linalg.py 128.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17 18 19 20

import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc

21 22
from ..fluid.data_feeder import (
    check_dtype,
23 24
    check_type,
    check_variable_and_dtype,
25
)
26
from ..fluid.framework import _in_legacy_dygraph
27 28
from ..framework import LayerHelper, _non_static_mode, in_dygraph_mode
from ..static import Variable
29
from .creation import full
30 31 32
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
33

34 35
__all__ = []

36 37 38
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
91
        return _C_ops.transpose(x, perm)
92 93
    else:
        if _in_legacy_dygraph():
94
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
95 96
            return out

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
112 113 114 115 116 117 118 119
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
120 121
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
122 123 124 125 126
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
127 128
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
129 130 131 132

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
133 134 135 136 137 138
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
139 140 141
    return out


S
ShenLiang 已提交
142
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
143
    """
144 145
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
146
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
147

S
ShenLiang 已提交
148 149
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
150 151 152 153 154

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
155 156
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
157 158 159 160 161 162 163 164
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

165 166
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
167
      After the matrix multiply, the prepended dimension is removed.
168 169

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
170 171
      the matrix-vector product is obtained.

172 173 174 175 176 177 178 179 180
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
181
      out will be a (j, k, n, p) tensor.
182 183

    Args:
S
ShenLiang 已提交
184 185
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
186 187 188
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
189 190 191
            will be named automatically.

    Returns:
S
ShenLiang 已提交
192
        Tensor: The output Tensor.
193 194 195

    Examples:

C
Chen Long 已提交
196 197 198 199 200 201 202 203 204
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
205
            # (1,)
C
Chen Long 已提交
206 207 208 209 210 211

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
212
            # (10,)
C
Chen Long 已提交
213 214 215 216 217 218

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
219
            # (10, 5)
C
Chen Long 已提交
220 221 222 223 224 225

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
226
            # (10, 5, 5)
C
Chen Long 已提交
227 228 229 230 231 232

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
233
            # (10, 3, 5, 5)
234 235

    """
236
    if in_dygraph_mode():
237
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
238 239 240

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
241
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
242 243
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

244
    attrs = {
S
ShenLiang 已提交
245 246
        'trans_x': transpose_x,
        'trans_y': transpose_y,
247 248 249 250 251
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
252
            check_variable_and_dtype(
253 254
                val,
                name,
255
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
256 257
                'matmul',
            )
258 259 260

    __check_input(x, y)

S
ShenLiang 已提交
261
    helper = LayerHelper('matmul_v2', **locals())
262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
263 264 265 266 267 268
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
269
    return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
376
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
377
            if dim is None:
378 379 380 381 382 383
                return _legacy_C_ops.frobenius_norm(
                    input, 'keep_dim', keepdim, 'reduce_all', True
                )
            return _legacy_C_ops.frobenius_norm(
                input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False
            )
myq406450149's avatar
myq406450149 已提交
384 385
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
386
            attrs['reduce_all'] = True
387 388 389
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'frobenius_norm'
        )
390 391

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
392
        out = helper.create_variable_for_type_inference(
393 394
            dtype=helper.input_dtype()
        )
395

396 397 398 399 400 401
        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
402 403
        return out

404 405 406
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
407 408 409 410 411 412 413 414
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
415
        if in_dygraph_mode():
416 417
            if axis is None:
                axis = -1
418
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
419 420

        if _in_legacy_dygraph():
421 422 423 424 425 426 427 428 429 430 431 432 433
            if axis is None:
                axis = -1
            return _legacy_C_ops.p_norm(
                input,
                'porder',
                porder,
                'axis',
                axis,
                'keepdim',
                keepdim,
                'asvector',
                asvector,
            )
434

435 436 437 438
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
439 440 441
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'p_norm'
        )
myq406450149's avatar
myq406450149 已提交
442

443 444 445 446
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
447
            'asvector': asvector,
448 449 450
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
451
        out = helper.create_variable_for_type_inference(
452 453
            dtype=helper.input_dtype()
        )
454

455 456 457 458 459 460
        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
461 462
        return out

463 464 465
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
466
        if in_dygraph_mode():
467
            out = _C_ops.abs(input)
468
            if porder == np.float64('inf'):
469
                return _C_ops.max(out, axis, keepdim)
470
            else:
471
                return _C_ops.min(out, axis, keepdim)
472

O
OccupyMars2025 已提交
473
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
474
        out = helper.create_variable_for_type_inference(
475 476
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
477 478
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
479 480
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
481

482 483
        reduce_all = True if axis is None or axis == [] or asvector else False
        axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
484

485 486 487 488 489 490 491 492 493
        reduce_type = (
            'reduce_max' if porder == np.float64('inf') else 'reduce_min'
        )
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
myq406450149's avatar
myq406450149 已提交
494 495 496

        return reduce_out

497
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
498 499 500 501
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
502
        if in_dygraph_mode():
503 504 505
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
506
            out = _C_ops.pow(sum_out, float(1.0 / porder))
507 508
            return out

myq406450149's avatar
myq406450149 已提交
509 510
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
511 512
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
513
        abs_out = block.create_variable_for_type_inference(
514 515 516 517 518
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
519
        pow_out = block.create_variable_for_type_inference(
520 521
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
522

523 524 525 526 527 528
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
529
        sum_out = block.create_variable_for_type_inference(
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
548 549
        return out

550 551 552
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
553
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
554 555
            else:
                raise ValueError(
556 557
                    "only valid string values are 'fro', found {}".format(p)
                )
558
        elif isinstance(p, (int, float)):
559 560 561 562 563 564 565 566
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
567
        else:
568
            raise ValueError(
569 570
                "only valid p type is string or float, found {}".format(type(p))
            )
571

myq406450149's avatar
myq406450149 已提交
572 573
    if isinstance(axis, tuple):
        axis = list(axis)
574 575 576
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

577
    # calculate vector norm, where axis is int or list with only one integer
578
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
579 580
        if isinstance(p, str):
            if p == "fro":
581 582 583 584 585 586 587 588
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
589 590 591

            else:
                raise ValueError(
592 593
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
594
        elif isinstance(p, (int, float)):
595 596 597 598 599 600 601 602
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
603 604
        else:
            raise ValueError(
605 606 607 608 609
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
610 611
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
612 613 614
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
615 616
        elif p == 0:
            raise ValueError(
617 618 619 620
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
621
        else:
622 623 624
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
625 626
    else:
        raise ValueError(
627 628 629 630
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
631 632


633
def dist(x, y, p=2, name=None):
634
    r"""
S
swtkiwi 已提交
635

636
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
637
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
638
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
663 664 665 666 667 668 669

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
670
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
671 672 673 674 675

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
676
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
677 678 679 680 681 682 683 684 685 686 687 688

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
689 690
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
691
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
692 693
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
694 695

    Returns:
696
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
697 698 699 700 701 702

    Examples:
        .. code-block:: python

            import paddle

703 704
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
705 706
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
707

708 709
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
710

711 712
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
713

714 715
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
716
    """
H
hong 已提交
717
    if in_dygraph_mode():
718
        return _C_ops.dist(x, y, p)
H
hong 已提交
719

Z
Zhang Ting 已提交
720 721 722 723 724 725 726 727 728
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
729 730 731
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
732
    return out
L
liuwei1031 已提交
733 734


735 736 737 738 739 740
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
741 742
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
761 762
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
763 764 765

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
766 767
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
768 769 770

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
771 772
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
773 774 775

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
776 777
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
778 779 780

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
781 782
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
783 784 785

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
786 787
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
788 789 790

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
791 792
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
793 794

            # compute conditional number when order of the norm is inf
795 796 797
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
798 799

            # compute conditional number when order of the norm is -inf
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

816
            a_cond_fro = paddle.linalg.cond(a, p='fro')
817 818 819 820 821 822 823 824 825 826 827 828
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
829
            b_cond_2 = paddle.linalg.cond(b, p=2)
830 831
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
832 833 834

    """

835
    def mat_norm(input, porder=1.0, axis=None):
836 837 838 839 840
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
841 842
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
843
            sum_out = _C_ops.sum(abs_out, axis, None, False)
844 845

            if porder == 1 or porder == np.inf:
846
                return _C_ops.max(sum_out, [-1], False)
847
            if porder == -1 or porder == -np.inf:
848
                return _C_ops.min(sum_out, [-1], False)
849 850

        elif _in_legacy_dygraph():
851 852
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
853
            abs_out = _legacy_C_ops.abs(input)
854 855 856 857 858
            sum_out = _legacy_C_ops.reduce_sum(
                abs_out,
                'dim',
                axis,
                'keepdim',
859
                False,
860 861 862
                'reduce_all',
                reduce_all,
            )
863
            if porder == 1 or porder == np.inf:
864 865 866 867 868
                return _legacy_C_ops.reduce_max(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
869
                    False,
870 871 872
                    'reduce_all',
                    reduce_all,
                )
873
            if porder == -1 or porder == -np.inf:
874 875 876 877 878
                return _legacy_C_ops.reduce_min(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
879
                    False,
880 881 882
                    'reduce_all',
                    reduce_all,
                )
883
        else:
884 885
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
886 887
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
888 889
                dtype=block.input_dtype()
            )
890
            sum_out = block.create_variable_for_type_inference(
891 892
                dtype=block.input_dtype()
            )
893
            out = block.create_variable_for_type_inference(
894 895 896 897 898 899 900 901 902 903 904
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
905
                    'keep_dim': False,
906 907 908
                    'reduce_all': reduce_all,
                },
            )
909
            if porder == 1 or porder == np.inf:
910 911 912 913 914 915
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
916
                        'keep_dim': False,
917 918 919
                        'reduce_all': reduce_all,
                    },
                )
920
            if porder == -1 or porder == -np.inf:
921 922 923 924 925 926
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
927
                        'keep_dim': False,
928 929 930
                        'reduce_all': reduce_all,
                    },
                )
931
            return out
932 933 934 935 936 937

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
938
        if in_dygraph_mode():
939
            pow_out = _C_ops.pow(input, porder)
940 941
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
942
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
943
        elif paddle.in_dynamic_mode():
944
            reduce_all = True if axis is None or axis == [] else False
945
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
946 947 948 949 950
            sum_out_1 = _legacy_C_ops.reduce_sum(
                pow_out,
                'dim',
                axis,
                'keepdim',
951
                False,
952 953 954 955 956 957 958 959
                'reduce_all',
                reduce_all,
            )
            sum_out_2 = _legacy_C_ops.reduce_sum(
                sum_out_1,
                'dim',
                axis,
                'keepdim',
960
                False,
961 962 963 964
                'reduce_all',
                reduce_all,
            )
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1.0 / porder))
965

966
        reduce_all = True if axis is None or axis == [] else False
967 968
        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
969 970
            dtype=block.input_dtype()
        )
971
        sum_out_1 = block.create_variable_for_type_inference(
972 973
            dtype=block.input_dtype()
        )
974
        sum_out_2 = block.create_variable_for_type_inference(
975 976
            dtype=block.input_dtype()
        )
977
        out = block.create_variable_for_type_inference(
978 979 980 981 982 983 984 985 986 987 988 989
            dtype=block.input_dtype()
        )
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
990
            attrs={'dim': axis, 'keep_dim': False, 'reduce_all': reduce_all},
991 992 993 994 995
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
996
            attrs={'dim': axis, 'keep_dim': False, 'reduce_all': reduce_all},
997 998 999 1000 1001 1002 1003
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
1004 1005 1006 1007 1008 1009 1010 1011
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
1012 1013
        if not in_dygraph_mode():
            reduce_all = True if axis is None or axis == [] else False
1014 1015
        u, s, vh = svd(input, full_matrices=False)

1016
        if _non_static_mode():
1017
            if porder == "nuc":
1018
                if in_dygraph_mode():
1019
                    return _C_ops.sum(s, axis, None, False)
1020
                else:
1021 1022 1023 1024 1025
                    return _legacy_C_ops.reduce_sum(
                        s,
                        'dim',
                        axis,
                        'keepdim',
1026
                        False,
1027 1028 1029
                        'reduce_all',
                        reduce_all,
                    )
1030
            if in_dygraph_mode():
1031 1032
                max_out = _C_ops.max(s, axis, False)
                min_out = _C_ops.min(s, axis, False)
1033
                if porder == 2:
1034
                    return _C_ops.divide(max_out, min_out)
1035
                if porder == -2:
1036
                    return _C_ops.divide(min_out, max_out)
1037 1038

            else:
1039
                max_out = _legacy_C_ops.reduce_max(
1040
                    s, 'dim', axis, 'keepdim', False, 'reduce_all', reduce_all
1041 1042
                )
                min_out = _legacy_C_ops.reduce_min(
1043
                    s, 'dim', axis, 'keepdim', False, 'reduce_all', reduce_all
1044
                )
1045 1046
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
1047 1048
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False
                    )
1049 1050
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
1051 1052
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False
                    )
1053 1054 1055

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
1056 1057
            dtype=block.input_dtype()
        )
1058
        if porder == "nuc":
1059 1060 1061 1062 1063 1064
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
1065
                    'keep_dim': False,
1066 1067 1068
                    'reduce_all': reduce_all,
                },
            )
1069 1070
            return out
        max_out = block.create_variable_for_type_inference(
1071 1072
            dtype=block.input_dtype()
        )
1073
        min_out = block.create_variable_for_type_inference(
1074 1075 1076 1077 1078 1079
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
1080
            attrs={'dim': axis, 'keep_dim': False, 'reduce_all': reduce_all},
1081 1082 1083 1084 1085
        )
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
1086
            attrs={'dim': axis, 'keep_dim': False, 'reduce_all': reduce_all},
1087
        )
1088
        if porder == 2:
1089 1090 1091 1092 1093 1094
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out, 'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1095 1096
            return out
        if porder == -2:
1097 1098 1099 1100 1101 1102
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out, 'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1103 1104 1105
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1106
        if paddle.in_dynamic_mode():
1107 1108 1109 1110 1111
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1112
        raise ValueError(
1113 1114 1115
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1116
    if p is None:
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1129
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1130 1131
                    x_inv, porder=p, axis=[-2]
                )
1132
            if p in (np.inf, -np.inf):
1133
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1134 1135
                    x_inv, porder=p, axis=[-1]
                )
1136
        else:
1137 1138 1139 1140
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1141 1142 1143 1144 1145 1146
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1147 1148 1149
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1150 1151


L
liuwei1031 已提交
1152 1153 1154
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1155

1156
    Note:
1157 1158
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1159 1160

    Parameters:
S
ShenLiang 已提交
1161 1162
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1163 1164
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1165
    Returns:
1166
        Tensor: the calculated result Tensor.
1167

L
liuwei1031 已提交
1168 1169 1170 1171 1172
    Examples:

    .. code-block:: python

        import paddle
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1183
        z = paddle.dot(x, y)
1184
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1185 1186

    """
1187 1188
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1189 1190
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1191

L
liuwei1031 已提交
1192
    op_type = 'dot'
1193

L
liuwei1031 已提交
1194 1195 1196
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

1197 1198 1199 1200 1201 1202
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
    )
    check_variable_and_dtype(
        y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
    )
L
liuwei1031 已提交
1203 1204 1205 1206 1207

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1208 1209 1210 1211 1212 1213
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
    helper.append_op(
        type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
    )
L
liuwei1031 已提交
1214
    return out
1215 1216


Z
zhiboniu 已提交
1217 1218 1219 1220 1221
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1222
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1256 1257
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1271 1272
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1273 1274 1275
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1276 1277 1278 1279
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1280 1281 1282
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1283 1284
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1285 1286 1287 1288 1289 1290 1291 1292
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1293 1294 1295 1296 1297
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1298 1299 1300
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1301 1302 1303 1304
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1305 1306 1307
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1308 1309
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1328
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1340 1341
def t(input, name=None):
    """
1342 1343
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1344
    the paddle.transpose function which perm dimensions set 0 and 1.
1345

1346
    Args:
1347
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1348
        name(str, optional): The default value is None.  Normally there is no need for
1349 1350
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1351
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1352

1353
    Examples:
1354

1355 1356 1357
        .. code-block:: python
           :name: code-example
             import paddle
1358

1359
             # Example 1 (0-D tensor)
1360 1361
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1362

1363
             # Example 2 (1-D tensor)
1364 1365 1366
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1367 1368

             # Example 3 (2-D tensor)
1369 1370 1371 1372 1373 1374 1375 1376
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1377

1378 1379 1380 1381 1382
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1383 1384
            "tensor.transpose() instead." % len(input.shape)
        )
1385 1386 1387 1388 1389
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1390
        out = _C_ops.transpose(input, perm)
1391 1392 1393
        return out

    if _in_legacy_dygraph():
1394 1395 1396 1397
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1398
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1399 1400 1401
        return out

    check_variable_and_dtype(
1402 1403 1404 1405 1406
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose',
    )
1407 1408 1409 1410 1411 1412 1413

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1414 1415 1416 1417 1418 1419
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': [1, 0]},
        )
1420
    return out
1421 1422


W
wanghuancoder 已提交
1423
def cross(x, y, axis=9, name=None):
1424
    """
1425
    Computes the cross product between two tensors along an axis.
1426

1427 1428
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1429

1430
    Args:
1431 1432
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1433
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1434
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1435 1436

    Returns:
1437
        Tensor. A Tensor with same data type as `x`.
1438

1439 1440
    Examples:
        .. code-block:: python
1441

1442
            import paddle
1443

Z
Zhou Wei 已提交
1444 1445 1446 1447 1448 1449
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1460
    """
J
Jiabin Yang 已提交
1461
    if in_dygraph_mode():
1462
        axis = K_DEFAULT_DIM if axis is None else axis
1463
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1464 1465 1466
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1467
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1468
            else:
1469
                return _legacy_C_ops.cross(x, y)
1470
        else:
J
Jiabin Yang 已提交
1471 1472 1473 1474 1475
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1476 1477 1478 1479 1480 1481
            helper.append_op(
                type='cross',
                inputs={'X': x, 'Y': y},
                outputs={'Out': out},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1482
            return out
1483 1484


1485
def cholesky(x, upper=False, name=None):
1486
    r"""
G
Guo Sheng 已提交
1487
    Computes the Cholesky decomposition of one symmetric positive-definite
1488 1489
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1490 1491 1492 1493 1494 1495
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1496
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1497 1498 1499 1500 1501
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1502 1503
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1504 1505

    Returns:
1506 1507
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1508

G
Guo Sheng 已提交
1509 1510 1511 1512 1513
    Examples:
        .. code-block:: python

            import paddle

1514 1515 1516 1517
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1518
            out = paddle.linalg.cholesky(x, upper=False)
1519
            print(out)
G
Guo Sheng 已提交
1520
    """
H
hong 已提交
1521
    if in_dygraph_mode():
1522
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1523 1524

    if _in_legacy_dygraph():
1525
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1526

G
Guo Sheng 已提交
1527 1528 1529 1530
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1531 1532 1533 1534 1535 1536
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
G
Guo Sheng 已提交
1537 1538 1539
    return out


1540 1541 1542 1543
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1544
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1545
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1546 1547

    Args:
1548 1549 1550 1551
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1552
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1553 1554
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1555
            the lower triangular of the matrix to compute.
1556 1557 1558 1559
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1577

1578
    """
1579 1580 1581 1582 1583 1584 1585
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1586 1587 1588
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1589

1590 1591 1592 1593 1594 1595
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1596
        return _C_ops.matrix_rank(x, tol_attr, hermitian, use_default_tol)
1597 1598

    if _in_legacy_dygraph():
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        return _legacy_C_ops.matrix_rank(
            x,
            tol_tensor,
            "tol",
            tol_attr,
            'hermitian',
            hermitian,
            'use_default_tol',
            use_default_tol,
        )
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1646 1647 1648
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1649 1650 1651
    return out


1652 1653 1654 1655 1656 1657 1658 1659 1660
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1661 1662
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1663 1664 1665 1666
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1667
        Tensor: The product Tensor.
1668 1669

    Examples:
S
sunzhongkai588 已提交
1670 1671 1672
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1673

S
sunzhongkai588 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1683 1684 1685 1686 1687 1688
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1689

1690
    """
Y
yaoxuefeng 已提交
1691 1692 1693 1694
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1695 1696 1697 1698
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1699 1700
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1701 1702 1703 1704
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1705 1706
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1707 1708 1709 1710
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1711

1712
    if in_dygraph_mode():
1713
        return _C_ops.bmm(x, y)
1714

Z
zhiboniu 已提交
1715
    if paddle.in_dynamic_mode():
1716
        return _legacy_C_ops.bmm(x, y)
1717 1718

    helper = LayerHelper('bmm', **locals())
1719 1720 1721
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1722 1723


1724
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1725
    """
1726
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1727 1728 1729
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1730
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1731
            should be float32, float64, int32, int64.
1732 1733 1734 1735
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1736 1737

    Returns:
1738
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1739

1740
    Examples:
Q
Qi Li 已提交
1741
        .. code-block:: python
1742

Q
Qi Li 已提交
1743
            import paddle
1744

1745
            inputs = paddle.to_tensor([1, 2, 1])
1746 1747
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1748
    """
H
hong 已提交
1749
    if in_dygraph_mode():
1750
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1751 1752

    if _in_legacy_dygraph():
1753 1754 1755
        return _legacy_C_ops.histogram(
            input, "bins", bins, "min", min, "max", max
        )
Q
Qi Li 已提交
1756 1757

    helper = LayerHelper('histogram', **locals())
1758 1759 1760
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
    )
Q
Qi Li 已提交
1761
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1762 1763 1764 1765 1766 1767
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins, 'min': min, 'max': max},
    )
Q
Qi Li 已提交
1768
    return out
S
smallv0221 已提交
1769 1770 1771 1772


def bincount(x, weights=None, minlength=0, name=None):
    """
1773
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1801 1802 1803
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1804
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1805 1806 1807 1808 1809 1810

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
1811 1812 1813 1814 1815 1816
        check_variable_and_dtype(
            weights,
            'Weights',
            ['int32', 'int64', 'float32', 'float64'],
            'bincount',
        )
S
smallv0221 已提交
1817 1818 1819
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1820 1821 1822 1823 1824 1825
    helper.append_op(
        type='bincount',
        inputs={'X': x, 'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength},
    )
S
smallv0221 已提交
1826
    return out
1827 1828 1829 1830 1831 1832 1833


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1834
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1835
            should be one of float32, float64.
F
furnace 已提交
1836
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1852 1853
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1854
            out = paddle.mv(x, vec)
1855 1856 1857
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1858
    """
J
Jiabin Yang 已提交
1859
    if in_dygraph_mode():
1860
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1861 1862
    else:
        if _in_legacy_dygraph():
1863
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1864 1865
            return out
        else:
1866

J
Jiabin Yang 已提交
1867 1868 1869
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
1870 1871 1872
                    check_variable_and_dtype(
                        val, name, ['float32', 'float64'], 'mv'
                    )
J
Jiabin Yang 已提交
1873 1874 1875 1876
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1877 1878 1879 1880
                        "x should be 2-dimensional. But received x's dimention: {}".format(
                            x_shape
                        )
                    )
J
Jiabin Yang 已提交
1881 1882
                if len(vec_shape) != 1:
                    raise ValueError(
1883 1884 1885 1886
                        "vec should be 1-dimensional. But received vec's dimention: {}".format(
                            vec_shape
                        )
                    )
J
Jiabin Yang 已提交
1887 1888 1889 1890 1891

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1892 1893 1894
            helper.append_op(
                type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
            )
J
Jiabin Yang 已提交
1895
            return out
1896 1897


1898
def det(x, name=None):
H
huangxu96 已提交
1899
    """
1900

H
huangxu96 已提交
1901
    Calculates determinant value of a square matrix or batches of square matrices.
1902

H
huangxu96 已提交
1903
    Args:
1904
        x (Tensor): the input matrix of size `(n, n)` or the
1905 1906
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1907 1908
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1909

H
huangxu96 已提交
1910
    Returns:
1911
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1912

1913
    Examples:
H
huangxu96 已提交
1914 1915
        .. code-block:: python

1916
            import paddle
H
huangxu96 已提交
1917

1918
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1919

1920
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1921

1922
            print(A)
1923

1924
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1925

1926

H
huangxu96 已提交
1927
    """
C
chentianyu03 已提交
1928
    if in_dygraph_mode():
1929
        return _C_ops.det(x)
C
chentianyu03 已提交
1930 1931

    if _in_legacy_dygraph():
1932
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1933 1934 1935 1936

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
1937 1938 1939 1940
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1941

1942 1943 1944 1945 1946 1947
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1948 1949 1950
    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1951 1952 1953
    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1954 1955 1956
    return out


1957
def slogdet(x, name=None):
H
huangxu96 已提交
1958
    """
1959

H
huangxu96 已提交
1960
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1961
    The determinant can be computed with ``sign * exp`` (logabsdet)
1962

H
huangxu96 已提交
1963 1964 1965
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1966

H
huangxu96 已提交
1967 1968 1969 1970 1971
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1972
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1973 1974
        of the absolute value of determinant, respectively.

1975
    Examples:
1976
        .. code-block:: python
H
huangxu96 已提交
1977

1978
            import paddle
H
huangxu96 已提交
1979

1980
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1981

1982
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1983

1984
            print(A)
1985

1986 1987
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1988 1989

    """
1990
    if in_dygraph_mode():
1991
        return _C_ops.slogdet(x)
1992 1993

    elif paddle.in_dynamic_mode():
1994
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1995 1996 1997 1998

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
1999 2000 2001 2002
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
2003

2004 2005 2006 2007 2008 2009
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
2010 2011 2012
    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2013 2014 2015
    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
2016 2017 2018
    return out


2019 2020
def svd(x, full_matrices=False, name=None):
    r"""
2021 2022 2023 2024 2025
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
2026 2027
        X = U * diag(S) * VT

2028 2029
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
2030
            where `...` is zero or more batch dimensions. N and M can be arbitraty
2031 2032
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
2033
        full_matrices (bool, optional): A flag to control the behavor of svd.
2034
            If full_matrices = True, svd op will compute full U and V matrics,
2035
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
2036
            If full_matrices = False, svd op will use a economic method to store U and V.
2037
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
2038
            Default value is False.
2039
        name (str, optional): Name for the operation (optional, default is None).
2040
            For more information, please refer to :ref:`api_guide_Name`.
2041 2042

    Returns:
Z
Zman 已提交
2043 2044 2045 2046 2047
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2048

2049 2050 2051 2052
    Examples:
        .. code-block:: python

            import paddle
2053 2054 2055

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
2056
            u, s, vh = paddle.linalg.svd(x)
2057 2058 2059 2060 2061
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

2062
            print (s)
2063
            #S = [8.14753743, 0.78589688]
2064
            print (vh)
2065 2066
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
2067

2068
            # one can verify : U * S * VT == X
2069
            #                  U * UH == I
2070
            #                  V * VH == I
2071
    """
2072
    if in_dygraph_mode():
2073
        return _C_ops.svd(x, full_matrices)
2074
    if _in_legacy_dygraph():
2075
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
2087
        outputs={'U': u, 'VH': vh, 'S': s},
2088 2089
        attrs=attrs,
    )
2090 2091 2092
    return u, s, vh


2093 2094
def matrix_power(x, n, name=None):
    r"""
2095

2096
    Computes the n-th power of a square matrix or a batch of square matrices.
2097

2098 2099 2100 2101 2102
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2103

2104 2105
    Specifically,

2106
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
2107

2108 2109
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

2110
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
2111 2112 2113 2114 2115 2116

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2117
        name (str, optional): Name for the operation (optional, default is None).
2118 2119 2120
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2121 2122
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
2123 2124 2125 2126 2127 2128 2129 2130 2131

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2132
            print(paddle.linalg.matrix_power(x, 2))
2133 2134 2135 2136
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2137
            print(paddle.linalg.matrix_power(x, 0))
2138 2139 2140 2141
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2142
            print(paddle.linalg.matrix_power(x, -2))
2143 2144 2145 2146
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2147
    if in_dygraph_mode():
2148
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2149 2150

    if _in_legacy_dygraph():
2151
        return _legacy_C_ops.matrix_power(x, "n", n)
2152 2153 2154 2155 2156

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2157 2158 2159 2160 2161 2162
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n},
    )
2163
    return out
2164 2165


2166 2167 2168 2169 2170 2171 2172
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2173 2174
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2175
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2176
            If mode = "reduced", qr op will return reduced Q and R matrices,
2177
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2178
            If mode = "complete", qr op will return complete Q and R matrices,
2179 2180 2181 2182 2183
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2184

2185
    Returns:
2186
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2187
        If mode = "r", qr will return a tensor which represents R.
2188 2189

    Examples:
2190 2191
        .. code-block:: python

2192
            import paddle
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2205 2206

            # one can verify : X = Q * R ;
2207
    """
Y
Yulong Ao 已提交
2208
    if in_dygraph_mode():
2209
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2210 2211 2212 2213 2214
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2215
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2227 2228 2229
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
    )
2230 2231 2232 2233 2234 2235
    if mode == "r":
        return r
    else:
        return q, r


2236 2237
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2238
    Computes the LU factorization of an N-D(N>=2) matrix x.
2239

2240
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2241 2242 2243 2244
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2245 2246 2247 2248 2249 2250

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2262

2263
    Returns:
2264
        factorization (Tensor), LU matrix, the factorization of input X.
2265

2266 2267 2268
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2269

2270 2271 2272
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2273

2274 2275

    Examples:
2276 2277
        .. code-block:: python

2278
            import paddle
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2294

2295 2296 2297 2298 2299 2300
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2301
            # [1., 0., 0.]]),
2302 2303 2304 2305
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2306
            # [0.60000000, 0.50000000]]),
2307 2308 2309 2310 2311
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2312 2313

            # one can verify : X = P @ L @ U ;
2314
    """
L
Lin Manhui 已提交
2315 2316

    if in_dygraph_mode():
2317
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2318
    elif paddle.in_dynamic_mode():
2319
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2320 2321 2322 2323 2324 2325 2326 2327
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2328 2329 2330 2331 2332 2333
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2334 2335 2336 2337 2338 2339 2340 2341
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2342
    Unpack L U and P to single matrix tensor .
2343 2344 2345
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2346 2347 2348 2349 2350

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2364

2365
    Returns:
2366
        P (Tensor), Permutation matrix P of lu factorization.
2367

2368
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2369

2370
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2371

2372 2373

    Examples:
2374 2375
        .. code-block:: python

2376
            import paddle
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2392

2393 2394 2395 2396 2397 2398
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2399
            # [1., 0., 0.]]),
2400 2401 2402 2403
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2404
            # [0.60000000, 0.50000000]]),
2405 2406 2407 2408 2409
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2410
            # one can verify : X = P @ L @ U ;
2411 2412
    """

2413
    if in_dygraph_mode():
2414
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2415 2416
        return P, L, U

Z
zhiboniu 已提交
2417
    if paddle.in_dynamic_mode():
2418 2419 2420
        P, L, U = _legacy_C_ops.lu_unpack(
            x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots
        )
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2432 2433 2434 2435 2436 2437
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x, 'Pivots': y},
        outputs={'Pmat': p, 'L': l, 'U': u},
        attrs=attrs,
    )
2438 2439 2440
    return p, l, u


L
Lijunhui 已提交
2441 2442
def eig(x, name=None):
    """
2443
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2444

2445 2446 2447 2448 2449 2450
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2451 2452 2453 2454

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2455
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2469
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2470
                               [9.956216,  8.749598,  6.066444 ],
2471
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2472
            w, v = paddle.linalg.eig(x)
2473
            print(v)
L
Lijunhui 已提交
2474 2475 2476 2477 2478 2479 2480 2481
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2482
            print(w)
L
Lijunhui 已提交
2483 2484 2485 2486
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2487
    if in_dygraph_mode():
2488
        return _C_ops.eig(x)
2489
    elif paddle.in_dynamic_mode():
2490
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2491 2492
        return w, v

2493 2494 2495
    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
    )
L
Lijunhui 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2508 2509 2510
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2511 2512 2513

    Warning:
        The gradient kernel of this operator does not yet developed.
2514 2515 2516 2517
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2518
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2519
            Its data type should be float32, float64, complex64, or complex128.
2520
        name (str, optional): Name for the operation (optional, default is None).
2521
            For more information, please refer to :ref:`api_guide_Name`.
2522

2523
    Returns:
2524 2525
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2526 2527 2528 2529 2530

    Examples:
        .. code-block:: python

            import paddle
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

2544 2545 2546
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2547 2548 2549 2550

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2551 2552 2553 2554
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2555 2556 2557

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2558 2559 2560 2561
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2562

R
Ruibiao Chen 已提交
2563
    if in_dygraph_mode():
2564
        return _C_ops.eigvals(x)
2565 2566
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2567 2568 2569 2570 2571 2572 2573

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2574 2575 2576 2577
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2578
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2615 2616
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2617
        out = paddle.linalg.multi_dot([A, B])
2618
        print(out.shape)
2619 2620 2621
        # [3, 5]

        # A * B * C
2622 2623 2624
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2625
        out = paddle.linalg.multi_dot([A, B, C])
2626
        print(out.shape)
2627 2628 2629
        # [10, 7]

    """
2630
    if _in_legacy_dygraph():
2631
        return _legacy_C_ops.multi_dot(x)
2632
    if in_dygraph_mode():
2633
        return _C_ops.multi_dot(x)
2634 2635 2636

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
2637 2638 2639 2640 2641 2642
        check_variable_and_dtype(
            item,
            'x[' + str(id) + ']',
            ['float16', 'float32', 'float64'],
            'multi_dot',
        )
2643 2644
        if item.dtype != x[0].dtype:
            raise TypeError(
2645 2646
                "All the Tensors in the input must have the same data type."
            )
2647 2648 2649 2650 2651 2652

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2653 2654 2655 2656


def eigh(x, UPLO='L', name=None):
    """
2657
    Compute the eigenvalues and eigenvectors of a
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2669 2670 2671 2672
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2673 2674 2675 2676 2677 2678

    Examples:
        .. code-block:: python

            import paddle

2679
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2680
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2681 2682 2683 2684 2685 2686 2687
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2688
    if in_dygraph_mode():
2689
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2690 2691

    if _in_legacy_dygraph():
2692
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2693 2694 2695 2696 2697 2698

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
2699 2700
                "length of Input(input) is %s." % len(x.shape)
            )
2701 2702
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2703 2704 2705 2706
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
2707
        if UPLO != 'L' and UPLO != 'U':
2708
            raise ValueError(
2709 2710
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
2711 2712 2713 2714

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2715 2716 2717
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh'
    )
2718 2719 2720 2721

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2722 2723 2724 2725 2726 2727
    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO},
    )
2728
    return out_value, out_vector
A
andyjpaddle 已提交
2729 2730 2731 2732


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2733
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2744

A
andyjpaddle 已提交
2745 2746 2747
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2748 2749 2750
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2751 2752 2753 2754
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2755
        rcond(Tensor, optional): the tolerance value to determine
2756
            when is a singular value zero. Default:1e-15.
2757 2758

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2759
            if complex or symmetric if real. Default: False.
2760 2761

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2762
            the layer will be named automatically.
2763

A
andyjpaddle 已提交
2764
    Returns:
2765
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2766
        pseudo inverse of x. Its shape should be (*, n, m).
2767

A
andyjpaddle 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2794 2795 2796
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2797 2798
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2799 2800 2801 2802
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2803

2804 2805 2806 2807 2808 2809
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2810
            st = _C_ops.unsqueeze(singular, [-2])
2811 2812 2813

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2814
            v = _C_ops.transpose(vt, perm)
2815 2816

            out_1 = v * st
2817
            out_2 = _C_ops.matmul(out_1, u, False, True)
2818 2819 2820
            return out_2
        else:
            # combine eigh and matmul op
2821
            s, u = _C_ops.eigh(x, 'UPLO')
2822
            s_abs = paddle.abs(s)
2823
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2835
            st = _C_ops.unsqueeze(singular, [-2])
2836 2837

            out_1 = u * st
2838 2839
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2840 2841 2842
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2843 2844
        if not hermitian:
            # combine svd and matmul op
2845
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
2846 2847 2848
            max_singular_val = _legacy_C_ops.reduce_max(
                s, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2849 2850 2851 2852 2853 2854
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2855 2856 2857 2858 2859
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2860
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2861 2862 2863

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2864
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2865 2866

            out_1 = v * st
2867
            if in_dygraph_mode():
2868
                out_2 = _C_ops.matmul(out_1, u, False, True)
2869
            else:
2870 2871 2872
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2873 2874 2875
            return out_2
        else:
            # combine eigh and matmul op
2876
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2877
            s_abs = paddle.abs(s)
2878 2879 2880
            max_singular_val = _legacy_C_ops.reduce_max(
                s_abs, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2881 2882 2883 2884 2885 2886
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2887 2888 2889 2890 2891
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2892
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2893 2894

            out_1 = u * st
2895
            u_conj = _legacy_C_ops.conj(u)
2896
            if in_dygraph_mode():
2897
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2898
            else:
2899 2900 2901
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u_conj, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2915
                outputs={'U': u, 'VH': vt, 'S': s},
2916 2917
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2918 2919

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2920 2921 2922 2923 2924 2925
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2926

2927
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2928 2929
            cutoff = rcond * max_singular_val
            y = float('inf')
2930
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2931 2932

            condition = s > cutoff
2933 2934 2935 2936 2937
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2938 2939 2940

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2941 2942 2943 2944 2945 2946
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2947 2948 2949 2950 2951

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2952 2953 2954 2955 2956 2957
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2958 2959

            out_1 = helper.create_variable_for_type_inference(dtype)
2960 2961 2962 2963 2964 2965
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2966 2967 2968 2969 2970
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2971
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2972
                outputs={'Out': out_2},
2973
                attrs={'trans_x': False, 'trans_y': True},
2974
            )
A
andyjpaddle 已提交
2975 2976 2977 2978 2979
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2980 2981 2982 2983 2984
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2995 2996 2997 2998 2999 3000
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
3001
            s_abs = helper.create_variable_for_type_inference(s_type)
3002 3003 3004
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
3005
            max_singular_val = helper.create_variable_for_type_inference(s_type)
3006 3007 3008 3009 3010 3011
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
3012

3013
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
3014 3015
            cutoff = rcond * max_singular_val
            y = float('inf')
3016
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
3017 3018

            condition = s_abs > cutoff
3019 3020 3021 3022 3023
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
3024 3025 3026

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
3027 3028 3029 3030 3031 3032
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3033 3034

            out_1 = helper.create_variable_for_type_inference(dtype)
3035 3036 3037 3038 3039 3040
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3041 3042 3043
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
3044 3045 3046
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3047 3048 3049 3050

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
3051
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3052
                outputs={'Out': out_2},
3053
                attrs={'trans_x': False, 'trans_y': True},
3054
            )
A
andyjpaddle 已提交
3055
            return out_2
W
Weilong Wu 已提交
3056 3057 3058 3059


def solve(x, y, name=None):
    r"""
3060

W
Weilong Wu 已提交
3061
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
3062
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
3063
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3064

W
Weilong Wu 已提交
3065 3066
    .. math::
        Out = X^-1 * Y
3067 3068

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
3069

W
Weilong Wu 已提交
3070
    Args:
3071
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
3072
            more batch dimensions. Its data type should be float32 or float64.
3073
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
3074
            more batch dimensions. Its data type should be float32 or float64.
3075
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3076
            For more information, please refer to :ref:`api_guide_Name`.
3077

W
Weilong Wu 已提交
3078
    Returns:
3079
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3080
        Its data type should be the same as that of `x`.
3081

W
Weilong Wu 已提交
3082
    Examples:
3083

3084
        .. code-block:: python
3085

3086 3087 3088
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
3089

3090 3091 3092 3093 3094
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
3095

3096 3097
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
3098
    """
3099
    if in_dygraph_mode():
3100
        return _C_ops.solve(x, y)
3101 3102

    if _in_legacy_dygraph():
3103
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
3104 3105 3106 3107 3108 3109 3110

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3111 3112 3113
    helper.append_op(
        type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
    )
W
Weilong Wu 已提交
3114
    return out
3115 3116


3117 3118 3119
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3120
    r"""
3121 3122
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3136 3137 3138 3139

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3140
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3141
            zero or more batch dimensions. Its data type should be float32 or float64.
3142
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3143 3144
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3145
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3146 3147 3148 3149 3150 3151 3152 3153
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3154
        .. code-block:: python
3155

3156 3157 3158 3159
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3160

3161 3162 3163 3164 3165 3166
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3167

3168 3169
            print(out)
            # [7, -2, -5]
3170
    """
H
hong 已提交
3171
    if in_dygraph_mode():
3172
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3173

Z
zhiboniu 已提交
3174
    if paddle.in_dynamic_mode():
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
        return _legacy_C_ops.triangular_solve(
            x,
            y,
            'upper',
            upper,
            'transpose',
            transpose,
            'unitriangular',
            unitriangular,
        )
3185 3186 3187 3188 3189 3190 3191

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
    helper.append_op(
        type='triangular_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular,
        },
    )
3202 3203 3204
    return out


Z
zhiboniu 已提交
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3215
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3225
        .. code-block:: python
Z
zhiboniu 已提交
3226

3227
            import paddle
Z
zhiboniu 已提交
3228

3229 3230 3231 3232 3233
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3234

3235 3236
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3237
    """
H
hong 已提交
3238
    if in_dygraph_mode():
3239
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3240 3241

    if _in_legacy_dygraph():
3242
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3243 3244 3245 3246 3247 3248

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3249 3250 3251 3252 3253 3254
    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
Z
zhiboniu 已提交
3255 3256 3257
    return out


3258 3259
def eigvalsh(x, UPLO='L', name=None):
    """
3260
    Computes the eigenvalues of a
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3278
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3279 3280
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3281 3282
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3283
    """
3284
    if in_dygraph_mode():
3285
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3286 3287 3288
        return values

    elif paddle.in_dynamic_mode():
3289
        is_test = x.stop_gradient
3290
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3291 3292 3293 3294 3295 3296 3297
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
3298 3299
                "length of Input(input) is %s." % len(x.shape)
            )
3300 3301
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3302 3303 3304 3305
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
3306
        if UPLO != 'L' and UPLO != 'U':
3307
            raise ValueError(
3308 3309
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
3310 3311 3312 3313

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
3314 3315 3316 3317 3318 3319
    check_variable_and_dtype(
        x,
        'dtype',
        ['float32', 'float64', 'complex64', 'complex128'],
        'eigvalsh',
    )
3320 3321 3322 3323 3324

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3325 3326 3327 3328 3329 3330
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO, 'is_test': is_test},
    )
3331
    return out_value
3332 3333


3334 3335 3336 3337 3338 3339 3340 3341
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3342
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3343
            should be one of float32, float64.
3344 3345
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3346
            machine precision of x_dtype.
3347 3348 3349
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3350
            for CUDA inputs.
3351
        name(str, optional): The default value is None. Normally there is no need for user to set
3352 3353 3354
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3355 3356 3357 3358 3359 3360 3361
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3394 3395 3396
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3397 3398 3399 3400
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3401 3402 3403 3404
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3405 3406 3407 3408
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3409 3410 3411 3412
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3426
    if _non_static_mode():
3427
        if in_dygraph_mode():
3428
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3429 3430
                x, y, rcond, driver
            )
3431
        else:
3432
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3433 3434
                x, y, 'rcond', rcond, 'driver', driver
            )
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3445 3446 3447 3448 3449 3450
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
3451 3452 3453 3454 3455 3456

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
    helper.append_op(
        type='lstsq',
        inputs={'X': x, 'Y': y},
        outputs={
            'Solution': solution,
            'Residuals': residuals,
            'Rank': rank,
            'SingularValues': singular_values,
        },
        attrs={'rcond': rcond, 'driver': driver},
    )
3468 3469 3470 3471 3472 3473 3474 3475

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3476 3477 3478 3479


def corrcoef(x, rowvar=True, name=None):
    """
3480

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3519 3520
            "length of Input(input) is %s." % len(x.shape)
        )
3521 3522 3523
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3524
    if c.ndim == 0:
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3539 3540 3541
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3542 3543 3544 3545
    else:
        c = paddle.clip(c, -1, 1)

    return c