Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a1772bb8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a1772bb8
编写于
1月 13, 2023
作者:
W
Weilong Wu
提交者:
GitHub
1月 13, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Eager] polish some apis logic (#49733)
* [Eager] polish some apis logic * polish api logic
上级
1c8531ce
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
106 addition
and
105 deletion
+106
-105
python/paddle/distribution/dirichlet.py
python/paddle/distribution/dirichlet.py
+4
-5
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+20
-19
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+7
-3
python/paddle/nn/functional/common.py
python/paddle/nn/functional/common.py
+6
-9
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+9
-8
python/paddle/nn/initializer/orthogonal.py
python/paddle/nn/initializer/orthogonal.py
+5
-5
python/paddle/static/amp/amp_nn.py
python/paddle/static/amp/amp_nn.py
+23
-23
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+6
-4
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+1
-1
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+0
-1
python/paddle/vision/ops.py
python/paddle/vision/ops.py
+25
-27
未找到文件。
python/paddle/distribution/dirichlet.py
浏览文件 @
a1772bb8
...
...
@@ -158,15 +158,14 @@ class Dirichlet(exponential_family.ExponentialFamily):
def
_dirichlet
(
concentration
,
name
=
None
):
op_type
=
'dirichlet'
check_variable_and_dtype
(
concentration
,
'concentration'
,
[
'float32'
,
'float64'
],
op_type
)
if
in_dygraph_mode
():
return
paddle
.
_C_ops
.
dirichlet
(
concentration
)
else
:
op_type
=
'dirichlet'
check_variable_and_dtype
(
concentration
,
'concentration'
,
[
'float32'
,
'float64'
],
op_type
)
helper
=
LayerHelper
(
op_type
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
concentration
.
dtype
...
...
python/paddle/fluid/initializer.py
浏览文件 @
a1772bb8
...
...
@@ -266,12 +266,13 @@ class UniformInitializer(Initializer):
block
=
self
.
_check_block
(
block
)
assert
isinstance
(
block
,
framework
.
Block
)
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"uniform_random"
,
)
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"uniform_random"
,
)
if
self
.
_seed
==
0
:
self
.
_seed
=
block
.
program
.
random_seed
...
...
@@ -381,13 +382,6 @@ class NormalInitializer(Initializer):
assert
isinstance
(
block
,
framework
.
Block
)
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"guassian_random"
,
)
if
self
.
_seed
==
0
:
self
.
_seed
=
block
.
program
.
random_seed
...
...
@@ -405,6 +399,12 @@ class NormalInitializer(Initializer):
return
None
else
:
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"guassian_random"
,
)
op
=
block
.
append_op
(
type
=
"gaussian_random"
,
outputs
=
{
"Out"
:
var
},
...
...
@@ -596,12 +596,13 @@ class XavierInitializer(Initializer):
block
=
self
.
_check_block
(
block
)
assert
isinstance
(
block
,
framework
.
Block
)
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"xavier_init"
,
)
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
var
,
"Out"
,
[
"uint16"
,
"float16"
,
"float32"
,
"float64"
],
"xavier_init"
,
)
f_in
,
f_out
=
self
.
_compute_fans
(
var
)
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
a1772bb8
...
...
@@ -1143,9 +1143,7 @@ def while_loop(cond, body, loop_vars, is_test=False, name=None):
raise
ValueError
(
"loop_vars in while_loop should not be empty"
)
pre_cond
=
cond
(
*
loop_vars
)
check_variable_and_dtype
(
pre_cond
,
'var of cond returned'
,
[
'bool'
],
'fluid.layers.while_loop'
)
if
reduce
(
lambda
a
,
b
:
a
*
b
,
pre_cond
.
shape
,
1
)
!=
1
:
raise
TypeError
(
"the shape of the variable returned by cond should be [1],"
...
...
@@ -1167,6 +1165,12 @@ def while_loop(cond, body, loop_vars, is_test=False, name=None):
map_structure
(
assign_skip_lod_tensor_array
,
output_vars
,
loop_vars
)
return
loop_vars
else
:
check_variable_and_dtype
(
pre_cond
,
'var of cond returned'
,
[
'bool'
],
'fluid.layers.while_loop'
,
)
while_loop_block
=
While
(
pre_cond
,
is_test
,
name
)
has_mutable_vars_in_loop
=
hold_mutable_vars
(
loop_vars
)
with
while_loop_block
.
block
():
...
...
python/paddle/nn/functional/common.py
浏览文件 @
a1772bb8
...
...
@@ -102,10 +102,6 @@ def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
y = F.unfold(x, [3, 3], 1, 1, 1)
"""
helper
=
LayerHelper
(
"unfold"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'unfold'
)
assert
len
(
x
.
shape
)
==
4
,
"input should be the format of [N, C, H, W]"
if
isinstance
(
kernel_sizes
,
int
):
...
...
@@ -149,6 +145,9 @@ def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
if
in_dygraph_mode
():
return
_C_ops
.
unfold
(
x
,
kernel_sizes
,
strides
,
paddings
,
dilations
)
helper
=
LayerHelper
(
"unfold"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'unfold'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"unfold"
,
...
...
@@ -2237,11 +2236,6 @@ def fold(
# y.shape = [2,3,4,5]
"""
helper
=
LayerHelper
(
"fold"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'fold'
)
assert
len
(
x
.
shape
)
==
3
,
"input should be the format of [N, C, L]"
def
_is_list_or_turple_
(
data
):
...
...
@@ -2311,6 +2305,9 @@ def fold(
dilations
,
)
else
:
helper
=
LayerHelper
(
"fold"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'fold'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"fold"
,
...
...
python/paddle/nn/functional/loss.py
浏览文件 @
a1772bb8
...
...
@@ -521,8 +521,7 @@ def edit_distance(
# [4]
"""
check_variable_and_dtype
(
input
,
'input'
,
[
'int64'
],
'edit_distance'
)
check_variable_and_dtype
(
label
,
'label'
,
[
'int64'
],
'edit_distance'
)
helper
=
LayerHelper
(
"edit_distance"
,
**
locals
())
# remove some tokens from input and labels
...
...
@@ -551,6 +550,8 @@ def edit_distance(
input
,
label
,
input_length
,
label_length
,
normalized
)
check_variable_and_dtype
(
input
,
'input'
,
[
'int64'
],
'edit_distance'
)
check_variable_and_dtype
(
label
,
'label'
,
[
'int64'
],
'edit_distance'
)
this_inputs
=
{
"Hyps"
:
[
input
],
"Refs"
:
[
label
]}
if
input_length
is
not
None
and
label_length
is
not
None
:
this_inputs
[
'HypsLength'
]
=
[
input_length
]
...
...
@@ -1075,16 +1076,16 @@ def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
print(output)
# [0.068004]
"""
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'smooth_l1_loss'
)
check_variable_and_dtype
(
label
,
'label'
,
[
'float32'
,
'float64'
],
'smooth_l1_loss'
)
if
in_dygraph_mode
():
out
,
residual
=
_C_ops
.
huber_loss
(
input
,
label
,
delta
)
else
:
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'smooth_l1_loss'
)
check_variable_and_dtype
(
label
,
'label'
,
[
'float32'
,
'float64'
],
'smooth_l1_loss'
)
helper
=
LayerHelper
(
'huber_loss'
,
**
locals
())
residual
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
()
...
...
python/paddle/nn/initializer/orthogonal.py
浏览文件 @
a1772bb8
...
...
@@ -85,11 +85,6 @@ class Orthogonal(Initializer):
block
=
self
.
_check_block
(
block
)
assert
isinstance
(
var
,
framework
.
Parameter
)
assert
isinstance
(
block
,
framework
.
Block
)
# 'qr' op only support float32/float64 now
check_variable_and_dtype
(
var
,
"Out"
,
[
"float32"
,
"float64"
],
"Orthogonal"
)
self
.
_seed
=
block
.
program
.
random_seed
shape
=
var
.
shape
...
...
@@ -129,6 +124,11 @@ class Orthogonal(Initializer):
return
None
# 'qr' op only support float32/float64 now
check_variable_and_dtype
(
var
,
"Out"
,
[
"float32"
,
"float64"
],
"Orthogonal"
)
normal_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'.'
.
join
([
'gaussian_random'
,
'tmp'
])),
dtype
=
var
.
dtype
,
...
...
python/paddle/static/amp/amp_nn.py
浏览文件 @
a1772bb8
...
...
@@ -37,14 +37,6 @@ def check_finite_and_unscale(x, scale, name=None, float_status=None):
scale: The scale of check_finite_and_unscale operator.
float_status(Tensor): (Only used on NPU) The float status to check overflow.
"""
check_type
(
x
,
'x'
,
(
tuple
,
list
),
'check_finite_and_unscale'
)
for
e
in
x
:
check_variable_and_dtype
(
e
,
"x"
,
[
'float16'
,
'float32'
,
'float64'
],
'check_finite_and_unscale'
,
)
helper
=
LayerHelper
(
"check_finite_and_unscale"
,
**
locals
())
...
...
@@ -54,6 +46,15 @@ def check_finite_and_unscale(x, scale, name=None, float_status=None):
_C_ops
.
check_finite_and_unscale_
(
x
,
scale
,
found_inf
)
return
x
,
found_inf
check_type
(
x
,
'x'
,
(
tuple
,
list
),
'check_finite_and_unscale'
)
for
e
in
x
:
check_variable_and_dtype
(
e
,
"x"
,
[
'float16'
,
'float32'
,
'float64'
],
'check_finite_and_unscale'
,
)
inputs
=
{
'X'
:
x
,
'Scale'
:
scale
}
if
core
.
is_compiled_with_npu
():
check_variable_and_dtype
(
...
...
@@ -110,6 +111,20 @@ def update_loss_scaling(
decr_ratio(float): The less-than-one-multiplier to use when decreasing
loss scaling.
"""
if
in_dygraph_mode
():
_C_ops
.
update_loss_scaling_
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
stop_update
,
)
return
x
check_variable_and_dtype
(
prev_loss_scaling
,
...
...
@@ -131,21 +146,6 @@ def update_loss_scaling(
prev_loss_scaling
.
dtype
==
e
.
dtype
),
"The dtype of prev_loss_scaling should be equal to the dtype of x."
if
in_dygraph_mode
():
_C_ops
.
update_loss_scaling_
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
stop_update
,
)
return
x
helper
=
LayerHelper
(
"update_loss_scaling"
,
**
locals
())
inputs
=
{
...
...
python/paddle/tensor/linalg.py
浏览文件 @
a1772bb8
...
...
@@ -2378,10 +2378,6 @@ def eigvals(x, name=None):
# [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
"""
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'eigvals'
)
x_shape
=
list
(
x
.
shape
)
if
len
(
x_shape
)
<
2
:
raise
ValueError
(
...
...
@@ -2400,6 +2396,12 @@ def eigvals(x, name=None):
if
in_dygraph_mode
():
return
_C_ops
.
eigvals
(
x
)
else
:
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'eigvals'
,
)
helper
=
LayerHelper
(
'eigvals'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'eigvals'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
})
...
...
python/paddle/tensor/math.py
浏览文件 @
a1772bb8
...
...
@@ -2014,7 +2014,6 @@ def renorm(x, p, axis, max_norm):
"""
input_shape
=
x
.
shape
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'renorm'
)
if
not
axis
<
len
(
input_shape
):
raise
ValueError
(
"the axis:{} should be less then the shape's size {}:{}"
.
format
(
...
...
@@ -2033,6 +2032,7 @@ def renorm(x, p, axis, max_norm):
out
=
_C_ops
.
renorm
(
x
,
p
,
axis
,
max_norm
)
return
out
else
:
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'renorm'
)
inputs
=
{
'X'
:
x
}
attrs
=
{
'p'
:
p
,
'axis'
:
axis
,
'max_norm'
:
max_norm
}
...
...
python/paddle/tensor/search.py
浏览文件 @
a1772bb8
...
...
@@ -644,7 +644,6 @@ def where(condition, x=None, y=None, name=None):
check_variable_and_dtype
(
y
,
'y'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'where'
)
helper
=
LayerHelper
(
"where"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
python/paddle/vision/ops.py
浏览文件 @
a1772bb8
...
...
@@ -492,11 +492,6 @@ def prior_box(
flip=True)
"""
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
check_variable_and_dtype
(
input
,
'input'
,
[
'uint8'
,
'int8'
,
'float32'
,
'float64'
],
'prior_box'
)
def
_is_list_or_tuple_
(
data
):
return
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
)
...
...
@@ -541,6 +536,11 @@ def prior_box(
return
box
,
var
else
:
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
check_variable_and_dtype
(
input
,
'input'
,
[
'uint8'
,
'int8'
,
'float32'
,
'float64'
],
'prior_box'
)
attrs
=
{
'min_sizes'
:
min_sizes
,
'aspect_ratios'
:
aspect_ratios
,
...
...
@@ -679,13 +679,6 @@ def box_coder(
box_normalized=False)
"""
check_variable_and_dtype
(
prior_box
,
'prior_box'
,
[
'float32'
,
'float64'
],
'box_coder'
)
check_variable_and_dtype
(
target_box
,
'target_box'
,
[
'float32'
,
'float64'
],
'box_coder'
)
if
in_dygraph_mode
():
if
isinstance
(
prior_box_var
,
Variable
):
output_box
=
_C_ops
.
box_coder
(
...
...
@@ -712,6 +705,12 @@ def box_coder(
return
output_box
else
:
check_variable_and_dtype
(
prior_box
,
'prior_box'
,
[
'float32'
,
'float64'
],
'box_coder'
)
check_variable_and_dtype
(
target_box
,
'target_box'
,
[
'float32'
,
'float64'
],
'box_coder'
)
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
output_box
=
helper
.
create_variable_for_type_inference
(
...
...
@@ -2268,21 +2267,6 @@ def matrix_nms(
nms_top_k=400, keep_top_k=200, normalized=False)
"""
check_variable_and_dtype
(
bboxes
,
'BBoxes'
,
[
'float32'
,
'float64'
],
'matrix_nms'
)
check_variable_and_dtype
(
scores
,
'Scores'
,
[
'float32'
,
'float64'
],
'matrix_nms'
)
check_type
(
score_threshold
,
'score_threshold'
,
float
,
'matrix_nms'
)
check_type
(
post_threshold
,
'post_threshold'
,
float
,
'matrix_nms'
)
check_type
(
nms_top_k
,
'nums_top_k'
,
int
,
'matrix_nms'
)
check_type
(
keep_top_k
,
'keep_top_k'
,
int
,
'matrix_nms'
)
check_type
(
normalized
,
'normalized'
,
bool
,
'matrix_nms'
)
check_type
(
use_gaussian
,
'use_gaussian'
,
bool
,
'matrix_nms'
)
check_type
(
gaussian_sigma
,
'gaussian_sigma'
,
float
,
'matrix_nms'
)
check_type
(
background_label
,
'background_label'
,
int
,
'matrix_nms'
)
if
in_dygraph_mode
():
out
,
index
,
rois_num
=
_C_ops
.
matrix_nms
(
bboxes
,
...
...
@@ -2302,6 +2286,20 @@ def matrix_nms(
rois_num
=
None
return
out
,
rois_num
,
index
else
:
check_variable_and_dtype
(
bboxes
,
'BBoxes'
,
[
'float32'
,
'float64'
],
'matrix_nms'
)
check_variable_and_dtype
(
scores
,
'Scores'
,
[
'float32'
,
'float64'
],
'matrix_nms'
)
check_type
(
score_threshold
,
'score_threshold'
,
float
,
'matrix_nms'
)
check_type
(
post_threshold
,
'post_threshold'
,
float
,
'matrix_nms'
)
check_type
(
nms_top_k
,
'nums_top_k'
,
int
,
'matrix_nms'
)
check_type
(
keep_top_k
,
'keep_top_k'
,
int
,
'matrix_nms'
)
check_type
(
normalized
,
'normalized'
,
bool
,
'matrix_nms'
)
check_type
(
use_gaussian
,
'use_gaussian'
,
bool
,
'matrix_nms'
)
check_type
(
gaussian_sigma
,
'gaussian_sigma'
,
float
,
'matrix_nms'
)
check_type
(
background_label
,
'background_label'
,
int
,
'matrix_nms'
)
helper
=
LayerHelper
(
'matrix_nms'
,
**
locals
())
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
bboxes
.
dtype
)
index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录