linalg.py 130.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _varbase_creator, _dygraph_tracer, in_dygraph_mode, _non_static_mode
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
20 21
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
22 23 24
from .math import multiply, add
from .logic import logical_not
from .creation import full
25

A
andyjpaddle 已提交
26
import paddle
27
import warnings
28 29
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
30
from paddle import _C_ops, _legacy_C_ops
31

32 33
__all__ = []

34 35 36
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
89
        return _C_ops.transpose(x, perm)
90 91
    else:
        if _in_legacy_dygraph():
92
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
118 119 120 121 122 123 124
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
125 126 127
    return out


S
ShenLiang 已提交
128
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
129
    """
130 131
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
132
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
133

S
ShenLiang 已提交
134 135
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
136 137 138 139 140

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
141 142
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
143 144 145 146 147 148 149 150
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

151 152
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
153
      After the matrix multiply, the prepended dimension is removed.
154 155

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
156 157
      the matrix-vector product is obtained.

158 159 160 161 162 163 164 165 166
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
167
      out will be a (j, k, n, p) tensor.
168 169

    Args:
S
ShenLiang 已提交
170 171
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
172 173 174 175 176 177
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
178
        Tensor: The output Tensor.
179 180 181

    Examples:

C
Chen Long 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
220 221

    """
222
    if in_dygraph_mode():
223
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
224 225 226

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
227
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
228 229
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

230
    attrs = {
S
ShenLiang 已提交
231 232
        'trans_x': transpose_x,
        'trans_y': transpose_y,
233 234 235 236 237
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
238
            check_variable_and_dtype(
239 240 241
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
242 243 244

    __check_input(x, y)

S
ShenLiang 已提交
245
    helper = LayerHelper('matmul_v2', **locals())
246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
247 248 249 250 251 252 253
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
254
    return out
Z
Zhang Ting 已提交
255 256


myq406450149's avatar
myq406450149 已提交
257
def norm(x, p='fro', axis=None, keepdim=False, name=None):
258
    """
S
swtkiwi 已提交
259

260 261 262
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

263 264 265 266 267 268
    .. note::
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

269
    Args:
myq406450149's avatar
myq406450149 已提交
270
        x (Tensor): The input tensor could be N-D tensor, and the input data
271
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
272
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
273
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
274
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
275 276
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
277
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
278
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
279
            Default value is `None`.
280 281 282 283 284 285 286 287
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
288
        Tensor: results of norm operation on the specified axis of input tensor,
289
        it's data type is the same as input's Tensor.
290

291 292
    Examples:
        .. code-block:: python
293

294
            import paddle
myq406450149's avatar
myq406450149 已提交
295 296 297 298 299 300 301 302
            import numpy as np
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

303
            # compute frobenius norm along last two dimensions.
304
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
myq406450149's avatar
myq406450149 已提交
305 306
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

307
            # compute 2-order vector norm along last dimension.
308
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
309 310 311 312
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
313
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
myq406450149's avatar
myq406450149 已提交
314 315 316
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
317
            out_pnorm = paddle.linalg.norm(x, p=np.inf)
myq406450149's avatar
myq406450149 已提交
318
            #out_pnorm.numpy()  = [12.]
319
            out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
320 321 322
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
323
            out_pnorm = paddle.linalg.norm(x, p=-np.inf)
myq406450149's avatar
myq406450149 已提交
324
            #out_pnorm.numpy(): [0.]
325
            out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
326
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
327 328
    """

myq406450149's avatar
myq406450149 已提交
329
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
330 331 332 333 334 335 336 337 338 339 340
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
341 342 343

        if in_dygraph_mode():
            if dim is None:
344 345
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
346
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
347
            if dim is None:
348 349 350 351
                return _legacy_C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                                    'reduce_all', True)
            return _legacy_C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim',
                                                keepdim, 'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
352 353
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
354 355 356 357 358
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
359 360
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
361

362 363 364 365
        helper.append_op(type='frobenius_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
366 367 368 369 370 371
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
372
                    asvector=False,
373 374 375 376 377 378 379 380 381
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
382 383
        if in_dygraph_mode():
            if axis is None: axis = -1
384
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
385 386

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
387
            if axis is None: axis = -1
388 389 390
            return _legacy_C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                        'keepdim', keepdim, 'asvector',
                                        asvector)
391

392 393 394 395
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
396 397 398
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

399 400 401 402
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
403
            'asvector': asvector,
404 405 406
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
407 408
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
409

410 411 412 413
        helper.append_op(type='p_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
414 415
        return out

myq406450149's avatar
myq406450149 已提交
416 417 418 419 420 421
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
422
        if in_dygraph_mode():
423
            out = _C_ops.abs(input)
424 425 426 427 428
            reduce_all = True if axis == None or axis == [] or asvector == True else False
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
429
                return _C_ops.max(out, axis, keepdim)
430
            else:
431
                return _C_ops.min(out, axis, keepdim)
432

O
OccupyMars2025 已提交
433
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
434 435 436 437 438 439 440 441 442
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

443
        reduce_type = 'reduce_max' if porder == np.float64(
myq406450149's avatar
myq406450149 已提交
444
            'inf') else 'reduce_min'
445 446 447 448 449 450 451 452
        helper.append_op(type=reduce_type,
                         inputs={'X': out},
                         outputs={'Out': reduce_out},
                         attrs={
                             'dim': axis,
                             'keep_dim': keepdim,
                             'reduce_all': reduce_all
                         })
myq406450149's avatar
myq406450149 已提交
453 454 455 456

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
457 458 459 460
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
461
        if in_dygraph_mode():
462 463 464 465
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
            out = _C_ops.pow(sum_out, float(1. / porder))
466 467
            return out

myq406450149's avatar
myq406450149 已提交
468 469 470 471 472
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
473 474 475
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
myq406450149's avatar
myq406450149 已提交
476 477 478
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

479 480 481 482
        block.append_op(type='pow',
                        inputs={'X': abs_out},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
myq406450149's avatar
myq406450149 已提交
483 484
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
485 486 487 488 489 490 491 492 493 494 495 496
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': True if axis is None else False
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
myq406450149's avatar
myq406450149 已提交
497 498
        return out

499 500 501
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
502
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
503 504 505 506
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
507 508 509 510 511 512
            return vector_norm(x,
                               porder=p,
                               axis=axis,
                               keepdim=keepdim,
                               asvector=True,
                               name=name)
513
        else:
514 515 516
            raise ValueError(
                "only valid p type is string or float, found {}".format(
                    type(p)))
517

myq406450149's avatar
myq406450149 已提交
518 519
    if isinstance(axis, tuple):
        axis = list(axis)
520 521 522 523 524
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
525 526
        if isinstance(p, str):
            if p == "fro":
527 528 529 530 531 532
                return vector_norm(x,
                                   porder=2,
                                   axis=axis,
                                   keepdim=keepdim,
                                   asvector=False,
                                   name=name)
myq406450149's avatar
myq406450149 已提交
533 534 535 536 537

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
538 539 540 541 542 543
            return vector_norm(x,
                               axis=axis,
                               porder=p,
                               keepdim=keepdim,
                               asvector=False,
                               name=name)
544 545 546 547 548 549 550
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
551 552 553
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
554 555
        elif p == 0:
            raise ValueError(
556 557
                "just suport axis type int or list (length of list <=1) if p = 0, found {}"
                .format(axis))
558
        else:
559 560 561 562 563
            return p_matrix_norm(x,
                                 porder=p,
                                 axis=axis,
                                 keepdim=keepdim,
                                 name=name)
564 565 566 567 568 569
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


570
def dist(x, y, p=2, name=None):
571
    r"""
S
swtkiwi 已提交
572

Z
Zhang Ting 已提交
573
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
574 575
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
600 601 602 603 604 605 606

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
607
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
608 609 610 611 612

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
613
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
614 615 616 617 618 619 620 621 622 623 624 625

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
626 627
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
628 629 630
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
631
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
632 633 634 635 636 637 638

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

639 640 641 642
            x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")
            y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
643

644 645
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
646

647 648
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
649

650 651
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
652
    """
H
hong 已提交
653
    if in_dygraph_mode():
654
        return _C_ops.dist(x, y, p)
H
hong 已提交
655

Z
Zhang Ting 已提交
656 657 658 659 660 661 662 663 664
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
665 666 667 668
    helper.append_op(type='dist',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
Z
Zhang Ting 已提交
669
    return out
L
liuwei1031 已提交
670 671


672 673 674 675 676 677
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
678 679
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
734
            # a.numpy()
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

769 770 771 772 773 774 775 776 777 778 779 780 781 782
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
            sum_out = _legacy_C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                               keepdim, 'reduce_all',
                                               reduce_all)
783
            if porder == 1 or porder == np.inf:
784 785 786
                return _legacy_C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
787
            if porder == -1 or porder == -np.inf:
788 789 790
                return _legacy_C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
791 792 793 794 795 796 797 798 799 800 801 802 803 804
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            sum_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            block.append_op(type='abs',
                            inputs={'X': input},
                            outputs={'Out': abs_out})
            block.append_op(type='reduce_sum',
                            inputs={'X': abs_out},
                            outputs={'Out': sum_out},
805
                            attrs={
806
                                'dim': axis,
807 808 809
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            if porder == 1 or porder == np.inf:
                block.append_op(type='reduce_max',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            if porder == -1 or porder == -np.inf:
                block.append_op(type='reduce_min',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            return out
829 830 831 832 833 834 835 836 837

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

838
        if in_dygraph_mode():
839
            pow_out = _C_ops.pow(input, porder)
840 841
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
842
            return _C_ops.pow(sum_out_2, float(1. / porder))
843
        elif paddle.in_dynamic_mode():
844 845 846 847 848 849 850 851
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
            sum_out_1 = _legacy_C_ops.reduce_sum(pow_out, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            sum_out_2 = _legacy_C_ops.reduce_sum(sum_out_1, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1. / porder))
852 853 854 855 856 857 858 859 860 861

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
        block.append_op(type='pow',
                        inputs={'X': input},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out_1},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_sum',
                        inputs={'X': sum_out_1},
                        outputs={'Out': sum_out_2},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out_2},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
886 887 888 889 890 891 892 893 894 895 896 897 898
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

899
        if _non_static_mode():
900
            if porder == "nuc":
901
                if in_dygraph_mode():
902
                    return _C_ops.sum(s, axis, None, keepdim)
903
                else:
904 905 906
                    return _legacy_C_ops.reduce_sum(s, 'dim', axis, 'keepdim',
                                                    keepdim, 'reduce_all',
                                                    reduce_all)
907 908 909 910
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
911
                    return _C_ops.divide(max_out, min_out)
912
                if porder == -2:
913
                    return _C_ops.divide(min_out, max_out)
914 915 916 917 918 919 920 921 922 923 924 925 926 927

            else:
                max_out = _legacy_C_ops.reduce_max(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                min_out = _legacy_C_ops.reduce_min(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False)
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False)
928 929 930 931 932

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
933 934 935 936 937 938 939 940
            block.append_op(type='reduce_sum',
                            inputs={'X': s},
                            outputs={'Out': out},
                            attrs={
                                'dim': axis,
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
941 942 943 944 945
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
        block.append_op(type='reduce_max',
                        inputs={'X': s},
                        outputs={'Out': max_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_min',
                        inputs={'X': s},
                        outputs={'Out': min_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
962
        if porder == 2:
963 964 965 966 967 968 969 970 971 972
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': max_out,
                                'Y': min_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
973 974
            return out
        if porder == -2:
975 976 977 978 979 980 981 982 983 984
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': min_out,
                                'Y': max_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
985 986 987
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
988
        if paddle.in_dynamic_mode():
989 990 991 992 993
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
994 995 996
        raise ValueError(
            "input should be a matrix or batches of matrices, " +
            "but the dimention of received input is {}".format(len(x_shape)))
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1010 1011
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
                    x_inv, porder=p, axis=[-2])
1012
            if p in (np.inf, -np.inf):
1013 1014
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
                    x_inv, porder=p, axis=[-1])
1015 1016 1017 1018 1019 1020 1021 1022 1023
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1024 1025
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) +
            "1, -1, 2, -2, inf, -inf) or none")
1026 1027


L
liuwei1031 已提交
1028 1029 1030
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1031

L
liuwei1031 已提交
1032
    .. note::
1033 1034
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1035 1036

    Parameters:
S
ShenLiang 已提交
1037 1038
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1039 1040
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1041
    Returns:
1042
        Tensor: the calculated result Tensor.
1043

L
liuwei1031 已提交
1044 1045 1046 1047 1048 1049
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
1050 1051 1052

        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
1053 1054
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
1055
        z = paddle.dot(x, y)
1056
        print(z)
L
liuwei1031 已提交
1057 1058

    """
1059 1060
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1061 1062
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1063

L
liuwei1031 已提交
1064
    op_type = 'dot'
1065

L
liuwei1031 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
    helper.append_op(type="dot",
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     attrs={},
                     outputs={"Out": out})
L
liuwei1031 已提交
1088
    return out
1089 1090


Z
zhiboniu 已提交
1091 1092 1093 1094 1095
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1096
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1204 1205
def t(input, name=None):
    """
1206 1207
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1208
    the paddle.transpose function which perm dimensions set 0 and 1.
1209

1210
    Args:
1211
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1212
        name(str, optional): The default value is None.  Normally there is no need for
1213 1214
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1215
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1216

1217
    Examples:
1218

1219 1220 1221
        .. code-block:: python
           :name: code-example
             import paddle
1222

1223
             # Example 1 (0-D tensor)
1224 1225
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1226

1227
             # Example 2 (1-D tensor)
1228 1229 1230
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1231 1232

             # Example 3 (2-D tensor)
1233 1234 1235 1236 1237 1238 1239 1240
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1241

1242 1243 1244 1245 1246 1247
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
1248 1249 1250 1251 1252
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1253
        out = _C_ops.transpose(input, perm)
1254 1255 1256
        return out

    if _in_legacy_dygraph():
1257 1258 1259 1260
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1261
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1262 1263 1264
        return out

    check_variable_and_dtype(
1265 1266
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
1267 1268 1269 1270 1271 1272 1273

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1274 1275 1276 1277 1278 1279 1280
        helper.append_op(type='transpose2',
                         inputs={'X': [input]},
                         outputs={
                             'Out': [out],
                             'XShape': [input_shape]
                         },
                         attrs={'axis': [1, 0]})
1281
    return out
1282 1283


W
wanghuancoder 已提交
1284
def cross(x, y, axis=9, name=None):
1285
    """
1286
    Computes the cross product between two tensors along an axis.
1287

1288 1289
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1290

1291
    Args:
1292 1293
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1294
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1295
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1296 1297

    Returns:
1298
        Tensor. A Tensor with same data type as `x`.
1299

1300 1301
    Examples:
        .. code-block:: python
1302

1303
            import paddle
1304

Z
Zhou Wei 已提交
1305 1306 1307 1308 1309 1310
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1321
    """
J
Jiabin Yang 已提交
1322
    if in_dygraph_mode():
1323
        axis = K_DEFAULT_DIM if axis is None else axis
1324
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1325 1326 1327
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1328
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1329
            else:
1330
                return _legacy_C_ops.cross(x, y)
1331
        else:
J
Jiabin Yang 已提交
1332 1333 1334 1335 1336
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1337 1338 1339 1340 1341 1342 1343
            helper.append_op(type='cross',
                             inputs={
                                 'X': x,
                                 'Y': y
                             },
                             outputs={'Out': out},
                             attrs=attrs)
J
Jiabin Yang 已提交
1344
            return out
1345 1346


1347
def cholesky(x, upper=False, name=None):
1348
    r"""
G
Guo Sheng 已提交
1349
    Computes the Cholesky decomposition of one symmetric positive-definite
1350 1351
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1352 1353 1354 1355 1356 1357
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1358
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1359 1360 1361 1362 1363 1364 1365
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
1366
        Tensor: A Tensor with same shape and data type as `x`. It represents \
G
Guo Sheng 已提交
1367
            triangular matrices generated by Cholesky decomposition.
1368

G
Guo Sheng 已提交
1369 1370 1371 1372 1373 1374
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1375 1376 1377
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1378
            x = paddle.to_tensor(x_data)
1379
            out = paddle.linalg.cholesky(x, upper=False)
1380
            print(out)
1381 1382 1383
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1384 1385

    """
H
hong 已提交
1386
    if in_dygraph_mode():
1387
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1388 1389

    if _in_legacy_dygraph():
1390
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1391

G
Guo Sheng 已提交
1392 1393 1394 1395
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1396 1397 1398 1399
    helper.append_op(type='cholesky',
                     inputs={'X': [x]},
                     outputs={'Out': out},
                     attrs={'upper': upper})
G
Guo Sheng 已提交
1400 1401 1402
    return out


1403 1404 1405 1406
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1407
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1408
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1409 1410

    Args:
1411 1412 1413 1414
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1415
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1416 1417
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1418
            the lower triangular of the matrix to compute.
1419 1420 1421 1422
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1440

1441
    """
1442 1443 1444 1445 1446 1447 1448
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1449 1450
            return _C_ops.matrix_rank_tol(x, tol_tensor, use_default_tol,
                                          hermitian)
1451

1452 1453 1454 1455 1456 1457
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1458
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1459 1460

    if _in_legacy_dygraph():
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1476 1477 1478
        return _legacy_C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr,
                                         'hermitian', hermitian,
                                         'use_default_tol', use_default_tol)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1501 1502 1503 1504
    helper.append_op(type='matrix_rank',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
1505 1506 1507
    return out


1508 1509 1510 1511 1512 1513 1514 1515 1516
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1517 1518
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1519 1520 1521 1522
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1523
        Tensor: The product Tensor.
1524 1525

    Examples:
S
sunzhongkai588 已提交
1526 1527 1528
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1529

S
sunzhongkai588 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1539 1540 1541 1542 1543 1544
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1545

1546
    """
Y
yaoxuefeng 已提交
1547 1548 1549 1550
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1551 1552
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1553 1554
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1555 1556
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1557 1558
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1559 1560
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1561

1562
    if in_dygraph_mode():
1563
        return _C_ops.bmm(x, y)
1564

Z
zhiboniu 已提交
1565
    if paddle.in_dynamic_mode():
1566
        return _legacy_C_ops.bmm(x, y)
1567 1568

    helper = LayerHelper('bmm', **locals())
1569 1570 1571
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1572 1573


1574
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1575
    """
1576
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1577 1578 1579
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1580
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1581
            should be float32, float64, int32, int64.
1582 1583 1584 1585
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1586 1587

    Returns:
1588
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1589

1590
    Examples:
Q
Qi Li 已提交
1591
        .. code-block:: python
1592

Q
Qi Li 已提交
1593
            import paddle
1594

1595
            inputs = paddle.to_tensor([1, 2, 1])
1596 1597
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1598
    """
H
hong 已提交
1599
    if in_dygraph_mode():
1600
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1601 1602

    if _in_legacy_dygraph():
1603 1604
        return _legacy_C_ops.histogram(input, "bins", bins, "min", min, "max",
                                       max)
Q
Qi Li 已提交
1605 1606

    helper = LayerHelper('histogram', **locals())
1607 1608 1609
    check_variable_and_dtype(input, 'X',
                             ['int32', 'int64', 'float32', 'float64'],
                             'histogram')
Q
Qi Li 已提交
1610
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1611 1612 1613 1614 1615 1616 1617 1618
    helper.append_op(type='histogram',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'bins': bins,
                         'min': min,
                         'max': max
                     })
Q
Qi Li 已提交
1619
    return out
S
smallv0221 已提交
1620 1621 1622 1623


def bincount(x, weights=None, minlength=0, name=None):
    """
1624
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

H
hong 已提交
1652
    if _non_static_mode():
1653
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1666 1667 1668 1669 1670 1671 1672
    helper.append_op(type='bincount',
                     inputs={
                         'X': x,
                         'Weights': weights
                     },
                     outputs={'Out': out},
                     attrs={'minlength': minlength})
S
smallv0221 已提交
1673
    return out
1674 1675 1676 1677 1678 1679 1680


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1681
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1682
            should be one of float32, float64.
F
furnace 已提交
1683
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1699 1700
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1701
            out = paddle.mv(x, vec)
1702 1703 1704
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1705
    """
J
Jiabin Yang 已提交
1706
    if in_dygraph_mode():
1707
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1708 1709
    else:
        if _in_legacy_dygraph():
1710
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1711 1712
            return out
        else:
1713

J
Jiabin Yang 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1723 1724
                        "x should be 2-dimensional. But received x's dimention: {}"
                        .format(x_shape))
J
Jiabin Yang 已提交
1725 1726
                if len(vec_shape) != 1:
                    raise ValueError(
1727 1728
                        "vec should be 1-dimensional. But received vec's dimention: {}"
                        .format(vec_shape))
J
Jiabin Yang 已提交
1729 1730 1731 1732 1733

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1734 1735 1736 1737 1738 1739
            helper.append_op(type='mv',
                             inputs={
                                 'X': x,
                                 'Vec': vec
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
1740
            return out
1741 1742


1743
def det(x, name=None):
H
huangxu96 已提交
1744 1745 1746 1747 1748 1749 1750 1751
    """
    Calculates determinant value of a square matrix or batches of square matrices.
    Args:
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
                    `(*, n, n)` where `*` is one or more batch dimensions.
    Returns:
        y (Tensor):the determinant value of a square matrix or batches of square matrices.

1752
    Examples:
H
huangxu96 已提交
1753 1754 1755 1756 1757 1758
        .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1759
        A = paddle.linalg.det(x)
H
huangxu96 已提交
1760 1761

        print(A)
1762

H
huangxu96 已提交
1763 1764
        # [ 0.02547996,  2.52317095, -6.15900707])

1765

H
huangxu96 已提交
1766
    """
C
chentianyu03 已提交
1767
    if in_dygraph_mode():
1768
        return _C_ops.det(x)
C
chentianyu03 已提交
1769 1770

    if _in_legacy_dygraph():
1771
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1789 1790 1791
    helper.append_op(type='determinant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1792 1793 1794
    return out


1795
def slogdet(x, name=None):
H
huangxu96 已提交
1796 1797 1798
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1799

H
huangxu96 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1811
    Examples:
H
huangxu96 已提交
1812 1813 1814 1815 1816 1817
    .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1818
        A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1819 1820

        print(A)
1821

H
huangxu96 已提交
1822 1823 1824 1825
        # [[ 1.        ,  1.        , -1.        ],
        # [-0.98610914, -0.43010661, -0.10872950]])

    """
1826
    if in_dygraph_mode():
1827
        return _C_ops.slogdet(x)
1828 1829

    elif paddle.in_dynamic_mode():
1830
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1848 1849 1850
    helper.append_op(type='slogdeterminant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1851 1852 1853
    return out


1854 1855
def svd(x, full_matrices=False, name=None):
    r"""
1856 1857 1858 1859 1860
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1861 1862
        X = U * diag(S) * VT

1863 1864
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1865
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1866 1867 1868 1869
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1870
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1871
            If full_matrices = False, svd op will use a economic method to store U and V.
1872
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1873
        name (str, optional): Name for the operation (optional, default is None).
1874
            For more information, please refer to :ref:`api_guide_Name`.
1875 1876

    Returns:
1877
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1878

1879 1880 1881 1882
    Examples:
        .. code-block:: python

            import paddle
1883 1884 1885

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1886
            u, s, vh = paddle.linalg.svd(x)
1887 1888 1889 1890 1891
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1892
            print (s)
1893
            #S = [8.14753743, 0.78589688]
1894
            print (vh)
1895 1896
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1897

1898
            # one can verify : U * S * VT == X
1899
            #                  U * UH == I
1900
            #                  V * VH == I
1901
    """
1902
    if in_dygraph_mode():
1903
        return _C_ops.svd(x, full_matrices)
1904
    if _in_legacy_dygraph():
1905
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
1917 1918 1919 1920 1921 1922 1923
        outputs={
            'U': u,
            'VH': vh,
            'S': s
        },
        attrs=attrs,
    )
1924 1925 1926
    return u, s, vh


1927 1928 1929
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1930

1931 1932 1933 1934 1935
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1936

1937 1938 1939 1940
    Specifically,

    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power
    of `n`.
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
    the power of `abs(n)`.

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1952
        name (str, optional): Name for the operation (optional, default is None).
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1967
            print(paddle.linalg.matrix_power(x, 2))
1968 1969 1970 1971
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1972
            print(paddle.linalg.matrix_power(x, 0))
1973 1974 1975 1976
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1977
            print(paddle.linalg.matrix_power(x, -2))
1978 1979 1980 1981
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
1982
    if in_dygraph_mode():
1983
        return _C_ops.matrix_power(x, n)
H
hong 已提交
1984 1985

    if _in_legacy_dygraph():
1986
        return _legacy_C_ops.matrix_power(x, "n", n)
1987 1988 1989 1990 1991

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1992 1993 1994 1995
    helper.append_op(type='matrix_power',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'n': n})
1996
    return out
1997 1998


1999 2000 2001 2002 2003 2004 2005
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2006 2007
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2008
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2009
            If mode = "reduced", qr op will return reduced Q and R matrices,
2010
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2011
            If mode = "complete", qr op will return complete Q and R matrices,
2012 2013 2014 2015 2016
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2017

2018
    Returns:
2019
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2020
        If mode = "r", qr will return a tensor which represents R.
2021 2022

    Examples:
2023 2024
        .. code-block:: python

2025
            import paddle
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2038 2039

            # one can verify : X = Q * R ;
2040
    """
Y
Yulong Ao 已提交
2041
    if in_dygraph_mode():
2042
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2043 2044 2045 2046 2047
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2048
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2060 2061 2062 2063 2064 2065 2066
    helper.append_op(type='qr',
                     inputs={'X': [x]},
                     outputs={
                         'Q': q,
                         'R': r
                     },
                     attrs=attrs)
2067 2068 2069 2070 2071 2072
    if mode == "r":
        return r
    else:
        return q, r


2073 2074
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2075
    Computes the LU factorization of an N-D(N>=2) matrix x.
2076

2077
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])
    # return ones

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2097

2098 2099 2100
    Returns:
        factorization (Tensor): LU matrix, the factorization of input X.

2101 2102
        pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
                    intermediate transpositions of rows. The final permutation `perm` could be
2103 2104
                    reconstructed by this, details refer to upper example.

2105 2106
        infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2))
                    where non-zero values indicate whether factorization for the matrix or each minibatch
2107 2108
                    has succeeded or failed.

2109 2110

    Examples:
2111 2112
        .. code-block:: python

2113
            import paddle
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2129

2130 2131 2132 2133 2134 2135
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2136
            # [1., 0., 0.]]),
2137 2138 2139 2140
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2141
            # [0.60000000, 0.50000000]]),
2142 2143 2144 2145 2146
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2147 2148

            # one can verify : X = P @ L @ U ;
2149
    """
L
Lin Manhui 已提交
2150 2151

    if in_dygraph_mode():
2152
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2153
    elif paddle.in_dynamic_mode():
2154
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
        helper.append_op(type='lu',
                         inputs={'X': x},
                         outputs={
                             'Out': lu,
                             'Pivots': p,
                             'Infos': info
                         },
                         attrs=attrs)
2171 2172 2173 2174 2175 2176 2177 2178
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2179
    Unpack L U and P to single matrix tensor .
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2199

2200 2201 2202 2203 2204 2205 2206
    Returns:
        P (Tensor): Permutation matrix P of lu factorization.

        L (Tensor): The lower triangular matrix tensor of lu factorization.

        U (Tensor): The upper triangular matrix tensor of lu factorization.

2207 2208

    Examples:
2209 2210
        .. code-block:: python

2211
            import paddle
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2227

2228 2229 2230 2231 2232 2233
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2234
            # [1., 0., 0.]]),
2235 2236 2237 2238
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2239
            # [0.60000000, 0.50000000]]),
2240 2241 2242 2243 2244
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2245
            # one can verify : X = P @ L @ U ;
2246 2247
    """

2248
    if in_dygraph_mode():
2249
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2250 2251
        return P, L, U

Z
zhiboniu 已提交
2252
    if paddle.in_dynamic_mode():
2253 2254
        P, L, U = _legacy_C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                          'unpack_pivots', unpack_pivots)
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
    helper.append_op(type='lu_unpack',
                     inputs={
                         'X': x,
                         'Pivots': y
                     },
                     outputs={
                         'Pmat': p,
                         'L': l,
                         'U': u
                     },
                     attrs=attrs)
2277 2278 2279
    return p, l, u


L
Lijunhui 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
def eig(x, name=None):
    """
    This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.

    .. note::
        If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        This API is only supported on CPU device.
        The output datatype is always complex for both real and complex input.

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2294
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.device.set_device("cpu")

            x_data = np.array([[1.6707249, 7.2249975, 6.5045543],
                               [9.956216,  8.749598,  6.066444 ],
                               [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")
            x = paddle.to_tensor(x_data)
            w, v = paddle.linalg.eig(x)
            print(w)
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

            print(v)
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2328
    if in_dygraph_mode():
2329
        return _C_ops.eig(x)
2330
    elif paddle.in_dynamic_mode():
2331
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2332 2333
        return w, v

2334 2335 2336
    check_variable_and_dtype(x, 'X',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eig')
L
Lijunhui 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2349 2350 2351
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2352 2353 2354

    Warning:
        The gradient kernel of this operator does not yet developed.
2355 2356 2357 2358
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2359
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2360
            Its data type should be float32, float64, complex64, or complex128.
2361
        name (str, optional): Name for the operation (optional, default is None).
2362
            For more information, please refer to :ref:`api_guide_Name`.
2363

2364
    Returns:
2365
        Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
2366 2367 2368 2369 2370 2371
            The eigenvalues are complex-valued even when `x` is real.

    Examples:
        .. code-block:: python

            import paddle
2372

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2386 2387
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvals')
2388 2389 2390 2391

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2392 2393
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}"
            .format(len(x_shape), x_shape))
2394 2395 2396

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2397 2398
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}"
            .format(x_shape))
2399

R
Ruibiao Chen 已提交
2400
    if in_dygraph_mode():
2401
        return _C_ops.eigvals(x)
2402 2403
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2404 2405 2406 2407 2408 2409 2410

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2411 2412 2413 2414
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2415
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        # A * B
        A_data = np.random.random([3, 4]).astype(np.float32)
        B_data = np.random.random([4, 5]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
2457
        out = paddle.linalg.multi_dot([A, B])
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
        print(out.numpy().shape)
        # [3, 5]

        # A * B * C
        A_data = np.random.random([10, 5]).astype(np.float32)
        B_data = np.random.random([5, 8]).astype(np.float32)
        C_data = np.random.random([8, 7]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
        C = paddle.to_tensor(C_data)
2468
        out = paddle.linalg.multi_dot([A, B, C])
2469 2470 2471 2472
        print(out.numpy().shape)
        # [10, 7]

    """
2473
    if _in_legacy_dygraph():
2474
        return _legacy_C_ops.multi_dot(x)
2475
    if in_dygraph_mode():
2476
        return _C_ops.multi_dot(x)
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2491 2492 2493 2494


def eigh(x, UPLO='L', name=None):
    """
2495
    Compute the eigenvalues and eigenvectors of a
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.
        out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
2519
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2520 2521 2522 2523 2524 2525 2526
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2527
    if in_dygraph_mode():
2528
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2529 2530

    if _in_legacy_dygraph():
2531
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2532 2533 2534 2535 2536 2537 2538 2539 2540

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2541 2542
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
2543
        if UPLO != 'L' and UPLO != 'U':
2544 2545 2546 2547 2548 2549
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2550 2551 2552
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigh')
2553 2554 2555 2556

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2557 2558 2559 2560 2561 2562 2563
    helper.append_op(type='eigh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={'UPLO': UPLO})
2564
    return out_value, out_vector
A
andyjpaddle 已提交
2565 2566 2567 2568


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2569
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2580

A
andyjpaddle 已提交
2581 2582 2583
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2584 2585 2586
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2587 2588 2589 2590
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2591
        rcond(Tensor, optional): the tolerance value to determine
2592
            when is a singular value zero. Default:1e-15.
2593 2594

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2595
            if complex or symmetric if real. Default: False.
2596 2597

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2598
            the layer will be named automatically.
2599

A
andyjpaddle 已提交
2600
    Returns:
2601
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2602
        pseudo inverse of x. Its shape should be (*, n, m).
2603

A
andyjpaddle 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2630 2631 2632
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2633 2634
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2635 2636 2637 2638
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2639

2640 2641 2642 2643 2644 2645
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2646
            st = _C_ops.unsqueeze(singular, [-2])
2647 2648 2649

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2650
            v = _C_ops.transpose(vt, perm)
2651 2652

            out_1 = v * st
2653
            out_2 = _C_ops.matmul(out_1, u, False, True)
2654 2655 2656
            return out_2
        else:
            # combine eigh and matmul op
2657
            s, u = _C_ops.eigh(x, 'UPLO')
2658
            s_abs = paddle.abs(s)
2659
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2671
            st = _C_ops.unsqueeze(singular, [-2])
2672 2673

            out_1 = u * st
2674 2675
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2676 2677 2678
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2679 2680
        if not hermitian:
            # combine svd and matmul op
2681 2682
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _legacy_C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2683 2684 2685 2686 2687 2688 2689
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2690 2691 2692 2693 2694
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2695
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2696 2697 2698

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2699
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2700 2701

            out_1 = v * st
2702
            if in_dygraph_mode():
2703
                out_2 = _C_ops.matmul(out_1, u, False, True)
2704
            else:
2705 2706
                out_2 = _legacy_C_ops.matmul_v2(out_1, u, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2707 2708 2709
            return out_2
        else:
            # combine eigh and matmul op
2710
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2711
            s_abs = paddle.abs(s)
2712
            max_singular_val = _legacy_C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2713 2714 2715 2716 2717 2718 2719
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2720 2721 2722 2723 2724
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2725
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2726 2727

            out_1 = u * st
2728
            u_conj = _legacy_C_ops.conj(u)
2729
            if in_dygraph_mode():
2730
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2731
            else:
2732 2733
                out_2 = _legacy_C_ops.matmul_v2(out_1, u_conj, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2747 2748 2749 2750 2751 2752 2753
                outputs={
                    'U': u,
                    'VH': vt,
                    'S': s
                },
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2754 2755

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2756 2757 2758 2759 2760 2761 2762 2763
            helper.append_op(type='reduce_max',
                             inputs={'X': s},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2764

2765
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2766 2767
            cutoff = rcond * max_singular_val
            y = float('inf')
2768
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2769 2770

            condition = s > cutoff
2771 2772 2773 2774 2775
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2776 2777 2778

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2779 2780 2781 2782 2783 2784 2785
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2786 2787 2788 2789 2790

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2791 2792 2793 2794 2795 2796 2797
            helper.append_op(type='transpose2',
                             inputs={'X': [vt]},
                             outputs={
                                 'Out': [v],
                                 'XShape': [v_shape]
                             },
                             attrs={'axis': perm})
A
andyjpaddle 已提交
2798 2799

            out_1 = helper.create_variable_for_type_inference(dtype)
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': v,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2810 2811 2812 2813 2814
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2815 2816 2817 2818
                inputs={
                    'X': out_1,
                    'Y': u
                },
A
andyjpaddle 已提交
2819
                outputs={'Out': out_2},
2820 2821 2822 2823 2824
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2825 2826 2827 2828 2829
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2830 2831
                x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'],
                'pinv')
A
andyjpaddle 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2842 2843 2844 2845 2846 2847 2848
            helper.append_op(type='eigh',
                             inputs={'X': x},
                             outputs={
                                 'Eigenvalues': s,
                                 'Eigenvectors': u
                             },
                             attrs={'UPLO': 'L'})
A
andyjpaddle 已提交
2849
            s_abs = helper.create_variable_for_type_inference(s_type)
2850 2851 2852
            helper.append_op(type='abs',
                             inputs={'X': s},
                             outputs={'Out': s_abs})
A
andyjpaddle 已提交
2853
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2854 2855 2856 2857 2858 2859 2860 2861
            helper.append_op(type='reduce_max',
                             inputs={'X': s_abs},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2862

2863
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2864 2865
            cutoff = rcond * max_singular_val
            y = float('inf')
2866
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2867 2868

            condition = s_abs > cutoff
2869 2870 2871 2872 2873
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2874 2875 2876

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2877 2878 2879 2880 2881 2882 2883
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2884 2885

            out_1 = helper.create_variable_for_type_inference(dtype)
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': u,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2896 2897 2898
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2899 2900 2901
            helper.append_op(type='conj',
                             inputs={'X': u},
                             outputs={'Out': [u_conj]})
A
andyjpaddle 已提交
2902 2903 2904 2905

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2906 2907 2908 2909
                inputs={
                    'X': out_1,
                    'Y': u_conj
                },
A
andyjpaddle 已提交
2910
                outputs={'Out': out_2},
2911 2912 2913 2914 2915
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2916
            return out_2
W
Weilong Wu 已提交
2917 2918 2919 2920 2921 2922 2923


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2924

W
Weilong Wu 已提交
2925 2926 2927 2928
    .. math::
        Out = X^-1 * Y
    Specifically,
    - This system of linear equations has one solution if and only if input 'X' is invertible.
2929

W
Weilong Wu 已提交
2930 2931 2932 2933 2934
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2935
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2936
            For more information, please refer to :ref:`api_guide_Name`.
2937

W
Weilong Wu 已提交
2938
    Returns:
2939
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2940
        Its data type should be the same as that of `x`.
2941

W
Weilong Wu 已提交
2942 2943
    Examples:
    .. code-block:: python
2944

W
Weilong Wu 已提交
2945 2946 2947
        # a square system of linear equations:
        # 2*X0 + X1 = 9
        # X0 + 2*X1 = 8
2948

W
Weilong Wu 已提交
2949 2950
        import paddle
        import numpy as np
2951

W
Weilong Wu 已提交
2952 2953 2954 2955 2956
        np_x = np.array([[3, 1],[1, 2]])
        np_y = np.array([9, 8])
        x = paddle.to_tensor(np_x, dtype="float64")
        y = paddle.to_tensor(np_y, dtype="float64")
        out = paddle.linalg.solve(x, y)
2957

W
Weilong Wu 已提交
2958 2959 2960
        print(out)
        # [2., 3.])
    """
2961
    if in_dygraph_mode():
2962
        return _C_ops.solve(x, y)
2963 2964

    if _in_legacy_dygraph():
2965
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
2966 2967 2968 2969 2970 2971 2972

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2973 2974 2975 2976 2977 2978
    helper.append_op(type="solve",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     outputs={"Out": out})
W
Weilong Wu 已提交
2979
    return out
2980 2981


2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2998
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2999
            zero or more batch dimensions. Its data type should be float32 or float64.
3000
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3001 3002
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3003
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
    .. code-block:: python

        # a square system of linear equations:
        # x1 +   x2  +   x3 = 0
        #      2*x2  +   x3 = -9
        #               -x3 = 5

        import paddle
        import numpy as np

3022
        x = paddle.to_tensor([[1, 1, 1],
3023 3024 3025 3026 3027 3028 3029 3030
                              [0, 2, 1],
                              [0, 0,-1]], dtype="float64")
        y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.triangular_solve(x, y, upper=True)

        print(out)
        # [7, -2, -5]
    """
H
hong 已提交
3031
    if in_dygraph_mode():
3032
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3033

Z
zhiboniu 已提交
3034
    if paddle.in_dynamic_mode():
3035 3036 3037
        return _legacy_C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                              transpose, 'unitriangular',
                                              unitriangular)
3038 3039 3040 3041 3042 3043 3044

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    helper.append_op(type='triangular_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'upper': upper,
                         'transpose': transpose,
                         'unitriangular': unitriangular
                     })
3056 3057 3058
    return out


Z
zhiboniu 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3069
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
    .. code-block:: python

        import paddle

3083
        u = paddle.to_tensor([[1, 1, 1],
Z
zhiboniu 已提交
3084 3085 3086 3087 3088 3089 3090 3091
                                [0, 2, 1],
                                [0, 0,-1]], dtype="float64")
        b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.cholesky_solve(b, u, upper=True)

        print(out)
        # [-2.5, -7, 9.5]
    """
H
hong 已提交
3092
    if in_dygraph_mode():
3093
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3094 3095

    if _in_legacy_dygraph():
3096
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3097 3098 3099 3100 3101 3102

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3103 3104 3105 3106 3107 3108 3109
    helper.append_op(type='cholesky_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={'upper': upper})
Z
zhiboniu 已提交
3110 3111 3112
    return out


3113 3114
def eigvalsh(x, UPLO='L', name=None):
    """
3115
    Computes the eigenvalues of a
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
            #[0.17157288, 5.82842712]
    """
3140
    if in_dygraph_mode():
3141
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3142 3143 3144
        return values

    elif paddle.in_dynamic_mode():
3145
        is_test = x.stop_gradient
3146
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3157 3158
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
3159
        if UPLO != 'L' and UPLO != 'U':
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
    helper.append_op(type='eigvalsh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={
                         'UPLO': UPLO,
                         'is_test': is_test
                     })
3184
    return out_value
3185 3186


3187 3188 3189 3190 3191 3192 3193 3194
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3195
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3196
            should be one of float32, float64.
3197 3198
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3199
            machine precision of x_dtype.
3200 3201 3202
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3203
            for CUDA inputs.
3204
        name(str, optional): The default value is None. Normally there is no need for user to set
3205 3206 3207
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3208 3209 3210 3211 3212 3213 3214
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3247 3248 3249
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3250 3251
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}"
                .format(driver))
3252 3253 3254 3255
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3256 3257
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}"
                .format(driver))
3258 3259 3260 3261
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3275
    if _non_static_mode():
3276
        if in_dygraph_mode():
3277
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3278
                x, y, rcond, driver)
3279
        else:
3280
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3281
                x, y, 'rcond', rcond, 'driver', driver)
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3292 3293 3294 3295 3296 3297
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
    check_variable_and_dtype(y, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
3298 3299 3300 3301 3302 3303

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3304 3305 3306 3307 3308 3309 3310
    helper.append_op(type='lstsq',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Solution': solution,
3311
                         'Residuals': residuals,
3312 3313 3314 3315 3316 3317 3318
                         'Rank': rank,
                         'SingularValues': singular_values
                     },
                     attrs={
                         'rcond': rcond,
                         'driver': driver
                     })
3319 3320 3321 3322 3323 3324 3325 3326

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3327 3328 3329 3330


def corrcoef(x, rowvar=True, name=None):
    """
3331

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3355

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
    if (c.ndim == 0):
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3389 3390
        return paddle.complex(paddle.clip(c.real(), -1, 1),
                              paddle.clip(c.imag(), -1, 1))
3391 3392 3393 3394
    else:
        c = paddle.clip(c, -1, 1)

    return c