Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7ff226f0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7ff226f0
编写于
9月 26, 2021
作者:
C
crystal
提交者:
GitHub
9月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
CPU forward calculation replaces Eigen with Lapack;Modify linalg exposure rules (#35916)
上级
1b90f968
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
217 addition
and
179 deletion
+217
-179
paddle/fluid/operators/eigh_op.cc
paddle/fluid/operators/eigh_op.cc
+8
-9
paddle/fluid/operators/eigh_op.cu
paddle/fluid/operators/eigh_op.cu
+8
-9
paddle/fluid/operators/eigh_op.h
paddle/fluid/operators/eigh_op.h
+4
-3
paddle/fluid/operators/math/eigen_values_vectors.h
paddle/fluid/operators/math/eigen_values_vectors.h
+122
-151
paddle/fluid/operators/math/lapack_function.cc
paddle/fluid/operators/math/lapack_function.cc
+43
-0
paddle/fluid/operators/math/lapack_function.h
paddle/fluid/operators/math/lapack_function.h
+9
-4
paddle/fluid/platform/dynload/lapack.h
paddle/fluid/platform/dynload/lapack.h
+21
-0
python/paddle/__init__.py
python/paddle/__init__.py
+0
-1
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+2
-2
未找到文件。
paddle/fluid/operators/eigh_op.cc
浏览文件 @
7ff226f0
...
...
@@ -147,18 +147,17 @@ REGISTER_OPERATOR(eigh, ops::EighOp, ops::EignOpMaker,
REGISTER_OPERATOR
(
eigh_grad
,
ops
::
EighGradOp
);
REGISTER_OP_CPU_KERNEL
(
eigh
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
float
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
double
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
eigh
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
EighKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CPU_KERNEL
(
eigh_grad
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
float
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
double
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
eigh_grad
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
paddle/fluid/operators/eigh_op.cu
浏览文件 @
7ff226f0
...
...
@@ -16,18 +16,17 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
eigh
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
float
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
double
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
eigh
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
EighKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CUDA_KERNEL
(
eigh_grad
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
float
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
double
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
eigh_grad
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
EighGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
paddle/fluid/operators/eigh_op.h
浏览文件 @
7ff226f0
...
...
@@ -22,7 +22,7 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
ValueType
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
EighKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -31,15 +31,16 @@ class EighKernel : public framework::OpKernel<T> {
auto
output_v
=
ctx
.
Output
<
Tensor
>
(
"Eigenvectors"
);
std
::
string
lower
=
ctx
.
Attr
<
std
::
string
>
(
"UPLO"
);
bool
is_lower
=
(
lower
==
"L"
);
math
::
MatrixEighFunctor
<
DeviceContext
,
ValueType
,
T
>
functor
;
math
::
MatrixEighFunctor
<
DeviceContext
,
T
>
functor
;
functor
(
ctx
,
*
input
,
output_w
,
output_v
,
is_lower
,
true
);
}
};
template
<
typename
DeviceContext
,
typename
ValueType
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
EighGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
ValueType
=
math
::
Real
<
T
>
;
auto
&
x_grad
=
*
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
x_grad
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
output_w
=
*
ctx
.
Input
<
Tensor
>
(
"Eigenvalues"
);
...
...
paddle/fluid/operators/math/eigen_values_vectors.h
浏览文件 @
7ff226f0
...
...
@@ -14,8 +14,8 @@
#pragma once
#include "Eigen/Core"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/math/lapack_function.h"
#include "paddle/fluid/operators/svd_helper.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cusolver.h"
...
...
@@ -25,84 +25,6 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
InputMatrixMap
=
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
OutputMatrixMap
=
Eigen
::
Map
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
template
<
typename
ValueType
>
inline
void
ComputeFloatEigenvaluesAndVectors
(
ValueType
*
x_data
,
ValueType
*
eigenvalues_data
,
ValueType
*
eigenvectors_data
,
int
batches
,
int
rows
,
int
cols
,
bool
has_vectors
)
{
int
stride
=
rows
*
cols
;
for
(
int
i
=
0
;
i
<
batches
;
i
++
)
{
auto
m
=
InputMatrixMap
<
ValueType
>
(
x_data
+
i
*
stride
,
rows
,
cols
);
auto
eigenvalues
=
OutputMatrixMap
<
ValueType
>
(
eigenvalues_data
+
i
*
rows
,
1
,
rows
);
auto
eigenvectors
=
OutputMatrixMap
<
ValueType
>
(
eigenvectors_data
+
i
*
stride
,
rows
,
cols
);
Eigen
::
SelfAdjointEigenSolver
<
Eigen
::
Matrix
<
ValueType
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
eigen_solver
(
m
,
has_vectors
?
Eigen
::
ComputeEigenvectors
:
Eigen
::
EigenvaluesOnly
);
PADDLE_ENFORCE_EQ
(
eigen_solver
.
info
(),
Eigen
::
Success
,
platform
::
errors
::
InvalidArgument
(
"Self Adjoint Eigen decomposition is not successful. "
"The %d-th input matrice might not be not be positive definite."
,
i
));
eigenvalues
=
eigen_solver
.
eigenvalues
().
transpose
();
if
(
has_vectors
)
{
eigenvectors
=
eigen_solver
.
eigenvectors
();
}
}
}
template
<
typename
T
,
typename
ValueType
>
inline
void
ComputeComplexEigenvaluesAndVectors
(
T
*
x_data
,
ValueType
*
eigenvalues_data
,
T
*
eigenvectors_data
,
int
batches
,
int
rows
,
int
cols
,
bool
has_vectors
)
{
using
Complex
=
std
::
complex
<
ValueType
>
;
Complex
*
input
=
reinterpret_cast
<
Complex
*>
(
x_data
);
Complex
*
eigenvectors_data_
=
reinterpret_cast
<
Complex
*>
(
eigenvectors_data
);
int
stride
=
rows
*
cols
;
for
(
int
i
=
0
;
i
<
batches
;
i
++
)
{
auto
m
=
InputMatrixMap
<
Complex
>
(
input
+
i
*
stride
,
rows
,
cols
);
auto
eigenvalues
=
OutputMatrixMap
<
ValueType
>
(
eigenvalues_data
+
i
*
rows
,
1
,
rows
);
auto
eigenvectors
=
OutputMatrixMap
<
Complex
>
(
eigenvectors_data_
+
i
*
stride
,
rows
,
cols
);
Eigen
::
SelfAdjointEigenSolver
<
Eigen
::
Matrix
<
Complex
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
eigen_solver
(
m
,
has_vectors
?
Eigen
::
ComputeEigenvectors
:
Eigen
::
EigenvaluesOnly
);
PADDLE_ENFORCE_EQ
(
eigen_solver
.
info
(),
Eigen
::
Success
,
platform
::
errors
::
InvalidArgument
(
"Self Adjoint Eigen decomposition is not successful. "
"The %d-th input matrice might not be not be positive definite."
,
i
));
eigenvalues
=
eigen_solver
.
eigenvalues
().
transpose
();
if
(
has_vectors
)
{
eigenvectors
=
eigen_solver
.
eigenvectors
();
}
}
}
inline
int64_t
GetBatchSize
(
framework
::
DDim
dims
)
{
int64_t
batch_size
=
1
;
auto
dim_size
=
dims
.
size
();
...
...
@@ -112,7 +34,20 @@ inline int64_t GetBatchSize(framework::DDim dims) {
return
batch_size
;
}
template
<
typename
DeviceContext
,
typename
ValueType
,
typename
T
>
static
void
CheckEighResult
(
const
int
batch
,
const
int
info
)
{
PADDLE_ENFORCE_LE
(
info
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"For batch [%d]: the [%d] off-diagonal elements of an intermediate"
"tridiagonal form did not converge to zero"
,
batch
,
info
));
PADDLE_ENFORCE_GE
(
info
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"For batch [%d]: the [%d] argument had an illegal value"
,
batch
,
info
));
}
template
<
typename
DeviceContext
,
typename
T
>
struct
MatrixEighFunctor
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
eigen_values
,
Tensor
*
eigen_vectors
,
bool
is_lower
,
...
...
@@ -122,43 +57,84 @@ struct MatrixEighFunctor {
// Calculates the eigenvalues and eigenvectors of Hermitian or real
// symmetric matrices, and uses the variable has_vectors to
// control whether to return the eigenvectors.
template
<
typename
ValueType
,
typename
T
>
struct
MatrixEighFunctor
<
platform
::
CPUDeviceContext
,
ValueType
,
T
>
{
template
<
typename
T
>
struct
MatrixEighFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
eigen_values
,
Tensor
*
eigen_vectors
,
bool
is_lower
,
bool
has_vectors
)
{
auto
dims
=
input
.
dims
()
;
auto
output_value_dim
=
eigen_values
->
dims
(
);
using
ValueType
=
math
::
Real
<
T
>
;
auto
*
out_value
=
eigen_values
->
mutable_data
<
ValueType
>
(
ctx
.
GetPlace
()
);
int64_t
batch_size
=
1
;
int
dim_size
=
dims
.
size
();
for
(
int64_t
i
=
0
;
i
<
dim_size
-
2
;
i
++
)
{
batch_size
*=
dims
[
i
];
}
auto
dito
=
DeviceIndependenceTensorOperations
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
);
Tensor
input_tensor
;
TensorCopy
(
input
,
ctx
.
GetPlace
(),
&
input_tensor
);
if
(
!
is_lower
)
{
input_tensor
=
dito
.
Transpose
(
input
);
}
int
rows
=
dims
[
dims
.
size
()
-
2
];
math
::
DeviceIndependenceTensorOperations
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
);
auto
*
value_data
=
eigen_values
->
mutable_data
<
ValueType
>
(
output_value_dim
,
ctx
.
GetPlace
());
Tensor
input_trans
;
// lapack is a column-major storge, transpose make the input to
// have a continuous memory layout
input_trans
=
dito
.
Transpose
(
input
);
auto
*
input_vector
=
input_trans
.
data
<
T
>
();
if
(
framework
::
IsComplexType
(
input_tensor
.
type
()))
{
auto
*
x_data
=
input_tensor
.
data
<
T
>
();
auto
*
vector_data
=
eigen_vectors
->
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
ComputeComplexEigenvaluesAndVectors
<
T
,
ValueType
>
(
x_data
,
value_data
,
vector_data
,
batch_size
,
rows
,
rows
,
has_vectors
);
}
else
{
auto
*
x_data
=
input_tensor
.
data
<
ValueType
>
();
auto
*
vector_data
=
eigen_vectors
->
mutable_data
<
ValueType
>
(
dims
,
ctx
.
GetPlace
());
ComputeFloatEigenvaluesAndVectors
<
ValueType
>
(
x_data
,
value_data
,
vector_data
,
batch_size
,
rows
,
rows
,
has_vectors
);
auto
dims
=
input
.
dims
();
int
dim_size
=
dims
.
size
();
int64_t
batch_size
=
GetBatchSize
(
dims
);
int
vector_stride
=
dims
[
dim_size
-
1
]
*
dims
[
dim_size
-
2
];
int
values_stride
=
dims
[
dim_size
-
1
];
char
uplo
=
is_lower
?
'L'
:
'U'
;
char
jobz
=
has_vectors
?
'V'
:
'N'
;
auto
n
=
dims
[
dim_size
-
1
];
auto
lda
=
std
::
max
<
int64_t
>
(
1
,
n
);
// if work = -1, it means that you need to use the lapack function to query
// the optimal value
int
lwork
=
-
1
;
// The length of the array work
int
lrwork
=
-
1
;
// The dimension of the array rwork,rwork is REAL array
int
liwork
=
-
1
;
// The dimension of the array iwork
int
iwork_opt
=
-
1
;
// The optimal length of the array liwork
T
lwork_opt
=
static_cast
<
T
>
(
-
1
);
// The optimal length of the array work
ValueType
rwork_opt
=
static_cast
<
ValueType
>
(
-
1
);
// The optimal length of the array rwork
int
info
=
0
;
// Call lapackEigh to get the optimal size of work data
math
::
lapackEigh
<
T
,
ValueType
>
(
jobz
,
uplo
,
n
,
input_vector
,
lda
,
out_value
,
&
lwork_opt
,
lwork
,
&
rwork_opt
,
lrwork
,
&
iwork_opt
,
liwork
,
&
info
);
lwork
=
std
::
max
<
int
>
(
1
,
static_cast
<
int
>
(
lwork_opt
));
liwork
=
std
::
max
<
int
>
(
1
,
iwork_opt
);
Tensor
rwork_tensor
;
ValueType
*
rwork_data
=
nullptr
;
// complex type
if
(
framework
::
IsComplexType
(
input
.
type
()))
{
lrwork
=
std
::
max
<
int
>
(
1
,
static_cast
<
int
>
(
rwork_opt
));
rwork_data
=
rwork_tensor
.
mutable_data
<
ValueType
>
(
framework
::
make_ddim
({
lrwork
}),
ctx
.
GetPlace
());
}
Tensor
iwork_tensor
,
work_tensor
;
auto
*
iwork_data
=
iwork_tensor
.
mutable_data
<
int
>
(
framework
::
make_ddim
({
liwork
}),
ctx
.
GetPlace
());
auto
*
work_data
=
work_tensor
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
lwork
}),
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
batch_size
;
i
++
)
{
auto
*
value_data
=
out_value
+
i
*
values_stride
;
auto
*
input_data
=
input_vector
+
i
*
vector_stride
;
math
::
lapackEigh
<
T
,
Real
<
T
>>
(
jobz
,
uplo
,
n
,
input_data
,
lda
,
value_data
,
work_data
,
lwork
,
rwork_data
,
lrwork
,
iwork_data
,
liwork
,
&
info
);
CheckEighResult
(
i
,
info
);
}
if
(
has_vectors
)
{
PADDLE_ENFORCE_NOT_NULL
(
eigen_vectors
,
platform
::
errors
::
InvalidArgument
(
"When has_vectors is true,"
"the eigenvectors needs to be calculated, "
"so the eigenvectors must be provided."
));
input_trans
=
dito
.
Transpose
(
input_trans
);
eigen_vectors
->
ShareDataWith
(
input_trans
);
}
}
};
...
...
@@ -168,15 +144,22 @@ struct MatrixEighFunctor<platform::CPUDeviceContext, ValueType, T> {
// Calculates the eigenvalues and eigenvectors of Hermitian or real
// symmetric matrices on GPU, and uses the variable has_vectors
// to control whether to return the eigenvectors.
template
<
typename
ValueType
,
typename
T
>
struct
MatrixEighFunctor
<
platform
::
CUDADeviceContext
,
ValueType
,
T
>
{
template
<
typename
T
>
struct
MatrixEighFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
eigen_values
,
Tensor
*
eigen_vectors
,
bool
is_lower
,
bool
has_vectors
)
{
using
ValueType
=
math
::
Real
<
T
>
;
auto
*
out_value
=
eigen_values
->
mutable_data
<
ValueType
>
(
ctx
.
GetPlace
());
auto
*
out_vector
=
eigen_vectors
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
dito
=
math
::
DeviceIndependenceTensorOperations
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
);
Tensor
input_trans
;
input_trans
=
dito
.
Transpose
(
input
);
auto
*
input_vector
=
input_trans
.
data
<
T
>
();
auto
&
dims
=
input
.
dims
();
int
dim_size
=
dims
.
size
();
int64_t
batch_size
=
GetBatchSize
(
dims
);
...
...
@@ -190,14 +173,6 @@ struct MatrixEighFunctor<platform::CUDADeviceContext, ValueType, T> {
int
lda
=
std
::
max
<
int
>
(
1
,
n
);
auto
vector_stride
=
dims
[
dim_size
-
1
]
*
dims
[
dim_size
-
2
];
auto
values_stride
=
dims
[
dim_size
-
1
];
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
dito
=
math
::
DeviceIndependenceTensorOperations
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
);
Tensor
output_v_var_trans
=
dito
.
Transpose
(
input
);
TensorCopy
(
output_v_var_trans
,
ctx
.
GetPlace
(),
eigen_vectors
);
int
lwork
=
0
;
auto
info
=
memory
::
Alloc
(
dev_ctx
,
sizeof
(
int
)
*
batch_size
);
auto
*
info_ptr
=
reinterpret_cast
<
int
*>
(
info
->
ptr
());
...
...
@@ -205,10 +180,8 @@ struct MatrixEighFunctor<platform::CUDADeviceContext, ValueType, T> {
// When the input type is float32, and the feature value input dimension is
// greater than or equal to [*,32,32] and less than or equal to
// [*,512,512], Syevj has better performance.
bool
use_syevj
=
(
eigen_vectors
->
type
()
==
framework
::
proto
::
VarType
::
FP32
&&
values_stride
>=
32
&&
values_stride
<=
512
);
bool
use_syevj
=
(
input
.
type
()
==
framework
::
proto
::
VarType
::
FP32
&&
values_stride
>=
32
&&
values_stride
<=
512
);
syevjInfo_t
syevj_params
;
if
(
use_syevj
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
...
...
@@ -216,52 +189,52 @@ struct MatrixEighFunctor<platform::CUDADeviceContext, ValueType, T> {
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cusolverDnSsyevj_bufferSize
(
dev_ctx
.
cusolver_dn_handle
(),
jobz
,
uplo
,
n
,
reinterpret_cast
<
const
float
*>
(
o
ut_vector
),
lda
,
reinterpret_cast
<
const
float
*>
(
inp
ut_vector
),
lda
,
reinterpret_cast
<
const
float
*>
(
out_value
),
&
lwork
,
syevj_params
));
}
else
{
EvdBuffer
(
dev_ctx
.
cusolver_dn_handle
(),
jobz
,
uplo
,
n
,
o
ut_vector
,
lda
,
EvdBuffer
(
dev_ctx
.
cusolver_dn_handle
(),
jobz
,
uplo
,
n
,
inp
ut_vector
,
lda
,
out_value
,
&
lwork
);
}
auto
work
=
memory
::
Alloc
(
dev_ctx
,
sizeof
(
T
)
*
lwork
);
auto
*
work_ptr
=
reinterpret_cast
<
T
*>
(
work
->
ptr
());
for
(
auto
i
=
0
;
i
<
batch_size
;
i
++
)
{
auto
vector_data
=
o
ut_vector
+
i
*
vector_stride
;
auto
value_data
=
out_value
+
i
*
values_stride
;
auto
*
input_data
=
inp
ut_vector
+
i
*
vector_stride
;
auto
*
value_data
=
out_value
+
i
*
values_stride
;
auto
handle
=
dev_ctx
.
cusolver_dn_handle
();
if
(
use_syevj
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cusolverDnSsyevj
(
handle
,
jobz
,
uplo
,
n
,
reinterpret_cast
<
float
*>
(
vector
_data
),
lda
,
handle
,
jobz
,
uplo
,
n
,
reinterpret_cast
<
float
*>
(
input
_data
),
lda
,
reinterpret_cast
<
float
*>
(
value_data
),
reinterpret_cast
<
float
*>
(
work_ptr
),
lwork
,
info_ptr
,
syevj_params
));
}
else
{
Evd
(
handle
,
jobz
,
uplo
,
n
,
vector_data
,
lda
,
value_data
,
work_ptr
,
lwork
,
info_ptr
);
Evd
(
handle
,
jobz
,
uplo
,
n
,
input_data
,
lda
,
value_data
,
work_ptr
,
lwork
,
info_ptr
);
}
int
error_info
;
int
error_info
=
0
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
error_info
,
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()),
info_ptr
,
sizeof
(
int
),
dev_ctx
.
stream
());
PADDLE_ENFORCE_EQ
(
error_info
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"For batch [%d]: the [%d] argument had an illegal value"
,
i
,
error_info
));
CheckEighResult
(
i
,
error_info
);
}
if
(
use_syevj
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cusolverDnDestroySyevjInfo
(
syevj_params
));
}
if
(
has_vectors
)
{
*
eigen_vectors
=
dito
.
Transpose
(
*
eigen_vectors
);
PADDLE_ENFORCE_NOT_NULL
(
eigen_vectors
,
platform
::
errors
::
InvalidArgument
(
"When has_vectors is true,"
"the eigenvectors needs to be calculated,"
"so the eigenvectors must be provided."
));
input_trans
=
dito
.
Transpose
(
input_trans
);
eigen_vectors
->
ShareDataWith
(
input_trans
);
}
}
using
ValueType
=
math
::
Real
<
T
>
;
inline
void
EvdBuffer
(
cusolverDnHandle_t
handle
,
cusolverEigMode_t
jobz
,
cublasFillMode_t
uplo
,
int
n
,
const
T
*
A
,
int
lda
,
const
ValueType
*
W
,
int
*
lwork
)
const
;
...
...
@@ -271,15 +244,14 @@ struct MatrixEighFunctor<platform::CUDADeviceContext, ValueType, T> {
T
*
work
,
int
lwork
,
int
*
devInfo
)
const
;
};
#define FUNC_WITH_TYPES(m)
\
m(float,
float, Ssy, float) m(double, double, Dsy, double)
\
m(
float,
paddle::platform::complex<float>, Che, cuComplex) \
m(
double,
paddle::platform::complex<double>, Zhe, cuDoubleComplex)
#define FUNC_WITH_TYPES(m) \
m(float,
Ssy, float) m(double, Dsy, double)
\
m(paddle::platform::complex<float>, Che, cuComplex) \
m(paddle::platform::complex<double>, Zhe, cuDoubleComplex)
#define EVDBUFFER_INSTANCE(
ValueType, T, C, CastType)
\
#define EVDBUFFER_INSTANCE(
T, C, CastType)
\
template <> \
inline void \
MatrixEighFunctor<platform::CUDADeviceContext, ValueType, T>::EvdBuffer( \
inline void MatrixEighFunctor<platform::CUDADeviceContext, T>::EvdBuffer( \
cusolverDnHandle_t handle, cusolverEigMode_t jobz, \
cublasFillMode_t uplo, int n, const T *A, int lda, const ValueType *W, \
int *lwork) const { \
...
...
@@ -291,10 +263,9 @@ struct MatrixEighFunctor<platform::CUDADeviceContext, ValueType, T> {
FUNC_WITH_TYPES
(
EVDBUFFER_INSTANCE
);
#define EVD_INSTANCE(
ValueType, T, C, CastType)
\
#define EVD_INSTANCE(
T, C, CastType)
\
template <> \
inline void \
MatrixEighFunctor<platform::CUDADeviceContext, ValueType, T>::Evd( \
inline void MatrixEighFunctor<platform::CUDADeviceContext, T>::Evd( \
cusolverDnHandle_t handle, cusolverEigMode_t jobz, \
cublasFillMode_t uplo, int n, T *A, int lda, ValueType *W, T *work, \
int lwork, int *devInfo) const { \
...
...
paddle/fluid/operators/math/lapack_function.cc
浏览文件 @
7ff226f0
...
...
@@ -31,6 +31,49 @@ void lapackLu<float>(int m, int n, float *a, int lda, int *ipiv, int *info) {
platform
::
dynload
::
sgetrf_
(
&
m
,
&
n
,
a
,
&
lda
,
ipiv
,
info
);
}
// eigh
template
<
>
void
lapackEigh
<
float
>
(
char
jobz
,
char
uplo
,
int
n
,
float
*
a
,
int
lda
,
float
*
w
,
float
*
work
,
int
lwork
,
float
*
rwork
,
int
lrwork
,
int
*
iwork
,
int
liwork
,
int
*
info
)
{
(
void
)
rwork
;
// unused
(
void
)
lrwork
;
// unused
platform
::
dynload
::
ssyevd_
(
&
jobz
,
&
uplo
,
&
n
,
a
,
&
lda
,
w
,
work
,
&
lwork
,
iwork
,
&
liwork
,
info
);
}
template
<
>
void
lapackEigh
<
double
>
(
char
jobz
,
char
uplo
,
int
n
,
double
*
a
,
int
lda
,
double
*
w
,
double
*
work
,
int
lwork
,
double
*
rwork
,
int
lrwork
,
int
*
iwork
,
int
liwork
,
int
*
info
)
{
(
void
)
rwork
;
// unused
(
void
)
lrwork
;
// unused
platform
::
dynload
::
dsyevd_
(
&
jobz
,
&
uplo
,
&
n
,
a
,
&
lda
,
w
,
work
,
&
lwork
,
iwork
,
&
liwork
,
info
);
}
template
<
>
void
lapackEigh
<
platform
::
complex
<
float
>
,
float
>
(
char
jobz
,
char
uplo
,
int
n
,
platform
::
complex
<
float
>
*
a
,
int
lda
,
float
*
w
,
platform
::
complex
<
float
>
*
work
,
int
lwork
,
float
*
rwork
,
int
lrwork
,
int
*
iwork
,
int
liwork
,
int
*
info
)
{
platform
::
dynload
::
cheevd_
(
&
jobz
,
&
uplo
,
&
n
,
reinterpret_cast
<
std
::
complex
<
float
>
*>
(
a
),
&
lda
,
w
,
reinterpret_cast
<
std
::
complex
<
float
>
*>
(
work
),
&
lwork
,
rwork
,
&
lrwork
,
iwork
,
&
liwork
,
info
);
}
template
<
>
void
lapackEigh
<
platform
::
complex
<
double
>
,
double
>
(
char
jobz
,
char
uplo
,
int
n
,
platform
::
complex
<
double
>
*
a
,
int
lda
,
double
*
w
,
platform
::
complex
<
double
>
*
work
,
int
lwork
,
double
*
rwork
,
int
lrwork
,
int
*
iwork
,
int
liwork
,
int
*
info
)
{
platform
::
dynload
::
zheevd_
(
&
jobz
,
&
uplo
,
&
n
,
reinterpret_cast
<
std
::
complex
<
double
>
*>
(
a
),
&
lda
,
w
,
reinterpret_cast
<
std
::
complex
<
double
>
*>
(
work
),
&
lwork
,
rwork
,
&
lrwork
,
iwork
,
&
liwork
,
info
);
}
// Eig
template
<
>
void
lapackEig
<
double
>
(
char
jobvl
,
char
jobvr
,
int
n
,
double
*
a
,
int
lda
,
...
...
paddle/fluid/operators/math/lapack_function.h
浏览文件 @
7ff226f0
...
...
@@ -20,12 +20,17 @@ namespace math {
// LU (for example)
template
<
typename
T
>
void
lapackLu
(
int
m
,
int
n
,
T
*
a
,
int
lda
,
int
*
ipiv
,
int
*
info
);
void
lapackLu
(
int
m
,
int
n
,
T
*
a
,
int
lda
,
int
*
ipiv
,
int
*
info
);
template
<
typename
T
,
typename
ValueType
=
T
>
void
lapackEigh
(
char
jobz
,
char
uplo
,
int
n
,
T
*
a
,
int
lda
,
ValueType
*
w
,
T
*
work
,
int
lwork
,
ValueType
*
rwork
,
int
lrwork
,
int
*
iwork
,
int
liwork
,
int
*
info
);
template
<
typename
T1
,
typename
T2
=
T1
>
void
lapackEig
(
char
jobvl
,
char
jobvr
,
int
n
,
T1
*
a
,
int
lda
,
T1
*
w
,
T1
*
vl
,
int
ldvl
,
T1
*
vr
,
int
ldvr
,
T1
*
work
,
int
lwork
,
T2
*
rwork
,
int
*
info
);
void
lapackEig
(
char
jobvl
,
char
jobvr
,
int
n
,
T1
*
a
,
int
lda
,
T1
*
w
,
T1
*
vl
,
int
ldvl
,
T1
*
vr
,
int
ldvr
,
T1
*
work
,
int
lwork
,
T2
*
rwork
,
int
*
info
);
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/platform/dynload/lapack.h
浏览文件 @
7ff226f0
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <complex>
#include <mutex>
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/platform/port.h"
...
...
@@ -28,6 +29,22 @@ extern "C" void dgetrf_(int *m, int *n, double *a, int *lda, int *ipiv,
extern
"C"
void
sgetrf_
(
int
*
m
,
int
*
n
,
float
*
a
,
int
*
lda
,
int
*
ipiv
,
int
*
info
);
// evd
extern
"C"
void
zheevd_
(
char
*
jobz
,
char
*
uplo
,
int
*
n
,
std
::
complex
<
double
>
*
a
,
int
*
lda
,
double
*
w
,
std
::
complex
<
double
>
*
work
,
int
*
lwork
,
double
*
rwork
,
int
*
lrwork
,
int
*
iwork
,
int
*
liwork
,
int
*
info
);
extern
"C"
void
cheevd_
(
char
*
jobz
,
char
*
uplo
,
int
*
n
,
std
::
complex
<
float
>
*
a
,
int
*
lda
,
float
*
w
,
std
::
complex
<
float
>
*
work
,
int
*
lwork
,
float
*
rwork
,
int
*
lrwork
,
int
*
iwork
,
int
*
liwork
,
int
*
info
);
extern
"C"
void
dsyevd_
(
char
*
jobz
,
char
*
uplo
,
int
*
n
,
double
*
a
,
int
*
lda
,
double
*
w
,
double
*
work
,
int
*
lwork
,
int
*
iwork
,
int
*
liwork
,
int
*
info
);
extern
"C"
void
ssyevd_
(
char
*
jobz
,
char
*
uplo
,
int
*
n
,
float
*
a
,
int
*
lda
,
float
*
w
,
float
*
work
,
int
*
lwork
,
int
*
iwork
,
int
*
liwork
,
int
*
info
);
// geev
extern
"C"
void
dgeev_
(
char
*
jobvl
,
char
*
jobvr
,
int
*
n
,
double
*
a
,
int
*
lda
,
double
*
wr
,
double
*
wi
,
double
*
vl
,
int
*
ldvl
,
...
...
@@ -81,6 +98,10 @@ extern void *lapack_dso_handle;
#define LAPACK_ROUTINE_EACH(__macro) \
__macro(dgetrf_); \
__macro(sgetrf_); \
__macro(zheevd_); \
__macro(cheevd_); \
__macro(dsyevd_); \
__macro(ssyevd_); \
__macro(dgeev_); \
__macro(sgeev_); \
__macro(zgeev_); \
...
...
python/paddle/__init__.py
浏览文件 @
7ff226f0
...
...
@@ -106,7 +106,6 @@ from .tensor.linalg import slogdet # noqa: F401
from
.tensor.linalg
import
multi_dot
# noqa: F401
from
.tensor.linalg
import
matrix_power
# noqa: F401
from
.tensor.linalg
import
svd
# noqa: F401
from
.tensor.linalg
import
eigh
# noqa: F401
from
.tensor.linalg
import
pinv
# noqa: F401
from
.tensor.linalg
import
solve
# noqa: F401
from
.tensor.logic
import
equal
# noqa: F401
...
...
python/paddle/tensor/linalg.py
浏览文件 @
7ff226f0
...
...
@@ -1759,7 +1759,7 @@ def eigh(x, UPLO='L', name=None):
x_data = np.array([[1, -2j], [2j, 5]])
x = paddle.to_tensor(x_data)
out_value, out_vector = paddle.eigh(x, UPLO='L')
out_value, out_vector = paddle.
linalg.
eigh(x, UPLO='L')
print(out_value)
#[0.17157288, 5.82842712]
print(out_vector)
...
...
@@ -1780,7 +1780,7 @@ def eigh(x, UPLO='L', name=None):
raise
ValueError
(
"The input matrix must be batches of square matrices. But received x's dimention: {}"
.
format
(
x_shape
))
if
UPLO
is
not
'L'
and
UPLO
is
not
'U'
:
if
UPLO
!=
'L'
and
UPLO
!=
'U'
:
raise
ValueError
(
"UPLO must be L or U. But received UPLO is: {}"
.
format
(
UPLO
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录