linalg.py 129.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _varbase_creator, _dygraph_tracer, in_dygraph_mode, _non_static_mode
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
20 21
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
22 23 24
from .math import multiply, add
from .logic import logical_not
from .creation import full
25

A
andyjpaddle 已提交
26
import paddle
27
import warnings
28 29
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
30
from paddle import _C_ops
31

32 33
__all__ = []

34 35 36
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
        return _C_ops.final_state_transpose(x, perm)
    else:
        if _in_legacy_dygraph():
            out, _ = _C_ops.transpose2(x, 'axis', perm)
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
118 119 120 121 122 123 124
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
125 126 127
    return out


S
ShenLiang 已提交
128
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
129
    """
130 131
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
132
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
133

S
ShenLiang 已提交
134 135
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
136 137 138 139 140

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
141 142
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
143 144 145 146 147 148 149 150
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

151 152
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
153
      After the matrix multiply, the prepended dimension is removed.
154 155

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
156 157
      the matrix-vector product is obtained.

158 159 160 161 162 163 164 165 166
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
167
      out will be a (j, k, n, p) tensor.
168 169

    Args:
S
ShenLiang 已提交
170 171
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
172 173 174 175 176 177
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
178
        Tensor: The output Tensor.
179 180 181

    Examples:

C
Chen Long 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
220 221

    """
222 223 224 225 226
    if in_dygraph_mode():
        return _C_ops.final_state_matmul(x, y, transpose_x, transpose_y)

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
W
wanghuancoder 已提交
227
        op = getattr(_C_ops, op_type)
S
ShenLiang 已提交
228 229
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

230
    attrs = {
S
ShenLiang 已提交
231 232
        'trans_x': transpose_x,
        'trans_y': transpose_y,
233 234 235 236 237
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
238
            check_variable_and_dtype(
239 240 241
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
242 243 244

    __check_input(x, y)

S
ShenLiang 已提交
245
    helper = LayerHelper('matmul_v2', **locals())
246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
247 248 249 250 251 252 253
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
254
    return out
Z
Zhang Ting 已提交
255 256


myq406450149's avatar
myq406450149 已提交
257
def norm(x, p='fro', axis=None, keepdim=False, name=None):
258
    """
S
swtkiwi 已提交
259

260 261 262
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

263 264 265 266 267 268
    .. note::
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

269
    Args:
myq406450149's avatar
myq406450149 已提交
270
        x (Tensor): The input tensor could be N-D tensor, and the input data
271
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
272
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
273
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
274
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
275 276
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
277
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
278
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
myq406450149's avatar
myq406450149 已提交
279
            Defalut value is `None`.
280 281 282 283 284 285 286 287
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
288
        Tensor: results of norm operation on the specified axis of input tensor,
289
        it's data type is the same as input's Tensor.
290

291 292
    Examples:
        .. code-block:: python
293

294
            import paddle
myq406450149's avatar
myq406450149 已提交
295 296 297 298 299 300 301 302
            import numpy as np
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

303
            # compute frobenius norm along last two dimensions.
304
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
myq406450149's avatar
myq406450149 已提交
305 306
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

307
            # compute 2-order vector norm along last dimension.
308
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
309 310 311 312
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
313
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
myq406450149's avatar
myq406450149 已提交
314 315 316
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
317
            out_pnorm = paddle.linalg.norm(x, p=np.inf)
myq406450149's avatar
myq406450149 已提交
318
            #out_pnorm.numpy()  = [12.]
319
            out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
320 321 322
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
323
            out_pnorm = paddle.linalg.norm(x, p=-np.inf)
myq406450149's avatar
myq406450149 已提交
324
            #out_pnorm.numpy(): [0.]
325
            out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
326
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
327 328
    """

myq406450149's avatar
myq406450149 已提交
329
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
330 331 332 333 334 335 336 337 338 339 340
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
341 342 343

        if in_dygraph_mode():
            if dim is None:
344 345
                return _C_ops.final_state_frobenius_norm(
                    input, [], keepdim, True)
F
From00 已提交
346 347
            return _C_ops.final_state_frobenius_norm(input, dim, keepdim, False)
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
348
            if dim is None:
W
wanghuancoder 已提交
349 350 351 352
                return _C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                             'reduce_all', True)
            return _C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim', keepdim,
                                         'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
353 354
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
355 356 357 358 359
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
360 361
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
362

363 364 365 366
        helper.append_op(type='frobenius_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
367 368 369 370 371 372
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
373
                    asvector=False,
374 375 376 377 378 379 380 381 382
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
383 384 385 386 387 388
        if in_dygraph_mode():
            if axis is None: axis = -1
            return _C_ops.final_state_p_norm(input, porder, axis, 1e-12,
                                             keepdim, asvector)

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
389
            if axis is None: axis = -1
W
wanghuancoder 已提交
390 391
            return _C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                 'keepdim', keepdim, 'asvector', asvector)
392

393 394 395 396
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
397 398 399
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

400 401 402 403
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
404
            'asvector': asvector,
405 406 407
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
408 409
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
410

411 412 413 414
        helper.append_op(type='p_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
415 416
        return out

myq406450149's avatar
myq406450149 已提交
417 418 419 420 421 422
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
423 424 425 426 427 428 429 430 431 432 433
        if in_dygraph_mode():
            out = _C_ops.final_state_abs(input)
            reduce_all = True if axis == None or axis == [] or asvector == True else False
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
                return _C_ops.final_state_max(out, axis, keepdim)
            else:
                return _C_ops.final_state_min(out, axis, keepdim)

O
OccupyMars2025 已提交
434
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
435 436 437 438 439 440 441 442 443
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

444
        reduce_type = 'reduce_max' if porder == np.float64(
myq406450149's avatar
myq406450149 已提交
445
            'inf') else 'reduce_min'
446 447 448 449 450 451 452 453
        helper.append_op(type=reduce_type,
                         inputs={'X': out},
                         outputs={'Out': reduce_out},
                         attrs={
                             'dim': axis,
                             'keep_dim': keepdim,
                             'reduce_all': reduce_all
                         })
myq406450149's avatar
myq406450149 已提交
454 455 456 457

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
458 459 460 461
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
462 463 464 465 466 467 468
        if in_dygraph_mode():
            abs_out = _C_ops.final_state_abs(input)
            pow_out = _C_ops.final_state_pow(abs_out, porder)
            sum_out = _C_ops.final_state_sum(pow_out, axis, None, keepdim)
            out = _C_ops.final_state_pow(sum_out, float(1. / porder))
            return out

myq406450149's avatar
myq406450149 已提交
469 470 471 472 473
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
474 475 476
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
myq406450149's avatar
myq406450149 已提交
477 478 479
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

480 481 482 483
        block.append_op(type='pow',
                        inputs={'X': abs_out},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
myq406450149's avatar
myq406450149 已提交
484 485
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
486 487 488 489 490 491 492 493 494 495 496 497
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': True if axis is None else False
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
myq406450149's avatar
myq406450149 已提交
498 499
        return out

500 501 502
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
503
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
504 505 506 507
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
508 509 510 511 512 513
            return vector_norm(x,
                               porder=p,
                               axis=axis,
                               keepdim=keepdim,
                               asvector=True,
                               name=name)
514
        else:
515 516 517
            raise ValueError(
                "only valid p type is string or float, found {}".format(
                    type(p)))
518

myq406450149's avatar
myq406450149 已提交
519 520
    if isinstance(axis, tuple):
        axis = list(axis)
521 522 523 524 525
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
526 527
        if isinstance(p, str):
            if p == "fro":
528 529 530 531 532 533
                return vector_norm(x,
                                   porder=2,
                                   axis=axis,
                                   keepdim=keepdim,
                                   asvector=False,
                                   name=name)
myq406450149's avatar
myq406450149 已提交
534 535 536 537 538

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
539 540 541 542 543 544
            return vector_norm(x,
                               axis=axis,
                               porder=p,
                               keepdim=keepdim,
                               asvector=False,
                               name=name)
545 546 547 548 549 550 551
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
552 553 554
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
555 556
        elif p == 0:
            raise ValueError(
557 558
                "just suport axis type int or list (length of list <=1) if p = 0, found {}"
                .format(axis))
559
        else:
560 561 562 563 564
            return p_matrix_norm(x,
                                 porder=p,
                                 axis=axis,
                                 keepdim=keepdim,
                                 name=name)
565 566 567 568 569 570
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


571
def dist(x, y, p=2, name=None):
572
    r"""
S
swtkiwi 已提交
573

Z
Zhang Ting 已提交
574
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
575 576
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
601 602 603 604 605 606 607

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
608
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
609 610 611 612 613

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
614
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
615 616 617 618 619 620 621 622 623 624 625 626

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
627 628
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
629 630 631
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
632
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
633 634 635 636 637 638 639

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

640 641 642 643
            x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")
            y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
644

645 646
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
647

648 649
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
650

651 652
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
653
    """
H
hong 已提交
654 655 656
    if in_dygraph_mode():
        return _C_ops.final_state_dist(x, y, p)

Z
Zhang Ting 已提交
657 658 659 660 661 662 663 664 665
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
666 667 668 669
    helper.append_op(type='dist',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
Z
Zhang Ting 已提交
670
    return out
L
liuwei1031 已提交
671 672


673 674 675 676 677 678
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
679 680
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
735
            # a.numpy()
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

770
        if _non_static_mode():
771
            abs_out = _C_ops.abs(input)
772 773 774 775 776
            if in_dygraph_mode():
                sum_out = _C_ops.final_state_sum(abs_out, axis, None, keepdim)
            else:
                sum_out = _C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                            keepdim, 'reduce_all', reduce_all)
777 778 779 780 781 782 783 784 785 786 787 788 789 790
            if porder == 1 or porder == np.inf:
                return _C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                         keepdim, 'reduce_all', reduce_all)
            if porder == -1 or porder == -np.inf:
                return _C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                         keepdim, 'reduce_all', reduce_all)

        block = LayerHelper('norm', **locals())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
791 792 793 794 795 796 797 798 799 800 801
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
        block.append_op(type='reduce_sum',
                        inputs={'X': abs_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
802
        if porder == 1 or porder == np.inf:
803 804 805 806 807 808 809 810
            block.append_op(type='reduce_max',
                            inputs={'X': sum_out},
                            outputs={'Out': out},
                            attrs={
                                'dim': [-1],
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
811
        if porder == -1 or porder == -np.inf:
812 813 814 815 816 817 818 819
            block.append_op(type='reduce_min',
                            inputs={'X': sum_out},
                            outputs={'Out': out},
                            attrs={
                                'dim': [-1],
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
820 821 822 823 824 825 826 827 828 829
        return out

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

830 831 832 833 834 835
        if in_dygraph_mode():
            pow_out = _C_ops.pow(input, 'factor', porder)
            sum_out_1 = _C_ops.final_state_sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.final_state_sum(sum_out_1, axis, None, keepdim)
            return _C_ops.pow(sum_out_2, 'factor', float(1. / porder))
        elif paddle.in_dynamic_mode():
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
            pow_out = _C_ops.pow(input, 'factor', porder)
            sum_out_1 = _C_ops.reduce_sum(pow_out, 'dim', axis, 'keepdim',
                                          keepdim, 'reduce_all', reduce_all)
            sum_out_2 = _C_ops.reduce_sum(sum_out_1, 'dim', axis, 'keepdim',
                                          keepdim, 'reduce_all', reduce_all)
            return _C_ops.pow(sum_out_2, 'factor', float(1. / porder))

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
        block.append_op(type='pow',
                        inputs={'X': input},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out_1},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_sum',
                        inputs={'X': sum_out_1},
                        outputs={'Out': sum_out_2},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out_2},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
876 877 878 879 880 881 882 883 884 885 886 887 888
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

889
        if _non_static_mode():
890
            if porder == "nuc":
891 892 893 894 895
                if in_dygraph_mode():
                    return _C_ops.final_state_sum(s, axis, None, keepdim)
                else:
                    return _C_ops.reduce_sum(s, 'dim', axis, 'keepdim', keepdim,
                                             'reduce_all', reduce_all)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
            max_out = _C_ops.reduce_max(s, 'dim', axis, 'keepdim', keepdim,
                                        'reduce_all', reduce_all)
            min_out = _C_ops.reduce_min(s, 'dim', axis, 'keepdim', keepdim,
                                        'reduce_all', reduce_all)
            if porder == 2:
                return _C_ops.elementwise_div(max_out, min_out, 'aixs', axis,
                                              'use_mkldnn', False)
            if porder == -2:
                return _C_ops.elementwise_div(min_out, max_out, 'aixs', axis,
                                              'use_mkldnn', False)

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
911 912 913 914 915 916 917 918
            block.append_op(type='reduce_sum',
                            inputs={'X': s},
                            outputs={'Out': out},
                            attrs={
                                'dim': axis,
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
919 920 921 922 923
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
        block.append_op(type='reduce_max',
                        inputs={'X': s},
                        outputs={'Out': max_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_min',
                        inputs={'X': s},
                        outputs={'Out': min_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
940
        if porder == 2:
941 942 943 944 945 946 947 948 949 950
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': max_out,
                                'Y': min_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
951 952
            return out
        if porder == -2:
953 954 955 956 957 958 959 960 961 962
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': min_out,
                                'Y': max_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
963 964 965
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
966
        if paddle.in_dynamic_mode():
967 968 969 970 971
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
972 973 974
        raise ValueError(
            "input should be a matrix or batches of matrices, " +
            "but the dimention of received input is {}".format(len(x_shape)))
975 976 977 978 979 980 981 982 983 984 985 986 987
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
988 989
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
                    x_inv, porder=p, axis=[-2])
990
            if p in (np.inf, -np.inf):
991 992
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
                    x_inv, porder=p, axis=[-1])
993 994 995 996 997 998 999 1000 1001
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1002 1003
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) +
            "1, -1, 2, -2, inf, -inf) or none")
1004 1005


L
liuwei1031 已提交
1006 1007 1008
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1009

L
liuwei1031 已提交
1010
    .. note::
1011 1012
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1013 1014

    Parameters:
S
ShenLiang 已提交
1015 1016
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1017 1018
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1019
    Returns:
1020
        Tensor: the calculated result Tensor.
1021

L
liuwei1031 已提交
1022 1023 1024 1025 1026 1027
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
1028 1029 1030

        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
1031 1032
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
1033
        z = paddle.dot(x, y)
1034
        print(z)
L
liuwei1031 已提交
1035 1036

    """
1037 1038 1039 1040 1041
    if in_dygraph_mode():
        return _C_ops.final_state_dot(x, y)
    if _in_legacy_dygraph():
        return _C_ops.dot(x, y)

L
liuwei1031 已提交
1042
    op_type = 'dot'
1043

L
liuwei1031 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
    helper.append_op(type="dot",
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     attrs={},
                     outputs={"Out": out})
L
liuwei1031 已提交
1066
    return out
1067 1068


Z
zhiboniu 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix 
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1182 1183
def t(input, name=None):
    """
1184 1185
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1186
    the paddle.transpose function which perm dimensions set 0 and 1.
1187

1188
    Args:
1189
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1190
        name(str, optional): The default value is None.  Normally there is no need for
1191 1192
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1193
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1194

1195
    Examples:
1196

1197 1198 1199 1200
        .. code-block:: python
           :name: code-example
             import paddle
             
1201
             # Example 1 (0-D tensor)
1202 1203 1204
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
             
1205
             # Example 2 (1-D tensor)
1206 1207 1208
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1209 1210

             # Example 3 (2-D tensor)
1211 1212 1213 1214 1215 1216 1217 1218
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1219

1220 1221 1222 1223 1224 1225
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
1226 1227 1228 1229 1230 1231 1232 1233 1234
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
        out = _C_ops.final_state_transpose(input, perm)
        return out

    if _in_legacy_dygraph():
1235 1236 1237 1238
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
W
wanghuancoder 已提交
1239
        out, _ = _C_ops.transpose2(input, 'axis', perm)
1240 1241 1242
        return out

    check_variable_and_dtype(
1243 1244
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
1245 1246 1247 1248 1249 1250 1251

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1252 1253 1254 1255 1256 1257 1258
        helper.append_op(type='transpose2',
                         inputs={'X': [input]},
                         outputs={
                             'Out': [out],
                             'XShape': [input_shape]
                         },
                         attrs={'axis': [1, 0]})
1259
    return out
1260 1261


W
wanghuancoder 已提交
1262
def cross(x, y, axis=9, name=None):
1263
    """
1264
    Computes the cross product between two tensors along an axis.
1265

1266 1267
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1268

1269
    Args:
1270 1271
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1272
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1273
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1274 1275

    Returns:
1276
        Tensor. A Tensor with same data type as `x`.
1277

1278 1279
    Examples:
        .. code-block:: python
1280

1281
            import paddle
1282

Z
Zhou Wei 已提交
1283 1284 1285 1286 1287 1288
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1299
    """
J
Jiabin Yang 已提交
1300
    if in_dygraph_mode():
1301
        axis = K_DEFAULT_DIM if axis is None else axis
J
Jiabin Yang 已提交
1302 1303 1304 1305 1306 1307 1308
        return _C_ops.final_state_cross(x, y, axis)
    else:
        if _in_legacy_dygraph():
            if axis is not None:
                return _C_ops.cross(x, y, 'dim', axis)
            else:
                return _C_ops.cross(x, y)
1309
        else:
J
Jiabin Yang 已提交
1310 1311 1312 1313 1314
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1315 1316 1317 1318 1319 1320 1321
            helper.append_op(type='cross',
                             inputs={
                                 'X': x,
                                 'Y': y
                             },
                             outputs={'Out': out},
                             attrs=attrs)
J
Jiabin Yang 已提交
1322
            return out
1323 1324


1325
def cholesky(x, upper=False, name=None):
1326
    r"""
G
Guo Sheng 已提交
1327
    Computes the Cholesky decomposition of one symmetric positive-definite
1328 1329
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1330 1331 1332 1333 1334 1335
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1336
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1337 1338 1339 1340 1341 1342 1343
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
1344
        Tensor: A Tensor with same shape and data type as `x`. It represents \
G
Guo Sheng 已提交
1345
            triangular matrices generated by Cholesky decomposition.
1346

G
Guo Sheng 已提交
1347 1348 1349 1350 1351 1352
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1353 1354 1355
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1356
            x = paddle.to_tensor(x_data)
1357
            out = paddle.linalg.cholesky(x, upper=False)
1358
            print(out)
1359 1360 1361
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1362 1363

    """
H
hong 已提交
1364 1365 1366 1367
    if in_dygraph_mode():
        return _C_ops.final_state_cholesky(x, upper)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1368
        return _C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1369

G
Guo Sheng 已提交
1370 1371 1372 1373
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1374 1375 1376 1377
    helper.append_op(type='cholesky',
                     inputs={'X': [x]},
                     outputs={'Out': out},
                     attrs={'upper': upper})
G
Guo Sheng 已提交
1378 1379 1380
    return out


1381 1382 1383 1384
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1385
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1386
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1387 1388

    Args:
1389 1390 1391 1392
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1393
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1394 1395
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1396
            the lower triangular of the matrix to compute.
1397 1398 1399 1400
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1418

1419
    """
1420 1421 1422 1423 1424 1425 1426
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1427 1428 1429
            return _C_ops.final_state_matrix_rank_tol(x, tol_tensor,
                                                      use_default_tol,
                                                      hermitian)
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
        return _C_ops.final_state_matrix_rank(x, tol_attr, use_default_tol,
                                              hermitian)

    if _in_legacy_dygraph():
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
        return _C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr, 'hermitian',
                                  hermitian, 'use_default_tol', use_default_tol)

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1480 1481 1482 1483
    helper.append_op(type='matrix_rank',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
1484 1485 1486
    return out


1487 1488 1489 1490 1491 1492 1493 1494 1495
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1496 1497
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1498 1499 1500 1501
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1502
        Tensor: The product Tensor.
1503 1504

    Examples:
S
sunzhongkai588 已提交
1505 1506 1507
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1508

S
sunzhongkai588 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1518 1519 1520 1521 1522 1523
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1524

1525
    """
Y
yaoxuefeng 已提交
1526 1527 1528 1529
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1530 1531
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1532 1533
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1534 1535
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1536 1537
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1538 1539
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1540

1541 1542 1543
    if in_dygraph_mode():
        return _C_ops.final_state_bmm(x, y)

Z
zhiboniu 已提交
1544
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1545
        return _C_ops.bmm(x, y)
1546 1547

    helper = LayerHelper('bmm', **locals())
1548 1549 1550
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1551 1552


1553
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1554
    """
1555
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1556 1557 1558
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1559
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1560
            should be float32, float64, int32, int64.
1561 1562 1563 1564
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1565 1566

    Returns:
1567
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1568

1569
    Examples:
Q
Qi Li 已提交
1570
        .. code-block:: python
1571

Q
Qi Li 已提交
1572
            import paddle
1573

1574
            inputs = paddle.to_tensor([1, 2, 1])
1575 1576
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1577
    """
H
hong 已提交
1578 1579 1580 1581
    if in_dygraph_mode():
        return _C_ops.final_state_histogram(input, bins, min, max)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1582
        return _C_ops.histogram(input, "bins", bins, "min", min, "max", max)
Q
Qi Li 已提交
1583 1584

    helper = LayerHelper('histogram', **locals())
1585 1586 1587
    check_variable_and_dtype(input, 'X',
                             ['int32', 'int64', 'float32', 'float64'],
                             'histogram')
Q
Qi Li 已提交
1588
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1589 1590 1591 1592 1593 1594 1595 1596
    helper.append_op(type='histogram',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'bins': bins,
                         'min': min,
                         'max': max
                     })
Q
Qi Li 已提交
1597
    return out
S
smallv0221 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629


def bincount(x, weights=None, minlength=0, name=None):
    """
    Computes frequency of each value in the input tensor. 

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

H
hong 已提交
1630
    if _non_static_mode():
S
smallv0221 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        return _C_ops.bincount(x, weights, "minlength", minlength)

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1644 1645 1646 1647 1648 1649 1650
    helper.append_op(type='bincount',
                     inputs={
                         'X': x,
                         'Weights': weights
                     },
                     outputs={'Out': out},
                     attrs={'minlength': minlength})
S
smallv0221 已提交
1651
    return out
1652 1653 1654 1655 1656 1657 1658


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1659
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1660
            should be one of float32, float64.
F
furnace 已提交
1661
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1677 1678
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1679
            out = paddle.mv(x, vec)
1680 1681 1682
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1683
    """
J
Jiabin Yang 已提交
1684 1685 1686 1687 1688 1689 1690
    if in_dygraph_mode():
        return _C_ops.final_state_mv(x, vec)
    else:
        if _in_legacy_dygraph():
            out = _C_ops.mv(x, vec)
            return out
        else:
1691

J
Jiabin Yang 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1701 1702
                        "x should be 2-dimensional. But received x's dimention: {}"
                        .format(x_shape))
J
Jiabin Yang 已提交
1703 1704
                if len(vec_shape) != 1:
                    raise ValueError(
1705 1706
                        "vec should be 1-dimensional. But received vec's dimention: {}"
                        .format(vec_shape))
J
Jiabin Yang 已提交
1707 1708 1709 1710 1711

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1712 1713 1714 1715 1716 1717
            helper.append_op(type='mv',
                             inputs={
                                 'X': x,
                                 'Vec': vec
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
1718
            return out
1719 1720


1721
def det(x, name=None):
H
huangxu96 已提交
1722 1723 1724 1725 1726 1727 1728 1729
    """
    Calculates determinant value of a square matrix or batches of square matrices.
    Args:
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
                    `(*, n, n)` where `*` is one or more batch dimensions.
    Returns:
        y (Tensor):the determinant value of a square matrix or batches of square matrices.

1730
    Examples:
H
huangxu96 已提交
1731 1732 1733 1734 1735 1736
        .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1737
        A = paddle.linalg.det(x)
H
huangxu96 已提交
1738 1739

        print(A)
1740

H
huangxu96 已提交
1741 1742
        # [ 0.02547996,  2.52317095, -6.15900707])

1743

H
huangxu96 已提交
1744
    """
C
chentianyu03 已提交
1745 1746 1747 1748
    if in_dygraph_mode():
        return _C_ops.final_state_det(x)

    if _in_legacy_dygraph():
1749
        return _C_ops.determinant(x)
H
huangxu96 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1767 1768 1769
    helper.append_op(type='determinant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1770 1771 1772
    return out


1773
def slogdet(x, name=None):
H
huangxu96 已提交
1774 1775 1776
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1777

H
huangxu96 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1789
    Examples:
H
huangxu96 已提交
1790 1791 1792 1793 1794 1795
    .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1796
        A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1797 1798

        print(A)
1799

H
huangxu96 已提交
1800 1801 1802 1803
        # [[ 1.        ,  1.        , -1.        ],
        # [-0.98610914, -0.43010661, -0.10872950]])

    """
1804 1805 1806 1807
    if in_dygraph_mode():
        return _C_ops.final_state_slogdet(x)

    elif paddle.in_dynamic_mode():
1808
        return _C_ops.slogdeterminant(x)
H
huangxu96 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1826 1827 1828
    helper.append_op(type='slogdeterminant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1829 1830 1831
    return out


1832 1833
def svd(x, full_matrices=False, name=None):
    r"""
1834 1835 1836 1837 1838
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1839 1840
        X = U * diag(S) * VT

1841 1842
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1843
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1844 1845 1846 1847
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1848
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1849
            If full_matrices = False, svd op will use a economic method to store U and V.
1850
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1851
        name (str, optional): Name for the operation (optional, default is None).
1852
            For more information, please refer to :ref:`api_guide_Name`.
1853 1854

    Returns:
1855
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1856

1857 1858 1859 1860
    Examples:
        .. code-block:: python

            import paddle
1861 1862 1863

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1864
            u, s, vh = paddle.linalg.svd(x)
1865 1866 1867 1868 1869
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1870
            print (s)
1871
            #S = [8.14753743, 0.78589688]
1872
            print (vh)
1873 1874
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1875

1876
            # one can verify : U * S * VT == X
1877
            #                  U * UH == I
1878
            #                  V * VH == I
1879
    """
1880 1881 1882
    if in_dygraph_mode():
        return _C_ops.final_state_svd(x, full_matrices)
    if _in_legacy_dygraph():
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        return _C_ops.svd(x, 'full_matrices', full_matrices)
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
1895 1896 1897 1898 1899 1900 1901
        outputs={
            'U': u,
            'VH': vh,
            'S': s
        },
        attrs=attrs,
    )
1902 1903 1904
    return u, s, vh


1905 1906 1907
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1908

1909 1910 1911 1912 1913
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1914

1915 1916 1917 1918
    Specifically,

    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power
    of `n`.
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
    the power of `abs(n)`.

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1930
        name (str, optional): Name for the operation (optional, default is None).
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1945
            print(paddle.linalg.matrix_power(x, 2))
1946 1947 1948 1949
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1950
            print(paddle.linalg.matrix_power(x, 0))
1951 1952 1953 1954
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1955
            print(paddle.linalg.matrix_power(x, -2))
1956 1957 1958 1959
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
1960 1961 1962 1963
    if in_dygraph_mode():
        return _C_ops.final_state_matrix_power(x, n)

    if _in_legacy_dygraph():
1964
        return _C_ops.matrix_power(x, "n", n)
1965 1966 1967 1968 1969

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1970 1971 1972 1973
    helper.append_op(type='matrix_power',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'n': n})
1974
    return out
1975 1976


1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
            positive number. The data type of x should be float32 or float64. 
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced". 
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
            If mode = "reduced", qr op will return reduced Q and R matrices, 
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
            If mode = "complete", qr op will return complete Q and R matrices, 
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R. 
        If mode = "r", qr will return a tensor which represents R.
        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
            
            # one can verify : X = Q * R ;     
    """
Y
Yulong Ao 已提交
2019 2020 2021 2022 2023 2024 2025
    if in_dygraph_mode():
        q, r = _C_ops.final_state_qr(x, mode)
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
        q, r = _C_ops.qr(x, 'mode', mode)
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2038 2039 2040 2041 2042 2043 2044
    helper.append_op(type='qr',
                     inputs={'X': [x]},
                     outputs={
                         'Q': q,
                         'R': r
                     },
                     attrs=attrs)
2045 2046 2047 2048 2049 2050
    if mode == "r":
        return r
    else:
        return q, r


2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
    Computes the LU factorization of an N-D(N>=2) matrix x. 

    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and 
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])
    # return ones

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        factorization (Tensor): LU matrix, the factorization of input X.

        pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the 
                    intermediate transpositions of rows. The final permutation `perm` could be 
                    reconstructed by this, details refer to upper example.

        infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2)) 
                    where non-zero values indicate whether factorization for the matrix or each minibatch 
                    has succeeded or failed.

        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
            
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
            # [1., 0., 0.]]), 
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
            # [0.60000000, 0.50000000]]), 
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))
            

            # one can verify : X = P @ L @ U ;     
    """
L
Lin Manhui 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

    if in_dygraph_mode():
        lu, p, info = _C_ops.final_state_lu(x, pivot)
    elif paddle.in_dynamic_mode():
        lu, p, info = _C_ops.lu(x, 'pivot', pivot)
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
        helper.append_op(type='lu',
                         inputs={'X': x},
                         outputs={
                             'Out': lu,
                             'Pivots': p,
                             'Infos': info
                         },
                         attrs=attrs)
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
    Unpack L U and P to single matrix tensor . 
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        P (Tensor): Permutation matrix P of lu factorization.

        L (Tensor): The lower triangular matrix tensor of lu factorization.

        U (Tensor): The upper triangular matrix tensor of lu factorization.

        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
            
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
            # [1., 0., 0.]]), 
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
            # [0.60000000, 0.50000000]]), 
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

            # one can verify : X = P @ L @ U ;   
    """

2226 2227 2228 2229 2230
    if in_dygraph_mode():
        P, L, U = _C_ops.final_state_lu_unpack(x, y, unpack_ludata,
                                               unpack_pivots)
        return P, L, U

Z
zhiboniu 已提交
2231
    if paddle.in_dynamic_mode():
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
        P, L, U = _C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                   'unpack_pivots', unpack_pivots)
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
    helper.append_op(type='lu_unpack',
                     inputs={
                         'X': x,
                         'Pivots': y
                     },
                     outputs={
                         'Pmat': p,
                         'L': l,
                         'U': u
                     },
                     attrs=attrs)
2256 2257 2258
    return p, l, u


L
Lijunhui 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
def eig(x, name=None):
    """
    This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.

    .. note::
        If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        This API is only supported on CPU device.
        The output datatype is always complex for both real and complex input.

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
        name (str, optional): The default value is `None`. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.device.set_device("cpu")

            x_data = np.array([[1.6707249, 7.2249975, 6.5045543],
                               [9.956216,  8.749598,  6.066444 ],
                               [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")
            x = paddle.to_tensor(x_data)
            w, v = paddle.linalg.eig(x)
            print(w)
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

            print(v)
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2307 2308 2309
    if in_dygraph_mode():
        return _C_ops.final_state_eig(x)
    elif paddle.in_dynamic_mode():
L
Lijunhui 已提交
2310 2311 2312
        w, v = _C_ops.eig(x)
        return w, v

2313 2314 2315
    check_variable_and_dtype(x, 'X',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eig')
L
Lijunhui 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2328 2329 2330
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2331 2332 2333

    Warning:
        The gradient kernel of this operator does not yet developed.
2334 2335 2336 2337
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2338
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2339
            Its data type should be float32, float64, complex64, or complex128.
2340
        name (str, optional): Name for the operation (optional, default is None).
2341
            For more information, please refer to :ref:`api_guide_Name`.
2342
            
2343
    Returns:
2344
        Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
2345 2346 2347 2348 2349 2350
            The eigenvalues are complex-valued even when `x` is real.

    Examples:
        .. code-block:: python

            import paddle
2351

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2365 2366
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvals')
2367 2368 2369 2370

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2371 2372
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}"
            .format(len(x_shape), x_shape))
2373 2374 2375

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2376 2377
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}"
            .format(x_shape))
2378

R
Ruibiao Chen 已提交
2379 2380 2381
    if in_dygraph_mode():
        return _C_ops.final_state_eigvals(x)
    elif paddle.in_dynamic_mode():
2382 2383 2384 2385 2386 2387 2388 2389
        return _C_ops.eigvals(x)

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2390 2391 2392 2393
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2394
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        # A * B
        A_data = np.random.random([3, 4]).astype(np.float32)
        B_data = np.random.random([4, 5]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
2436
        out = paddle.linalg.multi_dot([A, B])
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
        print(out.numpy().shape)
        # [3, 5]

        # A * B * C
        A_data = np.random.random([10, 5]).astype(np.float32)
        B_data = np.random.random([5, 8]).astype(np.float32)
        C_data = np.random.random([8, 7]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
        C = paddle.to_tensor(C_data)
2447
        out = paddle.linalg.multi_dot([A, B, C])
2448 2449 2450 2451
        print(out.numpy().shape)
        # [10, 7]

    """
2452
    if _in_legacy_dygraph():
2453
        return _C_ops.multi_dot(x)
2454 2455
    if in_dygraph_mode():
        return _C_ops.final_state_multi_dot(x)
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2470 2471 2472 2473


def eigh(x, UPLO='L', name=None):
    """
2474
    Compute the eigenvalues and eigenvectors of a
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.
        out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
2498
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2499 2500 2501 2502 2503 2504 2505
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2506 2507 2508 2509
    if in_dygraph_mode():
        return _C_ops.final_state_eigh(x, UPLO)

    if _in_legacy_dygraph():
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
        return _C_ops.eigh(x, 'UPLO', UPLO)

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2520 2521
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
2522
        if UPLO != 'L' and UPLO != 'U':
2523 2524 2525 2526 2527 2528
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2529 2530 2531
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigh')
2532 2533 2534 2535

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2536 2537 2538 2539 2540 2541 2542
    helper.append_op(type='eigh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={'UPLO': UPLO})
2543
    return out_value, out_vector
A
andyjpaddle 已提交
2544 2545 2546 2547


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2548
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2559

A
andyjpaddle 已提交
2560 2561 2562
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2563 2564 2565
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2566 2567 2568 2569
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2570 2571 2572 2573
        rcond(Tensor, optional): the tolerance value to determine
            when is a singular value zero. Defalut:1e-15.

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2574
            if complex or symmetric if real. Default: False.
2575 2576

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2577
            the layer will be named automatically.
2578

A
andyjpaddle 已提交
2579
    Returns:
2580
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2581
        pseudo inverse of x. Its shape should be (*, n, m).
2582

A
andyjpaddle 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2609 2610 2611 2612 2613 2614 2615 2616 2617
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
            u, s, vt = _C_ops.final_state_svd(x, False)
            max_singular_val = _C_ops.final_state_max(s, [-1], True)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2618

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
            st = _C_ops.final_state_unsqueeze(singular, [-2])

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = _C_ops.final_state_transpose(vt, perm)

            out_1 = v * st
            out_2 = _C_ops.final_state_matmul(out_1, u, False, True)
            return out_2
        else:
            # combine eigh and matmul op
            s, u = _C_ops.final_state_eigh(x, 'UPLO')
            s_abs = paddle.abs(s)
            max_singular_val = _C_ops.final_state_max(s_abs, [-1], True)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
            st = _C_ops.final_state_unsqueeze(singular, [-2])

            out_1 = u * st
            u_conj = _C_ops.final_state_conj(u)
            out_2 = _C_ops.final_state_matmul(out_1, u_conj, False, True)
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
        if not hermitian:
            # combine svd and matmul op
            u, s, vt = _C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2669 2670 2671 2672 2673
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2674 2675 2676 2677 2678 2679 2680
            st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2])

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v, _ = _C_ops.transpose2(vt, 'axis', perm)

            out_1 = v * st
2681 2682 2683 2684 2685
            if in_dygraph_mode():
                out_2 = _C_ops.final_state_matmul(out_1, u, False, True)
            else:
                out_2 = _C_ops.matmul_v2(out_1, u, 'trans_x', False, 'trans_y',
                                         True)
A
andyjpaddle 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
            return out_2
        else:
            # combine eigh and matmul op
            s, u = _C_ops.eigh(x, 'UPLO', 'L')
            s_abs = paddle.abs(s)
            max_singular_val = _C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2699 2700 2701 2702 2703
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2704 2705 2706 2707
            st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2])

            out_1 = u * st
            u_conj = _C_ops.conj(u)
2708 2709 2710 2711 2712
            if in_dygraph_mode():
                out_2 = _C_ops.final_state_matmul(out_1, u_conj, False, True)
            else:
                out_2 = _C_ops.matmul_v2(out_1, u_conj, 'trans_x', False,
                                         'trans_y', True)
A
andyjpaddle 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2726 2727 2728 2729 2730 2731 2732
                outputs={
                    'U': u,
                    'VH': vt,
                    'S': s
                },
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2733 2734

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2735 2736 2737 2738 2739 2740 2741 2742
            helper.append_op(type='reduce_max',
                             inputs={'X': s},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2743

2744
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2745 2746
            cutoff = rcond * max_singular_val
            y = float('inf')
2747
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2748 2749

            condition = s > cutoff
2750 2751 2752 2753 2754
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2755 2756 2757

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2758 2759 2760 2761 2762 2763 2764
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2765 2766 2767 2768 2769

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2770 2771 2772 2773 2774 2775 2776
            helper.append_op(type='transpose2',
                             inputs={'X': [vt]},
                             outputs={
                                 'Out': [v],
                                 'XShape': [v_shape]
                             },
                             attrs={'axis': perm})
A
andyjpaddle 已提交
2777 2778

            out_1 = helper.create_variable_for_type_inference(dtype)
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': v,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2789 2790 2791 2792 2793
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2794 2795 2796 2797
                inputs={
                    'X': out_1,
                    'Y': u
                },
A
andyjpaddle 已提交
2798
                outputs={'Out': out_2},
2799 2800 2801 2802 2803
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2804 2805 2806 2807 2808
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2809 2810
                x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'],
                'pinv')
A
andyjpaddle 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2821 2822 2823 2824 2825 2826 2827
            helper.append_op(type='eigh',
                             inputs={'X': x},
                             outputs={
                                 'Eigenvalues': s,
                                 'Eigenvectors': u
                             },
                             attrs={'UPLO': 'L'})
A
andyjpaddle 已提交
2828
            s_abs = helper.create_variable_for_type_inference(s_type)
2829 2830 2831
            helper.append_op(type='abs',
                             inputs={'X': s},
                             outputs={'Out': s_abs})
A
andyjpaddle 已提交
2832
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2833 2834 2835 2836 2837 2838 2839 2840
            helper.append_op(type='reduce_max',
                             inputs={'X': s_abs},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2841

2842
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2843 2844
            cutoff = rcond * max_singular_val
            y = float('inf')
2845
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2846 2847

            condition = s_abs > cutoff
2848 2849 2850 2851 2852
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2853 2854 2855

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2856 2857 2858 2859 2860 2861 2862
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2863 2864

            out_1 = helper.create_variable_for_type_inference(dtype)
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': u,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2875 2876 2877
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2878 2879 2880
            helper.append_op(type='conj',
                             inputs={'X': u},
                             outputs={'Out': [u_conj]})
A
andyjpaddle 已提交
2881 2882 2883 2884

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2885 2886 2887 2888
                inputs={
                    'X': out_1,
                    'Y': u_conj
                },
A
andyjpaddle 已提交
2889
                outputs={'Out': out_2},
2890 2891 2892 2893 2894
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2895
            return out_2
W
Weilong Wu 已提交
2896 2897 2898 2899 2900 2901 2902


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2903

W
Weilong Wu 已提交
2904 2905 2906 2907
    .. math::
        Out = X^-1 * Y
    Specifically,
    - This system of linear equations has one solution if and only if input 'X' is invertible.
2908

W
Weilong Wu 已提交
2909 2910 2911 2912 2913
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2914
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2915
            For more information, please refer to :ref:`api_guide_Name`.
2916

W
Weilong Wu 已提交
2917
    Returns:
2918
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2919
        Its data type should be the same as that of `x`.
2920

W
Weilong Wu 已提交
2921 2922
    Examples:
    .. code-block:: python
2923

W
Weilong Wu 已提交
2924 2925 2926
        # a square system of linear equations:
        # 2*X0 + X1 = 9
        # X0 + 2*X1 = 8
2927

W
Weilong Wu 已提交
2928 2929
        import paddle
        import numpy as np
2930

W
Weilong Wu 已提交
2931 2932 2933 2934 2935
        np_x = np.array([[3, 1],[1, 2]])
        np_y = np.array([9, 8])
        x = paddle.to_tensor(np_x, dtype="float64")
        y = paddle.to_tensor(np_y, dtype="float64")
        out = paddle.linalg.solve(x, y)
2936

W
Weilong Wu 已提交
2937 2938 2939
        print(out)
        # [2., 3.])
    """
2940 2941 2942 2943
    if in_dygraph_mode():
        return _C_ops.final_state_solve(x, y)

    if _in_legacy_dygraph():
W
Weilong Wu 已提交
2944 2945 2946 2947 2948 2949 2950 2951
        return _C_ops.solve(x, y)

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2952 2953 2954 2955 2956 2957
    helper.append_op(type="solve",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     outputs={"Out": out})
W
Weilong Wu 已提交
2958
    return out
2959 2960


2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is 
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular 
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed 
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
    .. code-block:: python

        # a square system of linear equations:
        # x1 +   x2  +   x3 = 0
        #      2*x2  +   x3 = -9
        #               -x3 = 5

        import paddle
        import numpy as np

        x = paddle.to_tensor([[1, 1, 1], 
                              [0, 2, 1],
                              [0, 0,-1]], dtype="float64")
        y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.triangular_solve(x, y, upper=True)

        print(out)
        # [7, -2, -5]
    """
H
hong 已提交
3010 3011 3012 3013
    if in_dygraph_mode():
        return _C_ops.final_state_triangular_solve(x, y, upper, transpose,
                                                   unitriangular)

Z
zhiboniu 已提交
3014
    if paddle.in_dynamic_mode():
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
        return _C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                       transpose, 'unitriangular',
                                       unitriangular)

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    helper.append_op(type='triangular_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'upper': upper,
                         'transpose': transpose,
                         'unitriangular': unitriangular
                     })
3036 3037 3038
    return out


Z
zhiboniu 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is 
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
    .. code-block:: python

        import paddle

        u = paddle.to_tensor([[1, 1, 1], 
                                [0, 2, 1],
                                [0, 0,-1]], dtype="float64")
        b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.cholesky_solve(b, u, upper=True)

        print(out)
        # [-2.5, -7, 9.5]
    """
H
hong 已提交
3072 3073 3074 3075
    if in_dygraph_mode():
        return _C_ops.final_state_cholesky_solve(x, y, upper)

    if _in_legacy_dygraph():
Z
zhiboniu 已提交
3076 3077 3078 3079 3080 3081 3082
        return _C_ops.cholesky_solve(x, y, 'upper', upper)

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3083 3084 3085 3086 3087 3088 3089
    helper.append_op(type='cholesky_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={'upper': upper})
Z
zhiboniu 已提交
3090 3091 3092
    return out


3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
def eigvalsh(x, UPLO='L', name=None):
    """
    Computes the eigenvalues of a 
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
            #[0.17157288, 5.82842712]
    """
3120 3121 3122 3123 3124
    if in_dygraph_mode():
        values, _ = _C_ops.final_state_eigvalsh(x, UPLO, x.stop_gradient)
        return values

    elif paddle.in_dynamic_mode():
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
        is_test = x.stop_gradient
        values, _ = _C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3137 3138
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
3139
        if UPLO != 'L' and UPLO != 'U':
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    helper.append_op(type='eigvalsh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={
                         'UPLO': UPLO,
                         'is_test': is_test
                     })
3164
    return out_value
3165 3166


3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y`` 
            should be one of float32, float64.
        rcond(float, optional): The default value is None. A float pointing number used to determine 
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the 
            machine precision of x_dtype.
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For 
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only 
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’ 
            for CUDA inputs.
        name(str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``). 
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals`` 
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed 
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor 
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in 
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with 
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when 
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3227 3228 3229
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3230 3231
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}"
                .format(driver))
3232 3233 3234 3235
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3236 3237
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}"
                .format(driver))
3238 3239 3240 3241
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3255
    if _non_static_mode():
3256 3257 3258
        if in_dygraph_mode():
            solution, residuals, rank, singular_values = _C_ops.final_state_lstsq(
                x, y, rcond, driver)
3259
        else:
3260 3261
            solution, residuals, rank, singular_values = _C_ops.lstsq(
                x, y, 'rcond', rcond, 'driver', driver)
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3272 3273 3274 3275 3276 3277
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
    check_variable_and_dtype(y, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
3278 3279 3280 3281 3282 3283

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3284 3285 3286 3287 3288 3289 3290
    helper.append_op(type='lstsq',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Solution': solution,
3291
                         'Residuals': residuals,
3292 3293 3294 3295 3296 3297 3298
                         'Rank': rank,
                         'SingularValues': singular_values
                     },
                     attrs={
                         'rcond': rcond,
                         'driver': driver
                     })
3299 3300 3301 3302 3303 3304 3305 3306

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334


def corrcoef(x, rowvar=True, name=None):
    """
    
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3335

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
    if (c.ndim == 0):
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3369 3370
        return paddle.complex(paddle.clip(c.real(), -1, 1),
                              paddle.clip(c.imag(), -1, 1))
3371 3372 3373 3374
    else:
        c = paddle.clip(c, -1, 1)

    return c