linalg.py 130.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _varbase_creator, _dygraph_tracer, in_dygraph_mode, _non_static_mode
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
20 21
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
22 23 24
from .math import multiply, add
from .logic import logical_not
from .creation import full
25

A
andyjpaddle 已提交
26
import paddle
27
import warnings
28 29
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
30
from paddle import _C_ops, _legacy_C_ops
31

32 33
__all__ = []

34 35 36
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
89
        return _C_ops.transpose(x, perm)
90 91
    else:
        if _in_legacy_dygraph():
92
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
118 119 120 121 122 123 124
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
125 126 127
    return out


S
ShenLiang 已提交
128
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
129
    """
130 131
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
132
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
133

S
ShenLiang 已提交
134 135
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
136 137 138 139 140

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
141 142
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
143 144 145 146 147 148 149 150
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

151 152
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
153
      After the matrix multiply, the prepended dimension is removed.
154 155

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
156 157
      the matrix-vector product is obtained.

158 159 160 161 162 163 164 165 166
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
167
      out will be a (j, k, n, p) tensor.
168 169

    Args:
S
ShenLiang 已提交
170 171
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
172 173 174 175 176 177
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
178
        Tensor: The output Tensor.
179 180 181

    Examples:

C
Chen Long 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
220 221

    """
222
    if in_dygraph_mode():
223
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
224 225 226

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
227
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
228 229
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

230
    attrs = {
S
ShenLiang 已提交
231 232
        'trans_x': transpose_x,
        'trans_y': transpose_y,
233 234 235 236 237
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
238
            check_variable_and_dtype(
239 240 241
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
242 243 244

    __check_input(x, y)

S
ShenLiang 已提交
245
    helper = LayerHelper('matmul_v2', **locals())
246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
247 248 249 250 251 252 253
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
254
    return out
Z
Zhang Ting 已提交
255 256


myq406450149's avatar
myq406450149 已提交
257
def norm(x, p='fro', axis=None, keepdim=False, name=None):
258
    """
S
swtkiwi 已提交
259

260 261 262
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

263
    Note:
264 265 266 267 268
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

269
    Args:
myq406450149's avatar
myq406450149 已提交
270
        x (Tensor): The input tensor could be N-D tensor, and the input data
271
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
272
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
273
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
274
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
275 276
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
277
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
278
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
279
            Default value is `None`.
280 281 282 283 284 285 286 287
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
288
        Tensor: results of norm operation on the specified axis of input tensor,
289
        it's data type is the same as input's Tensor.
290

291 292
    Examples:
        .. code-block:: python
293

294
            import paddle
myq406450149's avatar
myq406450149 已提交
295 296 297 298 299 300 301 302
            import numpy as np
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

303
            # compute frobenius norm along last two dimensions.
304
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
myq406450149's avatar
myq406450149 已提交
305 306
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

307
            # compute 2-order vector norm along last dimension.
308
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
309 310 311 312
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
313
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
myq406450149's avatar
myq406450149 已提交
314 315 316
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
317
            out_pnorm = paddle.linalg.norm(x, p=np.inf)
myq406450149's avatar
myq406450149 已提交
318
            #out_pnorm.numpy()  = [12.]
319
            out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
320 321 322
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
323
            out_pnorm = paddle.linalg.norm(x, p=-np.inf)
myq406450149's avatar
myq406450149 已提交
324
            #out_pnorm.numpy(): [0.]
325
            out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
326
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
327 328
    """

myq406450149's avatar
myq406450149 已提交
329
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
330 331 332 333 334 335 336 337 338 339 340
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
341 342 343

        if in_dygraph_mode():
            if dim is None:
344 345
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
346
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
347
            if dim is None:
348 349 350 351
                return _legacy_C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                                    'reduce_all', True)
            return _legacy_C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim',
                                                keepdim, 'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
352 353
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
354 355 356 357 358
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
359 360
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
361

362 363 364 365
        helper.append_op(type='frobenius_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
366 367 368 369 370 371
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
372
                    asvector=False,
373 374 375 376 377 378 379 380 381
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
382 383
        if in_dygraph_mode():
            if axis is None: axis = -1
384
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
385 386

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
387
            if axis is None: axis = -1
388 389 390
            return _legacy_C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                        'keepdim', keepdim, 'asvector',
                                        asvector)
391

392 393 394 395
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
396 397 398
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

399 400 401 402
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
403
            'asvector': asvector,
404 405 406
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
407 408
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
409

410 411 412 413
        helper.append_op(type='p_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
414 415
        return out

myq406450149's avatar
myq406450149 已提交
416 417 418 419 420 421
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
422
        if in_dygraph_mode():
423
            out = _C_ops.abs(input)
424 425 426 427 428
            reduce_all = True if axis == None or axis == [] or asvector == True else False
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
429
                return _C_ops.max(out, axis, keepdim)
430
            else:
431
                return _C_ops.min(out, axis, keepdim)
432

O
OccupyMars2025 已提交
433
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
434 435 436 437 438 439 440 441 442
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

443
        reduce_type = 'reduce_max' if porder == np.float64(
myq406450149's avatar
myq406450149 已提交
444
            'inf') else 'reduce_min'
445 446 447 448 449 450 451 452
        helper.append_op(type=reduce_type,
                         inputs={'X': out},
                         outputs={'Out': reduce_out},
                         attrs={
                             'dim': axis,
                             'keep_dim': keepdim,
                             'reduce_all': reduce_all
                         })
myq406450149's avatar
myq406450149 已提交
453 454 455 456

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
457 458 459 460
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
461
        if in_dygraph_mode():
462 463 464 465
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
            out = _C_ops.pow(sum_out, float(1. / porder))
466 467
            return out

myq406450149's avatar
myq406450149 已提交
468 469 470 471 472
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
473 474 475
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
myq406450149's avatar
myq406450149 已提交
476 477 478
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

479 480 481 482
        block.append_op(type='pow',
                        inputs={'X': abs_out},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
myq406450149's avatar
myq406450149 已提交
483 484
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
485 486 487 488 489 490 491 492 493 494 495 496
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': True if axis is None else False
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
myq406450149's avatar
myq406450149 已提交
497 498
        return out

499 500 501
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
502
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
503 504 505 506
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
507 508 509 510 511 512
            return vector_norm(x,
                               porder=p,
                               axis=axis,
                               keepdim=keepdim,
                               asvector=True,
                               name=name)
513
        else:
514 515 516
            raise ValueError(
                "only valid p type is string or float, found {}".format(
                    type(p)))
517

myq406450149's avatar
myq406450149 已提交
518 519
    if isinstance(axis, tuple):
        axis = list(axis)
520 521 522 523 524
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
525 526
        if isinstance(p, str):
            if p == "fro":
527 528 529 530 531 532
                return vector_norm(x,
                                   porder=2,
                                   axis=axis,
                                   keepdim=keepdim,
                                   asvector=False,
                                   name=name)
myq406450149's avatar
myq406450149 已提交
533 534 535 536 537

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
538 539 540 541 542 543
            return vector_norm(x,
                               axis=axis,
                               porder=p,
                               keepdim=keepdim,
                               asvector=False,
                               name=name)
544 545 546 547 548 549 550
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
551 552 553
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
554 555
        elif p == 0:
            raise ValueError(
556 557
                "just suport axis type int or list (length of list <=1) if p = 0, found {}"
                .format(axis))
558
        else:
559 560 561 562 563
            return p_matrix_norm(x,
                                 porder=p,
                                 axis=axis,
                                 keepdim=keepdim,
                                 name=name)
564 565 566 567 568 569
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


570
def dist(x, y, p=2, name=None):
571
    r"""
S
swtkiwi 已提交
572

Z
Zhang Ting 已提交
573
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
574 575
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
600 601 602 603 604 605 606

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
607
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
608 609 610 611 612

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
613
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
614 615 616 617 618 619 620 621 622 623 624 625

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
626 627
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
628 629 630
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
631
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
632 633 634 635 636 637 638

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

639 640 641 642
            x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")
            y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
643

644 645
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
646

647 648
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
649

650 651
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
652
    """
H
hong 已提交
653
    if in_dygraph_mode():
654
        return _C_ops.dist(x, y, p)
H
hong 已提交
655

Z
Zhang Ting 已提交
656 657 658 659 660 661 662 663 664
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
665 666 667 668
    helper.append_op(type='dist',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
Z
Zhang Ting 已提交
669
    return out
L
liuwei1031 已提交
670 671


672 673 674 675 676 677
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
678 679
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
734
            # a.numpy()
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

769 770 771 772 773 774 775 776 777 778 779 780 781 782
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
            sum_out = _legacy_C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                               keepdim, 'reduce_all',
                                               reduce_all)
783
            if porder == 1 or porder == np.inf:
784 785 786
                return _legacy_C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
787
            if porder == -1 or porder == -np.inf:
788 789 790
                return _legacy_C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
791 792 793 794 795 796 797 798 799 800 801 802 803 804
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            sum_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            block.append_op(type='abs',
                            inputs={'X': input},
                            outputs={'Out': abs_out})
            block.append_op(type='reduce_sum',
                            inputs={'X': abs_out},
                            outputs={'Out': sum_out},
805
                            attrs={
806
                                'dim': axis,
807 808 809
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            if porder == 1 or porder == np.inf:
                block.append_op(type='reduce_max',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            if porder == -1 or porder == -np.inf:
                block.append_op(type='reduce_min',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            return out
829 830 831 832 833 834 835 836 837

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

838
        if in_dygraph_mode():
839
            pow_out = _C_ops.pow(input, porder)
840 841
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
842
            return _C_ops.pow(sum_out_2, float(1. / porder))
843
        elif paddle.in_dynamic_mode():
844 845 846 847 848 849 850 851
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
            sum_out_1 = _legacy_C_ops.reduce_sum(pow_out, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            sum_out_2 = _legacy_C_ops.reduce_sum(sum_out_1, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1. / porder))
852 853 854 855 856 857 858 859 860 861

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
        block.append_op(type='pow',
                        inputs={'X': input},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out_1},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_sum',
                        inputs={'X': sum_out_1},
                        outputs={'Out': sum_out_2},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out_2},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
886 887 888 889 890 891 892 893 894 895 896 897 898
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

899
        if _non_static_mode():
900
            if porder == "nuc":
901
                if in_dygraph_mode():
902
                    return _C_ops.sum(s, axis, None, keepdim)
903
                else:
904 905 906
                    return _legacy_C_ops.reduce_sum(s, 'dim', axis, 'keepdim',
                                                    keepdim, 'reduce_all',
                                                    reduce_all)
907 908 909 910
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
911
                    return _C_ops.divide(max_out, min_out)
912
                if porder == -2:
913
                    return _C_ops.divide(min_out, max_out)
914 915 916 917 918 919 920 921 922 923 924 925 926 927

            else:
                max_out = _legacy_C_ops.reduce_max(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                min_out = _legacy_C_ops.reduce_min(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False)
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False)
928 929 930 931 932

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
933 934 935 936 937 938 939 940
            block.append_op(type='reduce_sum',
                            inputs={'X': s},
                            outputs={'Out': out},
                            attrs={
                                'dim': axis,
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
941 942 943 944 945
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
        block.append_op(type='reduce_max',
                        inputs={'X': s},
                        outputs={'Out': max_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_min',
                        inputs={'X': s},
                        outputs={'Out': min_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
962
        if porder == 2:
963 964 965 966 967 968 969 970 971 972
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': max_out,
                                'Y': min_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
973 974
            return out
        if porder == -2:
975 976 977 978 979 980 981 982 983 984
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': min_out,
                                'Y': max_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
985 986 987
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
988
        if paddle.in_dynamic_mode():
989 990 991 992 993
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
994 995 996
        raise ValueError(
            "input should be a matrix or batches of matrices, " +
            "but the dimention of received input is {}".format(len(x_shape)))
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1010 1011
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
                    x_inv, porder=p, axis=[-2])
1012
            if p in (np.inf, -np.inf):
1013 1014
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
                    x_inv, porder=p, axis=[-1])
1015 1016 1017 1018 1019 1020 1021 1022 1023
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1024 1025
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) +
            "1, -1, 2, -2, inf, -inf) or none")
1026 1027


L
liuwei1031 已提交
1028 1029 1030
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1031

1032
    Note:
1033 1034
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1035 1036

    Parameters:
S
ShenLiang 已提交
1037 1038
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1039 1040
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1041
    Returns:
1042
        Tensor: the calculated result Tensor.
1043

L
liuwei1031 已提交
1044 1045 1046 1047 1048 1049
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
1050 1051 1052

        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
1053 1054
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
1055
        z = paddle.dot(x, y)
1056
        print(z)
L
liuwei1031 已提交
1057 1058

    """
1059 1060
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1061 1062
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1063

L
liuwei1031 已提交
1064
    op_type = 'dot'
1065

L
liuwei1031 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
    helper.append_op(type="dot",
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     attrs={},
                     outputs={"Out": out})
L
liuwei1031 已提交
1088
    return out
1089 1090


Z
zhiboniu 已提交
1091 1092 1093 1094 1095
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1096
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1204 1205
def t(input, name=None):
    """
1206 1207
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1208
    the paddle.transpose function which perm dimensions set 0 and 1.
1209

1210
    Args:
1211
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1212
        name(str, optional): The default value is None.  Normally there is no need for
1213 1214
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1215
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1216

1217
    Examples:
1218

1219 1220 1221
        .. code-block:: python
           :name: code-example
             import paddle
1222

1223
             # Example 1 (0-D tensor)
1224 1225
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1226

1227
             # Example 2 (1-D tensor)
1228 1229 1230
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1231 1232

             # Example 3 (2-D tensor)
1233 1234 1235 1236 1237 1238 1239 1240
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1241

1242 1243 1244 1245 1246 1247
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
1248 1249 1250 1251 1252
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1253
        out = _C_ops.transpose(input, perm)
1254 1255 1256
        return out

    if _in_legacy_dygraph():
1257 1258 1259 1260
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1261
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1262 1263 1264
        return out

    check_variable_and_dtype(
1265 1266
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
1267 1268 1269 1270 1271 1272 1273

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1274 1275 1276 1277 1278 1279 1280
        helper.append_op(type='transpose2',
                         inputs={'X': [input]},
                         outputs={
                             'Out': [out],
                             'XShape': [input_shape]
                         },
                         attrs={'axis': [1, 0]})
1281
    return out
1282 1283


W
wanghuancoder 已提交
1284
def cross(x, y, axis=9, name=None):
1285
    """
1286
    Computes the cross product between two tensors along an axis.
1287

1288 1289
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1290

1291
    Args:
1292 1293
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1294
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1295
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1296 1297

    Returns:
1298
        Tensor. A Tensor with same data type as `x`.
1299

1300 1301
    Examples:
        .. code-block:: python
1302

1303
            import paddle
1304

Z
Zhou Wei 已提交
1305 1306 1307 1308 1309 1310
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1321
    """
J
Jiabin Yang 已提交
1322
    if in_dygraph_mode():
1323
        axis = K_DEFAULT_DIM if axis is None else axis
1324
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1325 1326 1327
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1328
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1329
            else:
1330
                return _legacy_C_ops.cross(x, y)
1331
        else:
J
Jiabin Yang 已提交
1332 1333 1334 1335 1336
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1337 1338 1339 1340 1341 1342 1343
            helper.append_op(type='cross',
                             inputs={
                                 'X': x,
                                 'Y': y
                             },
                             outputs={'Out': out},
                             attrs=attrs)
J
Jiabin Yang 已提交
1344
            return out
1345 1346


1347
def cholesky(x, upper=False, name=None):
1348
    r"""
G
Guo Sheng 已提交
1349
    Computes the Cholesky decomposition of one symmetric positive-definite
1350 1351
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1352 1353 1354 1355 1356 1357
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1358
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1359 1360 1361 1362 1363
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1364 1365
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1366 1367

    Returns:
1368 1369
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1370

G
Guo Sheng 已提交
1371 1372 1373 1374 1375 1376
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1377 1378 1379
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1380
            x = paddle.to_tensor(x_data)
1381
            out = paddle.linalg.cholesky(x, upper=False)
1382
            print(out)
1383 1384 1385
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1386 1387

    """
H
hong 已提交
1388
    if in_dygraph_mode():
1389
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1390 1391

    if _in_legacy_dygraph():
1392
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1393

G
Guo Sheng 已提交
1394 1395 1396 1397
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1398 1399 1400 1401
    helper.append_op(type='cholesky',
                     inputs={'X': [x]},
                     outputs={'Out': out},
                     attrs={'upper': upper})
G
Guo Sheng 已提交
1402 1403 1404
    return out


1405 1406 1407 1408
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1409
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1410
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1411 1412

    Args:
1413 1414 1415 1416
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1417
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1418 1419
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1420
            the lower triangular of the matrix to compute.
1421 1422 1423 1424
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1442

1443
    """
1444 1445 1446 1447 1448 1449 1450
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1451 1452
            return _C_ops.matrix_rank_tol(x, tol_tensor, use_default_tol,
                                          hermitian)
1453

1454 1455 1456 1457 1458 1459
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1460
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1461 1462

    if _in_legacy_dygraph():
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1478 1479 1480
        return _legacy_C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr,
                                         'hermitian', hermitian,
                                         'use_default_tol', use_default_tol)
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1503 1504 1505 1506
    helper.append_op(type='matrix_rank',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
1507 1508 1509
    return out


1510 1511 1512 1513 1514 1515 1516 1517 1518
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1519 1520
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1521 1522 1523 1524
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1525
        Tensor: The product Tensor.
1526 1527

    Examples:
S
sunzhongkai588 已提交
1528 1529 1530
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1531

S
sunzhongkai588 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1541 1542 1543 1544 1545 1546
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1547

1548
    """
Y
yaoxuefeng 已提交
1549 1550 1551 1552
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1553 1554
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1555 1556
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1557 1558
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1559 1560
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1561 1562
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1563

1564
    if in_dygraph_mode():
1565
        return _C_ops.bmm(x, y)
1566

Z
zhiboniu 已提交
1567
    if paddle.in_dynamic_mode():
1568
        return _legacy_C_ops.bmm(x, y)
1569 1570

    helper = LayerHelper('bmm', **locals())
1571 1572 1573
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1574 1575


1576
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1577
    """
1578
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1579 1580 1581
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1582
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1583
            should be float32, float64, int32, int64.
1584 1585 1586 1587
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1588 1589

    Returns:
1590
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1591

1592
    Examples:
Q
Qi Li 已提交
1593
        .. code-block:: python
1594

Q
Qi Li 已提交
1595
            import paddle
1596

1597
            inputs = paddle.to_tensor([1, 2, 1])
1598 1599
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1600
    """
H
hong 已提交
1601
    if in_dygraph_mode():
1602
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1603 1604

    if _in_legacy_dygraph():
1605 1606
        return _legacy_C_ops.histogram(input, "bins", bins, "min", min, "max",
                                       max)
Q
Qi Li 已提交
1607 1608

    helper = LayerHelper('histogram', **locals())
1609 1610 1611
    check_variable_and_dtype(input, 'X',
                             ['int32', 'int64', 'float32', 'float64'],
                             'histogram')
Q
Qi Li 已提交
1612
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1613 1614 1615 1616 1617 1618 1619 1620
    helper.append_op(type='histogram',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'bins': bins,
                         'min': min,
                         'max': max
                     })
Q
Qi Li 已提交
1621
    return out
S
smallv0221 已提交
1622 1623 1624 1625


def bincount(x, weights=None, minlength=0, name=None):
    """
1626
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1654 1655 1656
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1657
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1670 1671 1672 1673 1674 1675 1676
    helper.append_op(type='bincount',
                     inputs={
                         'X': x,
                         'Weights': weights
                     },
                     outputs={'Out': out},
                     attrs={'minlength': minlength})
S
smallv0221 已提交
1677
    return out
1678 1679 1680 1681 1682 1683 1684


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1685
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1686
            should be one of float32, float64.
F
furnace 已提交
1687
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1703 1704
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1705
            out = paddle.mv(x, vec)
1706 1707 1708
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1709
    """
J
Jiabin Yang 已提交
1710
    if in_dygraph_mode():
1711
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1712 1713
    else:
        if _in_legacy_dygraph():
1714
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1715 1716
            return out
        else:
1717

J
Jiabin Yang 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1727 1728
                        "x should be 2-dimensional. But received x's dimention: {}"
                        .format(x_shape))
J
Jiabin Yang 已提交
1729 1730
                if len(vec_shape) != 1:
                    raise ValueError(
1731 1732
                        "vec should be 1-dimensional. But received vec's dimention: {}"
                        .format(vec_shape))
J
Jiabin Yang 已提交
1733 1734 1735 1736 1737

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1738 1739 1740 1741 1742 1743
            helper.append_op(type='mv',
                             inputs={
                                 'X': x,
                                 'Vec': vec
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
1744
            return out
1745 1746


1747
def det(x, name=None):
H
huangxu96 已提交
1748 1749
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1750

H
huangxu96 已提交
1751
    Args:
1752 1753 1754 1755
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1756
    Returns:
1757
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1758

1759
    Examples:
H
huangxu96 已提交
1760 1761
        .. code-block:: python

1762
            import paddle
H
huangxu96 已提交
1763

1764
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1765

1766
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1767

1768
            print(A)
1769

1770
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1771

1772

H
huangxu96 已提交
1773
    """
C
chentianyu03 已提交
1774
    if in_dygraph_mode():
1775
        return _C_ops.det(x)
C
chentianyu03 已提交
1776 1777

    if _in_legacy_dygraph():
1778
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1796 1797 1798
    helper.append_op(type='determinant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1799 1800 1801
    return out


1802
def slogdet(x, name=None):
H
huangxu96 已提交
1803 1804 1805
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1806

H
huangxu96 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1818
    Examples:
1819
        .. code-block:: python
H
huangxu96 已提交
1820

1821
            import paddle
H
huangxu96 已提交
1822

1823
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1824

1825
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1826

1827
            print(A)
1828

1829 1830
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1831 1832

    """
1833
    if in_dygraph_mode():
1834
        return _C_ops.slogdet(x)
1835 1836

    elif paddle.in_dynamic_mode():
1837
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1855 1856 1857
    helper.append_op(type='slogdeterminant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1858 1859 1860
    return out


1861 1862
def svd(x, full_matrices=False, name=None):
    r"""
1863 1864 1865 1866 1867
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1868 1869
        X = U * diag(S) * VT

1870 1871
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1872
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1873 1874 1875 1876
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1877
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1878
            If full_matrices = False, svd op will use a economic method to store U and V.
1879
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1880
        name (str, optional): Name for the operation (optional, default is None).
1881
            For more information, please refer to :ref:`api_guide_Name`.
1882 1883

    Returns:
1884
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1885

1886 1887 1888 1889
    Examples:
        .. code-block:: python

            import paddle
1890 1891 1892

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1893
            u, s, vh = paddle.linalg.svd(x)
1894 1895 1896 1897 1898
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1899
            print (s)
1900
            #S = [8.14753743, 0.78589688]
1901
            print (vh)
1902 1903
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1904

1905
            # one can verify : U * S * VT == X
1906
            #                  U * UH == I
1907
            #                  V * VH == I
1908
    """
1909
    if in_dygraph_mode():
1910
        return _C_ops.svd(x, full_matrices)
1911
    if _in_legacy_dygraph():
1912
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
1924 1925 1926 1927 1928 1929 1930
        outputs={
            'U': u,
            'VH': vh,
            'S': s
        },
        attrs=attrs,
    )
1931 1932 1933
    return u, s, vh


1934 1935 1936
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1937

1938 1939 1940 1941 1942
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1943

1944 1945
    Specifically,

1946
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1947

1948 1949
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1950
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1951 1952 1953 1954 1955 1956

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1957
        name (str, optional): Name for the operation (optional, default is None).
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1972
            print(paddle.linalg.matrix_power(x, 2))
1973 1974 1975 1976
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1977
            print(paddle.linalg.matrix_power(x, 0))
1978 1979 1980 1981
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1982
            print(paddle.linalg.matrix_power(x, -2))
1983 1984 1985 1986
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
1987
    if in_dygraph_mode():
1988
        return _C_ops.matrix_power(x, n)
H
hong 已提交
1989 1990

    if _in_legacy_dygraph():
1991
        return _legacy_C_ops.matrix_power(x, "n", n)
1992 1993 1994 1995 1996

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1997 1998 1999 2000
    helper.append_op(type='matrix_power',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'n': n})
2001
    return out
2002 2003


2004 2005 2006 2007 2008 2009 2010
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2011 2012
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2013
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2014
            If mode = "reduced", qr op will return reduced Q and R matrices,
2015
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2016
            If mode = "complete", qr op will return complete Q and R matrices,
2017 2018 2019 2020 2021
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2022

2023
    Returns:
2024
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2025
        If mode = "r", qr will return a tensor which represents R.
2026 2027

    Examples:
2028 2029
        .. code-block:: python

2030
            import paddle
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2043 2044

            # one can verify : X = Q * R ;
2045
    """
Y
Yulong Ao 已提交
2046
    if in_dygraph_mode():
2047
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2048 2049 2050 2051 2052
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2053
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2065 2066 2067 2068 2069 2070 2071
    helper.append_op(type='qr',
                     inputs={'X': [x]},
                     outputs={
                         'Q': q,
                         'R': r
                     },
                     attrs=attrs)
2072 2073 2074 2075 2076 2077
    if mode == "r":
        return r
    else:
        return q, r


2078 2079
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2080
    Computes the LU factorization of an N-D(N>=2) matrix x.
2081

2082
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2083 2084 2085 2086
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2087 2088 2089 2090 2091 2092

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2104

2105
    Returns:
2106
        factorization (Tensor), LU matrix, the factorization of input X.
2107

2108 2109 2110
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2111

2112 2113 2114
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2115

2116 2117

    Examples:
2118 2119
        .. code-block:: python

2120
            import paddle
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2136

2137 2138 2139 2140 2141 2142
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2143
            # [1., 0., 0.]]),
2144 2145 2146 2147
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2148
            # [0.60000000, 0.50000000]]),
2149 2150 2151 2152 2153
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2154 2155

            # one can verify : X = P @ L @ U ;
2156
    """
L
Lin Manhui 已提交
2157 2158

    if in_dygraph_mode():
2159
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2160
    elif paddle.in_dynamic_mode():
2161
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
        helper.append_op(type='lu',
                         inputs={'X': x},
                         outputs={
                             'Out': lu,
                             'Pivots': p,
                             'Infos': info
                         },
                         attrs=attrs)
2178 2179 2180 2181 2182 2183 2184 2185
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2186
    Unpack L U and P to single matrix tensor .
2187 2188 2189
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2190 2191 2192 2193 2194

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2208

2209
    Returns:
2210
        P (Tensor), Permutation matrix P of lu factorization.
2211

2212
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2213

2214
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2215

2216 2217

    Examples:
2218 2219
        .. code-block:: python

2220
            import paddle
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2236

2237 2238 2239 2240 2241 2242
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2243
            # [1., 0., 0.]]),
2244 2245 2246 2247
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2248
            # [0.60000000, 0.50000000]]),
2249 2250 2251 2252 2253
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2254
            # one can verify : X = P @ L @ U ;
2255 2256
    """

2257
    if in_dygraph_mode():
2258
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2259 2260
        return P, L, U

Z
zhiboniu 已提交
2261
    if paddle.in_dynamic_mode():
2262 2263
        P, L, U = _legacy_C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                          'unpack_pivots', unpack_pivots)
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    helper.append_op(type='lu_unpack',
                     inputs={
                         'X': x,
                         'Pivots': y
                     },
                     outputs={
                         'Pmat': p,
                         'L': l,
                         'U': u
                     },
                     attrs=attrs)
2286 2287 2288
    return p, l, u


L
Lijunhui 已提交
2289 2290
def eig(x, name=None):
    """
2291
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2292

2293 2294 2295 2296 2297 2298
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2299 2300 2301 2302

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2303
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2317
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2318
                               [9.956216,  8.749598,  6.066444 ],
2319
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2320
            w, v = paddle.linalg.eig(x)
2321
            print(v)
L
Lijunhui 已提交
2322 2323 2324 2325 2326 2327 2328 2329
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2330
            print(w)
L
Lijunhui 已提交
2331 2332 2333 2334
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2335
    if in_dygraph_mode():
2336
        return _C_ops.eig(x)
2337
    elif paddle.in_dynamic_mode():
2338
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2339 2340
        return w, v

2341 2342 2343
    check_variable_and_dtype(x, 'X',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eig')
L
Lijunhui 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2356 2357 2358
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2359 2360 2361

    Warning:
        The gradient kernel of this operator does not yet developed.
2362 2363 2364 2365
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2366
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2367
            Its data type should be float32, float64, complex64, or complex128.
2368
        name (str, optional): Name for the operation (optional, default is None).
2369
            For more information, please refer to :ref:`api_guide_Name`.
2370

2371
    Returns:
2372 2373
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2374 2375 2376 2377 2378

    Examples:
        .. code-block:: python

            import paddle
2379

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2393 2394
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvals')
2395 2396 2397 2398

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2399 2400
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}"
            .format(len(x_shape), x_shape))
2401 2402 2403

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2404 2405
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}"
            .format(x_shape))
2406

R
Ruibiao Chen 已提交
2407
    if in_dygraph_mode():
2408
        return _C_ops.eigvals(x)
2409 2410
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2411 2412 2413 2414 2415 2416 2417

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2418 2419 2420 2421
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2422
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        # A * B
2460 2461
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2462
        out = paddle.linalg.multi_dot([A, B])
2463
        print(out.shape)
2464 2465 2466
        # [3, 5]

        # A * B * C
2467 2468 2469
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2470
        out = paddle.linalg.multi_dot([A, B, C])
2471
        print(out.shape)
2472 2473 2474
        # [10, 7]

    """
2475
    if _in_legacy_dygraph():
2476
        return _legacy_C_ops.multi_dot(x)
2477
    if in_dygraph_mode():
2478
        return _C_ops.multi_dot(x)
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2493 2494 2495 2496


def eigh(x, UPLO='L', name=None):
    """
2497
    Compute the eigenvalues and eigenvectors of a
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2509 2510 2511 2512
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2513 2514 2515 2516 2517 2518

    Examples:
        .. code-block:: python

            import paddle

2519
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2520
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2521 2522 2523 2524 2525 2526 2527
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2528
    if in_dygraph_mode():
2529
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2530 2531

    if _in_legacy_dygraph():
2532
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2533 2534 2535 2536 2537 2538 2539 2540 2541

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2542 2543
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
2544
        if UPLO != 'L' and UPLO != 'U':
2545 2546 2547 2548 2549 2550
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2551 2552 2553
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigh')
2554 2555 2556 2557

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2558 2559 2560 2561 2562 2563 2564
    helper.append_op(type='eigh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={'UPLO': UPLO})
2565
    return out_value, out_vector
A
andyjpaddle 已提交
2566 2567 2568 2569


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2570
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2581

A
andyjpaddle 已提交
2582 2583 2584
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2585 2586 2587
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2588 2589 2590 2591
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2592
        rcond(Tensor, optional): the tolerance value to determine
2593
            when is a singular value zero. Default:1e-15.
2594 2595

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2596
            if complex or symmetric if real. Default: False.
2597 2598

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2599
            the layer will be named automatically.
2600

A
andyjpaddle 已提交
2601
    Returns:
2602
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2603
        pseudo inverse of x. Its shape should be (*, n, m).
2604

A
andyjpaddle 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2631 2632 2633
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2634 2635
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2636 2637 2638 2639
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2640

2641 2642 2643 2644 2645 2646
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2647
            st = _C_ops.unsqueeze(singular, [-2])
2648 2649 2650

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2651
            v = _C_ops.transpose(vt, perm)
2652 2653

            out_1 = v * st
2654
            out_2 = _C_ops.matmul(out_1, u, False, True)
2655 2656 2657
            return out_2
        else:
            # combine eigh and matmul op
2658
            s, u = _C_ops.eigh(x, 'UPLO')
2659
            s_abs = paddle.abs(s)
2660
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2672
            st = _C_ops.unsqueeze(singular, [-2])
2673 2674

            out_1 = u * st
2675 2676
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2677 2678 2679
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2680 2681
        if not hermitian:
            # combine svd and matmul op
2682 2683
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _legacy_C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2684 2685 2686 2687 2688 2689 2690
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2691 2692 2693 2694 2695
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2696
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2697 2698 2699

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2700
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2701 2702

            out_1 = v * st
2703
            if in_dygraph_mode():
2704
                out_2 = _C_ops.matmul(out_1, u, False, True)
2705
            else:
2706 2707
                out_2 = _legacy_C_ops.matmul_v2(out_1, u, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2708 2709 2710
            return out_2
        else:
            # combine eigh and matmul op
2711
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2712
            s_abs = paddle.abs(s)
2713
            max_singular_val = _legacy_C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2714 2715 2716 2717 2718 2719 2720
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2721 2722 2723 2724 2725
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2726
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2727 2728

            out_1 = u * st
2729
            u_conj = _legacy_C_ops.conj(u)
2730
            if in_dygraph_mode():
2731
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2732
            else:
2733 2734
                out_2 = _legacy_C_ops.matmul_v2(out_1, u_conj, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2748 2749 2750 2751 2752 2753 2754
                outputs={
                    'U': u,
                    'VH': vt,
                    'S': s
                },
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2755 2756

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2757 2758 2759 2760 2761 2762 2763 2764
            helper.append_op(type='reduce_max',
                             inputs={'X': s},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2765

2766
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2767 2768
            cutoff = rcond * max_singular_val
            y = float('inf')
2769
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2770 2771

            condition = s > cutoff
2772 2773 2774 2775 2776
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2777 2778 2779

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2780 2781 2782 2783 2784 2785 2786
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2787 2788 2789 2790 2791

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2792 2793 2794 2795 2796 2797 2798
            helper.append_op(type='transpose2',
                             inputs={'X': [vt]},
                             outputs={
                                 'Out': [v],
                                 'XShape': [v_shape]
                             },
                             attrs={'axis': perm})
A
andyjpaddle 已提交
2799 2800

            out_1 = helper.create_variable_for_type_inference(dtype)
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': v,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2811 2812 2813 2814 2815
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2816 2817 2818 2819
                inputs={
                    'X': out_1,
                    'Y': u
                },
A
andyjpaddle 已提交
2820
                outputs={'Out': out_2},
2821 2822 2823 2824 2825
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2826 2827 2828 2829 2830
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2831 2832
                x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'],
                'pinv')
A
andyjpaddle 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2843 2844 2845 2846 2847 2848 2849
            helper.append_op(type='eigh',
                             inputs={'X': x},
                             outputs={
                                 'Eigenvalues': s,
                                 'Eigenvectors': u
                             },
                             attrs={'UPLO': 'L'})
A
andyjpaddle 已提交
2850
            s_abs = helper.create_variable_for_type_inference(s_type)
2851 2852 2853
            helper.append_op(type='abs',
                             inputs={'X': s},
                             outputs={'Out': s_abs})
A
andyjpaddle 已提交
2854
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2855 2856 2857 2858 2859 2860 2861 2862
            helper.append_op(type='reduce_max',
                             inputs={'X': s_abs},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2863

2864
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2865 2866
            cutoff = rcond * max_singular_val
            y = float('inf')
2867
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2868 2869

            condition = s_abs > cutoff
2870 2871 2872 2873 2874
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2875 2876 2877

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2878 2879 2880 2881 2882 2883 2884
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2885 2886

            out_1 = helper.create_variable_for_type_inference(dtype)
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': u,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2897 2898 2899
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2900 2901 2902
            helper.append_op(type='conj',
                             inputs={'X': u},
                             outputs={'Out': [u_conj]})
A
andyjpaddle 已提交
2903 2904 2905 2906

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2907 2908 2909 2910
                inputs={
                    'X': out_1,
                    'Y': u_conj
                },
A
andyjpaddle 已提交
2911
                outputs={'Out': out_2},
2912 2913 2914 2915 2916
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2917
            return out_2
W
Weilong Wu 已提交
2918 2919 2920 2921 2922 2923 2924


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2925

W
Weilong Wu 已提交
2926 2927
    .. math::
        Out = X^-1 * Y
2928 2929

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2930

W
Weilong Wu 已提交
2931 2932 2933 2934 2935
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2936
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2937
            For more information, please refer to :ref:`api_guide_Name`.
2938

W
Weilong Wu 已提交
2939
    Returns:
2940
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2941
        Its data type should be the same as that of `x`.
2942

W
Weilong Wu 已提交
2943
    Examples:
2944

2945
        .. code-block:: python
2946

2947 2948 2949
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2950

2951 2952 2953 2954 2955
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2956

2957 2958
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2959
    """
2960
    if in_dygraph_mode():
2961
        return _C_ops.solve(x, y)
2962 2963

    if _in_legacy_dygraph():
2964
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
2965 2966 2967 2968 2969 2970 2971

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2972 2973 2974 2975 2976 2977
    helper.append_op(type="solve",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     outputs={"Out": out})
W
Weilong Wu 已提交
2978
    return out
2979 2980


2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2997
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2998
            zero or more batch dimensions. Its data type should be float32 or float64.
2999
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3000 3001
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3002
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3003 3004 3005 3006 3007 3008 3009 3010
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3011
        .. code-block:: python
3012

3013 3014 3015 3016
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3017

3018 3019
            import paddle
            import numpy as np
3020

3021 3022 3023 3024 3025
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3026

3027 3028
            print(out)
            # [7, -2, -5]
3029
    """
H
hong 已提交
3030
    if in_dygraph_mode():
3031
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3032

Z
zhiboniu 已提交
3033
    if paddle.in_dynamic_mode():
3034 3035 3036
        return _legacy_C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                              transpose, 'unitriangular',
                                              unitriangular)
3037 3038 3039 3040 3041 3042 3043

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
    helper.append_op(type='triangular_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'upper': upper,
                         'transpose': transpose,
                         'unitriangular': unitriangular
                     })
3055 3056 3057
    return out


Z
zhiboniu 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3068
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3078
        .. code-block:: python
Z
zhiboniu 已提交
3079

3080
            import paddle
Z
zhiboniu 已提交
3081

3082 3083 3084 3085 3086
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3087

3088 3089
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3090
    """
H
hong 已提交
3091
    if in_dygraph_mode():
3092
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3093 3094

    if _in_legacy_dygraph():
3095
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3096 3097 3098 3099 3100 3101

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3102 3103 3104 3105 3106 3107 3108
    helper.append_op(type='cholesky_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={'upper': upper})
Z
zhiboniu 已提交
3109 3110 3111
    return out


3112 3113
def eigvalsh(x, UPLO='L', name=None):
    """
3114
    Computes the eigenvalues of a
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
            #[0.17157288, 5.82842712]
    """
3139
    if in_dygraph_mode():
3140
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3141 3142 3143
        return values

    elif paddle.in_dynamic_mode():
3144
        is_test = x.stop_gradient
3145
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3156 3157
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
3158
        if UPLO != 'L' and UPLO != 'U':
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
    helper.append_op(type='eigvalsh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={
                         'UPLO': UPLO,
                         'is_test': is_test
                     })
3183
    return out_value
3184 3185


3186 3187 3188 3189 3190 3191 3192 3193
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3194
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3195
            should be one of float32, float64.
3196 3197
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3198
            machine precision of x_dtype.
3199 3200 3201
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3202
            for CUDA inputs.
3203
        name(str, optional): The default value is None. Normally there is no need for user to set
3204 3205 3206
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3207 3208 3209 3210 3211 3212 3213
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3246 3247 3248
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3249 3250
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}"
                .format(driver))
3251 3252 3253 3254
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3255 3256
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}"
                .format(driver))
3257 3258 3259 3260
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3274
    if _non_static_mode():
3275
        if in_dygraph_mode():
3276
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3277
                x, y, rcond, driver)
3278
        else:
3279
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3280
                x, y, 'rcond', rcond, 'driver', driver)
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3291 3292 3293 3294 3295 3296
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
    check_variable_and_dtype(y, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
3297 3298 3299 3300 3301 3302

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3303 3304 3305 3306 3307 3308 3309
    helper.append_op(type='lstsq',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Solution': solution,
3310
                         'Residuals': residuals,
3311 3312 3313 3314 3315 3316 3317
                         'Rank': rank,
                         'SingularValues': singular_values
                     },
                     attrs={
                         'rcond': rcond,
                         'driver': driver
                     })
3318 3319 3320 3321 3322 3323 3324 3325

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3326 3327 3328 3329


def corrcoef(x, rowvar=True, name=None):
    """
3330

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3354

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
    if (c.ndim == 0):
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3388 3389
        return paddle.complex(paddle.clip(c.real(), -1, 1),
                              paddle.clip(c.imag(), -1, 1))
3390 3391 3392 3393
    else:
        c = paddle.clip(c, -1, 1)

    return c