
1934
            #                  U * UH == I
1935
            #                  V * VH == I
1936
    """
1937

1938
    if in_dygraph_mode():
1939
        return _C_ops.svd(x, full_matrices)
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1956 1957


1958 1959
def matrix_power(x, n, name=None):
    r"""
1960

1961
    Computes the n-th power of a square matrix or a batch of square matrices.
1962

1963 1964 1965 1966 1967
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1968

1969 1970
    Specifically,

1971
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1972

1973 1974
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1975
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1976 1977 1978 1979 1980 1981

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1982
        name (str, optional): Name for the operation (optional, default is None).
1983 1984 1985
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1986 1987
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
1988 1989 1990 1991 1992 1993 1994 1995 1996

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1997
            print(paddle.linalg.matrix_power(x, 2))
1998 1999 2000 2001
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2002
            print(paddle.linalg.matrix_power(x, 0))
2003 2004 2005 2006
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2007
            print(paddle.linalg.matrix_power(x, -2))
2008 2009 2010 2011
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2012
    if in_dygraph_mode():
2013
        return _C_ops.matrix_power(x, n)
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2028 2029


2030 2031 2032 2033 2034 2035 2036
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2037 2038
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2039
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2040
            If mode = "reduced", qr op will return reduced Q and R matrices,
2041
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2042
            If mode = "complete", qr op will return complete Q and R matrices,
2043 2044 2045 2046 2047
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2048

2049
    Returns:
2050
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2051
        If mode = "r", qr will return a tensor which represents R.
2052 2053

    Examples:
2054 2055
        .. code-block:: python

2056
            import paddle
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2069 2070

            # one can verify : X = Q * R ;
2071
    """
Y
Yulong Ao 已提交
2072
    if in_dygraph_mode():
2073
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2074 2075 2076 2077
        if mode == "r":
            return r
        else:
            return q, r
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2089 2090 2091 2092 2093 2094
        if mode == "r":
            return r
        else:
            return q, r


2095 2096
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2097
    Computes the LU factorization of an N-D(N>=2) matrix x.
2098

2099
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2100 2101 2102 2103
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2104 2105 2106 2107 2108 2109

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2121

2122
    Returns:
2123
        factorization (Tensor), LU matrix, the factorization of input X.
2124

2125 2126 2127
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2128

2129 2130 2131
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2132

2133 2134

    Examples:
2135 2136
        .. code-block:: python

2137
            import paddle
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2153

2154 2155 2156 2157 2158 2159
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2160
            # [1., 0., 0.]]),
2161 2162 2163 2164
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2165
            # [0.60000000, 0.50000000]]),
2166 2167 2168 2169 2170
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2171 2172

            # one can verify : X = P @ L @ U ;
2173
    """
L
Lin Manhui 已提交
2174 2175

    if in_dygraph_mode():
2176
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2177 2178 2179 2180 2181 2182 2183 2184
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2185 2186 2187 2188 2189 2190
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2191 2192 2193 2194 2195 2196 2197 2198
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2199
    Unpack L U and P to single matrix tensor .
2200 2201 2202
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2203 2204 2205 2206 2207

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2221

2222
    Returns:
2223
        P (Tensor), Permutation matrix P of lu factorization.
2224

2225
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2226

2227
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2228

2229 2230

    Examples:
2231 2232
        .. code-block:: python

2233
            import paddle
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2249

2250 2251 2252 2253 2254 2255
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2256
            # [1., 0., 0.]]),
2257 2258 2259 2260
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2261
            # [0.60000000, 0.50000000]]),
2262 2263 2264 2265 2266
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2267
            # one can verify : X = P @ L @ U ;
2268 2269
    """

2270
    if in_dygraph_mode():
2271
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2272
        return P, L, U
2273 2274 2275
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2276
        )
2277 2278 2279 2280
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        attrs = dict()
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2292 2293


L
Lijunhui 已提交
2294 2295
def eig(x, name=None):
    """
2296
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2297

2298 2299 2300 2301 2302 2303
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2304 2305 2306 2307

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2308
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2322
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2323
                               [9.956216,  8.749598,  6.066444 ],
2324
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2325
            w, v = paddle.linalg.eig(x)
2326
            print(v)
L
Lijunhui 已提交
2327 2328 2329 2330 2331 2332 2333 2334
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2335
            print(w)
L
Lijunhui 已提交
2336 2337 2338 2339
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2340

2341
    if in_dygraph_mode():
2342
        return _C_ops.eig(x)
2343 2344 2345 2346 2347
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2348

2349 2350
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2351

2352 2353 2354
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2355

2356
        return w, v
L
Lijunhui 已提交
2357 2358


2359 2360 2361
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2362 2363 2364

    Warning:
        The gradient kernel of this operator does not yet developed.
2365 2366 2367 2368
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2369
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2370
            Its data type should be float32, float64, complex64, or complex128.
2371
        name (str, optional): Name for the operation (optional, default is None).
2372
            For more information, please refer to :ref:`api_guide_Name`.
2373

2374
    Returns:
2375 2376
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2377 2378 2379 2380 2381

    Examples:
        .. code-block:: python

            import paddle
2382

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2398 2399 2400 2401
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2402 2403 2404

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2405 2406 2407 2408
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2409

R
Ruibiao Chen 已提交
2410
    if in_dygraph_mode():
2411
        return _C_ops.eigvals(x)
2412
    else:
2413 2414 2415 2416 2417 2418
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2419 2420 2421 2422
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2423 2424


2425 2426 2427 2428
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2429
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2466 2467
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2468
        out = paddle.linalg.multi_dot([A, B])
2469
        print(out.shape)
2470 2471 2472
        # [3, 5]

        # A * B * C
2473 2474 2475
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2476
        out = paddle.linalg.multi_dot([A, B, C])
2477
        print(out.shape)
2478 2479 2480
        # [10, 7]

    """
2481
    if in_dygraph_mode():
2482
        return _C_ops.multi_dot(x)
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
                ['float16', 'float32', 'float64'],
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2496

2497 2498 2499 2500 2501
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2502
        )
2503
        return out
2504 2505 2506 2507


def eigh(x, UPLO='L', name=None):
    """
2508
    Compute the eigenvalues and eigenvectors of a
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2520 2521 2522 2523
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2524 2525 2526 2527 2528 2529

    Examples:
        .. code-block:: python

            import paddle

2530
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2531
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2532 2533 2534 2535 2536 2537 2538
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2539
    if in_dygraph_mode():
2540
        return _C_ops.eigh(x, UPLO)
2541
    else:
H
hong 已提交
2542

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
2559
                )
2560

2561
        __check_input(x, UPLO)
2562

2563 2564 2565 2566 2567 2568 2569
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2570

2571 2572
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2573

2574 2575 2576 2577 2578 2579 2580
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2581 2582 2583 2584


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2585
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2596

A
andyjpaddle 已提交
2597 2598 2599
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2600 2601 2602
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2603 2604 2605 2606
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2607
        rcond(Tensor, optional): the tolerance value to determine
2608
            when is a singular value zero. Default:1e-15.
2609 2610

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2611
            if complex or symmetric if real. Default: False.
2612 2613

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2614
            the layer will be named automatically.
2615

A
andyjpaddle 已提交
2616
    Returns:
2617
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2618
        pseudo inverse of x. Its shape should be (*, n, m).
2619

A
andyjpaddle 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2646 2647 2648
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2649 2650
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2651 2652 2653 2654
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2655

2656 2657 2658 2659 2660 2661
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2662
            st = _C_ops.unsqueeze(singular, [-2])
2663 2664 2665

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2666
            v = _C_ops.transpose(vt, perm)
2667 2668

            out_1 = v * st
2669
            out_2 = _C_ops.matmul(out_1, u, False, True)
2670 2671 2672
            return out_2
        else:
            # combine eigh and matmul op
2673
            s, u = _C_ops.eigh(x, 'UPLO')
2674
            s_abs = paddle.abs(s)
2675
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2687
            st = _C_ops.unsqueeze(singular, [-2])
2688 2689

            out_1 = u * st
2690 2691
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2692
            return out_2
A
andyjpaddle 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2705
                outputs={'U': u, 'VH': vt, 'S': s},
2706 2707
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2708 2709

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2710 2711 2712 2713 2714 2715
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2716

2717
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2718 2719
            cutoff = rcond * max_singular_val
            y = float('inf')
2720
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2721 2722

            condition = s > cutoff
2723 2724 2725 2726 2727
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2728 2729 2730

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2731 2732 2733 2734 2735 2736
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2737 2738 2739 2740 2741

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2742 2743 2744 2745 2746 2747
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2748 2749

            out_1 = helper.create_variable_for_type_inference(dtype)
2750 2751 2752 2753 2754 2755
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2756 2757 2758 2759 2760
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2761
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2762
                outputs={'Out': out_2},
2763
                attrs={'trans_x': False, 'trans_y': True},
2764
            )
A
andyjpaddle 已提交
2765 2766 2767 2768 2769
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2770 2771 2772 2773 2774
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2785 2786 2787 2788 2789 2790
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2791
            s_abs = helper.create_variable_for_type_inference(s_type)
2792 2793 2794
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2795
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2796 2797 2798 2799 2800 2801
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2802

2803
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2804 2805
            cutoff = rcond * max_singular_val
            y = float('inf')
2806
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2807 2808

            condition = s_abs > cutoff
2809 2810 2811 2812 2813
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2814 2815 2816

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2817 2818 2819 2820 2821 2822
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2823 2824

            out_1 = helper.create_variable_for_type_inference(dtype)
2825 2826 2827 2828 2829 2830
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2831 2832 2833
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2834 2835 2836
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2837 2838 2839 2840

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2841
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2842
                outputs={'Out': out_2},
2843
                attrs={'trans_x': False, 'trans_y': True},
2844
            )
A
andyjpaddle 已提交
2845
            return out_2
W
Weilong Wu 已提交
2846 2847 2848 2849


def solve(x, y, name=None):
    r"""
2850

W
Weilong Wu 已提交
2851
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2852
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2853
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2854

W
Weilong Wu 已提交
2855 2856
    .. math::
        Out = X^-1 * Y
2857 2858

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2859

W
Weilong Wu 已提交
2860
    Args:
2861
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2862
            more batch dimensions. Its data type should be float32 or float64.
2863
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2864
            more batch dimensions. Its data type should be float32 or float64.
2865
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2866
            For more information, please refer to :ref:`api_guide_Name`.
2867

W
Weilong Wu 已提交
2868
    Returns:
2869
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2870
        Its data type should be the same as that of `x`.
2871

W
Weilong Wu 已提交
2872
    Examples:
2873

2874
        .. code-block:: python
2875

2876 2877 2878
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2879

2880 2881 2882 2883 2884
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2885

2886 2887
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2888
    """
2889
    if in_dygraph_mode():
2890
        return _C_ops.solve(x, y)
2891 2892 2893 2894 2895 2896
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2897

2898 2899 2900 2901
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2902 2903


2904 2905 2906
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2907
    r"""
2908 2909
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2923 2924 2925 2926

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2927
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2928
            zero or more batch dimensions. Its data type should be float32 or float64.
2929
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2930 2931
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2932
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2933 2934 2935 2936 2937 2938 2939 2940
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2941
        .. code-block:: python
2942

2943 2944 2945 2946
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2947

2948 2949 2950 2951 2952 2953
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2954

2955 2956
            print(out)
            # [7, -2, -5]
2957
    """
H
hong 已提交
2958
    if in_dygraph_mode():
2959
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2960 2961 2962 2963 2964
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2965
        )
2966 2967 2968 2969
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2970

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2982 2983


Z
zhiboniu 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2994
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3004
        .. code-block:: python
Z
zhiboniu 已提交
3005

3006
            import paddle
Z
zhiboniu 已提交
3007

3008 3009 3010 3011 3012
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3013

3014 3015
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3016
    """
H
hong 已提交
3017
    if in_dygraph_mode():
3018
        return _C_ops.cholesky_solve(x, y, upper)
3019 3020 3021 3022 3023 3024 3025 3026 3027
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3028

3029 3030 3031 3032 3033 3034 3035
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3036 3037


3038 3039
def eigvalsh(x, UPLO='L', name=None):
    """
3040
    Computes the eigenvalues of a
3041 3042 3043
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3044
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3058
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3059 3060
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3061 3062
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3063
    """
3064
    if in_dygraph_mode():
3065
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3066
        return values
3067
    else:
3068

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
3085
                )
3086

3087
        __check_input(x, UPLO)
3088

3089 3090 3091 3092 3093 3094 3095
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3096

3097 3098
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3099

3100 3101 3102 3103 3104 3105 3106 3107
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3108 3109


3110 3111 3112 3113 3114 3115 3116 3117
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3118
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3119
            should be one of float32, float64.
3120 3121
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3122
            machine precision of x_dtype.
3123 3124 3125
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3126
            for CUDA inputs.
3127
        name(str, optional): The default value is None. Normally there is no need for user to set
3128 3129 3130
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3131 3132 3133 3134 3135 3136 3137
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3170 3171 3172
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3173 3174 3175 3176
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3177 3178 3179 3180
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3181 3182 3183 3184
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3185 3186 3187 3188
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3189
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3190 3191 3192 3193
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3209 3210 3211 3212 3213 3214
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3215 3216 3217 3218
    if in_dygraph_mode():
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3219 3220 3221 3222 3223 3224 3225
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3240

3241 3242 3243 3244 3245 3246
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3247

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3269

3270
        return solution, residuals, rank, singular_values
3271 3272 3273 3274


def corrcoef(x, rowvar=True, name=None):
    """
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3299

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3314 3315
            "length of Input(input) is %s." % len(x.shape)
        )
3316 3317 3318
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3319
    if c.ndim == 0:
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3334 3335 3336
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3337 3338 3339 3340
    else:
        c = paddle.clip(c, -1, 1)

    return c