linalg.py 127.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _non_static_mode, in_dygraph_mode
18 19 20 21 22
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
Z
zhiboniu 已提交
23
from ..static import Variable
24 25
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
26 27 28
from .math import multiply, add
from .logic import logical_not
from .creation import full
29

A
andyjpaddle 已提交
30
import paddle
31
from paddle.common_ops_import import VarDesc
32
from paddle import _C_ops, _legacy_C_ops
33

34 35
__all__ = []

36 37 38
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
91
        return _C_ops.transpose(x, perm)
92 93
    else:
        if _in_legacy_dygraph():
94
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
95 96
            return out

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
112 113 114 115 116 117 118 119
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
120 121
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
122 123 124 125 126
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
127 128
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
129 130 131 132

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
133 134 135 136 137 138
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
139 140 141
    return out


S
ShenLiang 已提交
142
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
143
    """
144 145
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
146
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
147

S
ShenLiang 已提交
148 149
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
150 151 152 153 154

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
155 156
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
157 158 159 160 161 162 163 164
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

165 166
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
167
      After the matrix multiply, the prepended dimension is removed.
168 169

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
170 171
      the matrix-vector product is obtained.

172 173 174 175 176 177 178 179 180
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
181
      out will be a (j, k, n, p) tensor.
182 183

    Args:
S
ShenLiang 已提交
184 185
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
186 187 188 189 190 191
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
192
        Tensor: The output Tensor.
193 194 195

    Examples:

C
Chen Long 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
234 235

    """
236
    if in_dygraph_mode():
237
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
238 239 240

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
241
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
242 243
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

244
    attrs = {
S
ShenLiang 已提交
245 246
        'trans_x': transpose_x,
        'trans_y': transpose_y,
247 248 249 250 251
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
252
            check_variable_and_dtype(
253 254
                val,
                name,
255
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
256 257
                'matmul',
            )
258 259 260

    __check_input(x, y)

S
ShenLiang 已提交
261
    helper = LayerHelper('matmul_v2', **locals())
262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
263 264 265 266 267 268
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
269
    return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
376
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
377
            if dim is None:
378 379 380 381 382 383
                return _legacy_C_ops.frobenius_norm(
                    input, 'keep_dim', keepdim, 'reduce_all', True
                )
            return _legacy_C_ops.frobenius_norm(
                input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False
            )
myq406450149's avatar
myq406450149 已提交
384 385
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
386
            attrs['reduce_all'] = True
387 388 389
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'frobenius_norm'
        )
390 391

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
392
        out = helper.create_variable_for_type_inference(
393 394
            dtype=helper.input_dtype()
        )
395

396 397 398 399 400 401
        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
402 403
        return out

404 405 406
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
407 408 409 410 411 412 413 414
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
415
        if in_dygraph_mode():
416 417
            if axis is None:
                axis = -1
418
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
419 420

        if _in_legacy_dygraph():
421 422 423 424 425 426 427 428 429 430 431 432 433
            if axis is None:
                axis = -1
            return _legacy_C_ops.p_norm(
                input,
                'porder',
                porder,
                'axis',
                axis,
                'keepdim',
                keepdim,
                'asvector',
                asvector,
            )
434

435 436 437 438
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
439 440 441
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'p_norm'
        )
myq406450149's avatar
myq406450149 已提交
442

443 444 445 446
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
447
            'asvector': asvector,
448 449 450
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
451
        out = helper.create_variable_for_type_inference(
452 453
            dtype=helper.input_dtype()
        )
454

455 456 457 458 459 460
        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
461 462
        return out

463 464 465
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
466
        if in_dygraph_mode():
467
            out = _C_ops.abs(input)
468
            reduce_all = (
469
                True if axis is None or axis == [] or asvector else False
470
            )
471
            axis = axis if axis is not None and axis != [] else [0]
472 473 474
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
475
                return _C_ops.max(out, axis, keepdim)
476
            else:
477
                return _C_ops.min(out, axis, keepdim)
478

O
OccupyMars2025 已提交
479
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
480
        out = helper.create_variable_for_type_inference(
481 482
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
483 484
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
485 486
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
487

488 489
        reduce_all = True if axis is None or axis == [] or asvector else False
        axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
490

491 492 493 494 495 496 497 498 499
        reduce_type = (
            'reduce_max' if porder == np.float64('inf') else 'reduce_min'
        )
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
myq406450149's avatar
myq406450149 已提交
500 501 502

        return reduce_out

503
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
504 505 506 507
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
508
        if in_dygraph_mode():
509 510 511
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
512
            out = _C_ops.pow(sum_out, float(1.0 / porder))
513 514
            return out

myq406450149's avatar
myq406450149 已提交
515 516
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
517 518
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
519
        abs_out = block.create_variable_for_type_inference(
520 521 522 523 524
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
525
        pow_out = block.create_variable_for_type_inference(
526 527
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
528

529 530 531 532 533 534
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
535
        sum_out = block.create_variable_for_type_inference(
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
554 555
        return out

556 557 558
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
559
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
560 561
            else:
                raise ValueError(
562 563
                    "only valid string values are 'fro', found {}".format(p)
                )
564
        elif isinstance(p, (int, float)):
565 566 567 568 569 570 571 572
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
573
        else:
574
            raise ValueError(
575 576
                "only valid p type is string or float, found {}".format(type(p))
            )
577

myq406450149's avatar
myq406450149 已提交
578 579
    if isinstance(axis, tuple):
        axis = list(axis)
580 581 582
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

583
    # calculate vector norm, where axis is int or list with only one integer
584
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
585 586
        if isinstance(p, str):
            if p == "fro":
587 588 589 590 591 592 593 594
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
595 596 597

            else:
                raise ValueError(
598 599
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
600
        elif isinstance(p, (int, float)):
601 602 603 604 605 606 607 608
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
609 610
        else:
            raise ValueError(
611 612 613 614 615
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
616 617
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
618 619 620
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
621 622
        elif p == 0:
            raise ValueError(
623 624 625 626
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
627
        else:
628 629 630
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
631 632
    else:
        raise ValueError(
633 634 635 636
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
637 638


639
def dist(x, y, p=2, name=None):
640
    r"""
S
swtkiwi 已提交
641

Z
Zhang Ting 已提交
642
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
643 644
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
669 670 671 672 673 674 675

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
676
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
677 678 679 680 681

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
682
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
683 684 685 686 687 688 689 690 691 692 693 694

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
695 696
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
697 698 699
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
700
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
701 702 703 704 705 706

    Examples:
        .. code-block:: python

            import paddle

707 708
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
709 710
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
711

712 713
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
714

715 716
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
717

718 719
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
720
    """
H
hong 已提交
721
    if in_dygraph_mode():
722
        return _C_ops.dist(x, y, p)
H
hong 已提交
723

Z
Zhang Ting 已提交
724 725 726 727 728 729 730 731 732
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
733 734 735
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
736
    return out
L
liuwei1031 已提交
737 738


739 740 741 742 743 744
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
745 746
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
765 766
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
767 768 769

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
770 771
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
772 773 774

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
775 776
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
777 778 779

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
780 781
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
782 783 784

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
785 786
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
787 788 789

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
790 791
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
792 793 794

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
795 796
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
797 798

            # compute conditional number when order of the norm is inf
799 800 801
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
802 803

            # compute conditional number when order of the norm is -inf
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

820
            a_cond_fro = paddle.linalg.cond(a, p='fro')
821 822 823 824 825 826 827 828 829 830 831 832
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
833
            b_cond_2 = paddle.linalg.cond(b, p=2)
834 835
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
836 837 838

    """

839
    def mat_norm(input, porder=1.0, axis=None):
840 841 842 843 844 845
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
846
        axis = axis if axis is not None and axis != [] else [0]
847 848
        keepdim = False

849 850 851 852 853 854 855 856 857 858 859
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
860 861 862 863 864 865 866 867 868
            sum_out = _legacy_C_ops.reduce_sum(
                abs_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
869
            if porder == 1 or porder == np.inf:
870 871 872 873 874 875 876 877 878
                return _legacy_C_ops.reduce_max(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
879
            if porder == -1 or porder == -np.inf:
880 881 882 883 884 885 886 887 888
                return _legacy_C_ops.reduce_min(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
889 890 891
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
892 893
                dtype=block.input_dtype()
            )
894
            sum_out = block.create_variable_for_type_inference(
895 896
                dtype=block.input_dtype()
            )
897
            out = block.create_variable_for_type_inference(
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
913
            if porder == 1 or porder == np.inf:
914 915 916 917 918 919 920 921 922 923
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
924
            if porder == -1 or porder == -np.inf:
925 926 927 928 929 930 931 932 933 934
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
935
            return out
936 937 938 939 940 941 942 943 944

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

945
        if in_dygraph_mode():
946
            pow_out = _C_ops.pow(input, porder)
947 948
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
949
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
950
        elif paddle.in_dynamic_mode():
951
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
            sum_out_1 = _legacy_C_ops.reduce_sum(
                pow_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            sum_out_2 = _legacy_C_ops.reduce_sum(
                sum_out_1,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1.0 / porder))
971 972 973

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
974 975
            dtype=block.input_dtype()
        )
976
        sum_out_1 = block.create_variable_for_type_inference(
977 978
            dtype=block.input_dtype()
        )
979
        sum_out_2 = block.create_variable_for_type_inference(
980 981
            dtype=block.input_dtype()
        )
982
        out = block.create_variable_for_type_inference(
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            dtype=block.input_dtype()
        )
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

1022
        if _non_static_mode():
1023
            if porder == "nuc":
1024
                if in_dygraph_mode():
1025
                    return _C_ops.sum(s, axis, None, keepdim)
1026
                else:
1027 1028 1029 1030 1031 1032 1033 1034 1035
                    return _legacy_C_ops.reduce_sum(
                        s,
                        'dim',
                        axis,
                        'keepdim',
                        keepdim,
                        'reduce_all',
                        reduce_all,
                    )
1036 1037 1038 1039
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
1040
                    return _C_ops.divide(max_out, min_out)
1041
                if porder == -2:
1042
                    return _C_ops.divide(min_out, max_out)
1043 1044

            else:
1045 1046 1047 1048 1049 1050
                max_out = _legacy_C_ops.reduce_max(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
                min_out = _legacy_C_ops.reduce_min(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
1051 1052
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
1053 1054
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False
                    )
1055 1056
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
1057 1058
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False
                    )
1059 1060 1061

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
1062 1063
            dtype=block.input_dtype()
        )
1064
        if porder == "nuc":
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
1075 1076
            return out
        max_out = block.create_variable_for_type_inference(
1077 1078
            dtype=block.input_dtype()
        )
1079
        min_out = block.create_variable_for_type_inference(
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
1094
        if porder == 2:
1095 1096 1097 1098 1099 1100
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out, 'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1101 1102
            return out
        if porder == -2:
1103 1104 1105 1106 1107 1108
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out, 'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1109 1110 1111
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1112
        if paddle.in_dynamic_mode():
1113 1114 1115 1116 1117
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1118
        raise ValueError(
1119 1120 1121
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1122
    if p is None:
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1135
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1136 1137
                    x_inv, porder=p, axis=[-2]
                )
1138
            if p in (np.inf, -np.inf):
1139
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1140 1141
                    x_inv, porder=p, axis=[-1]
                )
1142
        else:
1143 1144 1145 1146
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1147 1148 1149 1150 1151 1152
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1153 1154 1155
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1156 1157


L
liuwei1031 已提交
1158 1159 1160
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1161

1162
    Note:
1163 1164
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1165 1166

    Parameters:
S
ShenLiang 已提交
1167 1168
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1169 1170
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1171
    Returns:
1172
        Tensor: the calculated result Tensor.
1173

L
liuwei1031 已提交
1174 1175 1176 1177 1178
    Examples:

    .. code-block:: python

        import paddle
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1189
        z = paddle.dot(x, y)
1190
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1191 1192

    """
1193 1194
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1195 1196
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1197

L
liuwei1031 已提交
1198
    op_type = 'dot'
1199

L
liuwei1031 已提交
1200 1201 1202
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

1203 1204 1205 1206 1207 1208
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
    )
    check_variable_and_dtype(
        y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
    )
L
liuwei1031 已提交
1209 1210 1211 1212 1213

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1214 1215 1216 1217 1218 1219
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
    helper.append_op(
        type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
    )
L
liuwei1031 已提交
1220
    return out
1221 1222


Z
zhiboniu 已提交
1223 1224 1225 1226 1227
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1228
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1262 1263
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1277 1278
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1279 1280 1281
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1282 1283 1284 1285
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1286 1287 1288
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1289 1290
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1291 1292 1293 1294 1295 1296 1297 1298
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1299 1300 1301 1302 1303
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1304 1305 1306
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1307 1308 1309 1310
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1311 1312 1313
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1314 1315
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1334
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1346 1347
def t(input, name=None):
    """
1348 1349
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1350
    the paddle.transpose function which perm dimensions set 0 and 1.
1351

1352
    Args:
1353
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1354
        name(str, optional): The default value is None.  Normally there is no need for
1355 1356
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1357
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1358

1359
    Examples:
1360

1361 1362 1363
        .. code-block:: python
           :name: code-example
             import paddle
1364

1365
             # Example 1 (0-D tensor)
1366 1367
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1368

1369
             # Example 2 (1-D tensor)
1370 1371 1372
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1373 1374

             # Example 3 (2-D tensor)
1375 1376 1377 1378 1379 1380 1381 1382
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1383

1384 1385 1386 1387 1388
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1389 1390
            "tensor.transpose() instead." % len(input.shape)
        )
1391 1392 1393 1394 1395
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1396
        out = _C_ops.transpose(input, perm)
1397 1398 1399
        return out

    if _in_legacy_dygraph():
1400 1401 1402 1403
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1404
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1405 1406 1407
        return out

    check_variable_and_dtype(
1408 1409 1410 1411 1412
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose',
    )
1413 1414 1415 1416 1417 1418 1419

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1420 1421 1422 1423 1424 1425
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': [1, 0]},
        )
1426
    return out
1427 1428


W
wanghuancoder 已提交
1429
def cross(x, y, axis=9, name=None):
1430
    """
1431
    Computes the cross product between two tensors along an axis.
1432

1433 1434
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1435

1436
    Args:
1437 1438
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1439
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1440
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1441 1442

    Returns:
1443
        Tensor. A Tensor with same data type as `x`.
1444

1445 1446
    Examples:
        .. code-block:: python
1447

1448
            import paddle
1449

Z
Zhou Wei 已提交
1450 1451 1452 1453 1454 1455
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1466
    """
J
Jiabin Yang 已提交
1467
    if in_dygraph_mode():
1468
        axis = K_DEFAULT_DIM if axis is None else axis
1469
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1470 1471 1472
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1473
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1474
            else:
1475
                return _legacy_C_ops.cross(x, y)
1476
        else:
J
Jiabin Yang 已提交
1477 1478 1479 1480 1481
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1482 1483 1484 1485 1486 1487
            helper.append_op(
                type='cross',
                inputs={'X': x, 'Y': y},
                outputs={'Out': out},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1488
            return out
1489 1490


1491
def cholesky(x, upper=False, name=None):
1492
    r"""
G
Guo Sheng 已提交
1493
    Computes the Cholesky decomposition of one symmetric positive-definite
1494 1495
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1496 1497 1498 1499 1500 1501
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1502
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1503 1504 1505 1506 1507
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1508 1509
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1510 1511

    Returns:
1512 1513
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1514

G
Guo Sheng 已提交
1515 1516 1517 1518 1519
    Examples:
        .. code-block:: python

            import paddle

1520 1521 1522 1523
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1524
            out = paddle.linalg.cholesky(x, upper=False)
1525
            print(out)
G
Guo Sheng 已提交
1526
    """
H
hong 已提交
1527
    if in_dygraph_mode():
1528
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1529 1530

    if _in_legacy_dygraph():
1531
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1532

G
Guo Sheng 已提交
1533 1534 1535 1536
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1537 1538 1539 1540 1541 1542
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
G
Guo Sheng 已提交
1543 1544 1545
    return out


1546 1547 1548 1549
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1550
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1551
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1552 1553

    Args:
1554 1555 1556 1557
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1558
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1559 1560
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1561
            the lower triangular of the matrix to compute.
1562 1563 1564 1565
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1583

1584
    """
1585 1586 1587 1588 1589 1590 1591
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1592 1593 1594
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1595

1596 1597 1598 1599 1600 1601
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1602
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1603 1604

    if _in_legacy_dygraph():
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        return _legacy_C_ops.matrix_rank(
            x,
            tol_tensor,
            "tol",
            tol_attr,
            'hermitian',
            hermitian,
            'use_default_tol',
            use_default_tol,
        )
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1652 1653 1654
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1655 1656 1657
    return out


1658 1659 1660 1661 1662 1663 1664 1665 1666
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1667 1668
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1669 1670 1671 1672
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1673
        Tensor: The product Tensor.
1674 1675

    Examples:
S
sunzhongkai588 已提交
1676 1677 1678
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1679

S
sunzhongkai588 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1689 1690 1691 1692 1693 1694
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1695

1696
    """
Y
yaoxuefeng 已提交
1697 1698 1699 1700
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1701 1702 1703 1704
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1705 1706
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1707 1708 1709 1710
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1711 1712
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1713 1714 1715 1716
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1717

1718
    if in_dygraph_mode():
1719
        return _C_ops.bmm(x, y)
1720

Z
zhiboniu 已提交
1721
    if paddle.in_dynamic_mode():
1722
        return _legacy_C_ops.bmm(x, y)
1723 1724

    helper = LayerHelper('bmm', **locals())
1725 1726 1727
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1728 1729


1730
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1731
    """
1732
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1733 1734 1735
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1736
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1737
            should be float32, float64, int32, int64.
1738 1739 1740 1741
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1742 1743

    Returns:
1744
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1745

1746
    Examples:
Q
Qi Li 已提交
1747
        .. code-block:: python
1748

Q
Qi Li 已提交
1749
            import paddle
1750

1751
            inputs = paddle.to_tensor([1, 2, 1])
1752 1753
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1754
    """
H
hong 已提交
1755
    if in_dygraph_mode():
1756
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1757 1758

    if _in_legacy_dygraph():
1759 1760 1761
        return _legacy_C_ops.histogram(
            input, "bins", bins, "min", min, "max", max
        )
Q
Qi Li 已提交
1762 1763

    helper = LayerHelper('histogram', **locals())
1764 1765 1766
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
    )
Q
Qi Li 已提交
1767
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1768 1769 1770 1771 1772 1773
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins, 'min': min, 'max': max},
    )
Q
Qi Li 已提交
1774
    return out
S
smallv0221 已提交
1775 1776 1777 1778


def bincount(x, weights=None, minlength=0, name=None):
    """
1779
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1807 1808 1809
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1810
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1811 1812 1813 1814 1815 1816

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
1817 1818 1819 1820 1821 1822
        check_variable_and_dtype(
            weights,
            'Weights',
            ['int32', 'int64', 'float32', 'float64'],
            'bincount',
        )
S
smallv0221 已提交
1823 1824 1825
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1826 1827 1828 1829 1830 1831
    helper.append_op(
        type='bincount',
        inputs={'X': x, 'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength},
    )
S
smallv0221 已提交
1832
    return out
1833 1834 1835 1836 1837 1838 1839


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1840
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1841
            should be one of float32, float64.
F
furnace 已提交
1842
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1858 1859
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1860
            out = paddle.mv(x, vec)
1861 1862 1863
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1864
    """
J
Jiabin Yang 已提交
1865
    if in_dygraph_mode():
1866
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1867 1868
    else:
        if _in_legacy_dygraph():
1869
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1870 1871
            return out
        else:
1872

J
Jiabin Yang 已提交
1873 1874 1875
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
1876 1877 1878
                    check_variable_and_dtype(
                        val, name, ['float32', 'float64'], 'mv'
                    )
J
Jiabin Yang 已提交
1879 1880 1881 1882
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1883 1884 1885 1886
                        "x should be 2-dimensional. But received x's dimention: {}".format(
                            x_shape
                        )
                    )
J
Jiabin Yang 已提交
1887 1888
                if len(vec_shape) != 1:
                    raise ValueError(
1889 1890 1891 1892
                        "vec should be 1-dimensional. But received vec's dimention: {}".format(
                            vec_shape
                        )
                    )
J
Jiabin Yang 已提交
1893 1894 1895 1896 1897

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1898 1899 1900
            helper.append_op(
                type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
            )
J
Jiabin Yang 已提交
1901
            return out
1902 1903


1904
def det(x, name=None):
H
huangxu96 已提交
1905 1906
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1907

H
huangxu96 已提交
1908
    Args:
1909 1910 1911 1912
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1913
    Returns:
1914
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1915

1916
    Examples:
H
huangxu96 已提交
1917 1918
        .. code-block:: python

1919
            import paddle
H
huangxu96 已提交
1920

1921
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1922

1923
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1924

1925
            print(A)
1926

1927
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1928

1929

H
huangxu96 已提交
1930
    """
C
chentianyu03 已提交
1931
    if in_dygraph_mode():
1932
        return _C_ops.det(x)
C
chentianyu03 已提交
1933 1934

    if _in_legacy_dygraph():
1935
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1936 1937 1938 1939

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
1940 1941 1942 1943
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1944

1945 1946 1947 1948 1949 1950
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1951 1952 1953
    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1954 1955 1956
    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1957 1958 1959
    return out


1960
def slogdet(x, name=None):
H
huangxu96 已提交
1961 1962 1963
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1964

H
huangxu96 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1976
    Examples:
1977
        .. code-block:: python
H
huangxu96 已提交
1978

1979
            import paddle
H
huangxu96 已提交
1980

1981
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1982

1983
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1984

1985
            print(A)
1986

1987 1988
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1989 1990

    """
1991
    if in_dygraph_mode():
1992
        return _C_ops.slogdet(x)
1993 1994

    elif paddle.in_dynamic_mode():
1995
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1996 1997 1998 1999

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
2000 2001 2002 2003
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
2004

2005 2006 2007 2008 2009 2010
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
2011 2012 2013
    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2014 2015 2016
    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
2017 2018 2019
    return out


2020 2021
def svd(x, full_matrices=False, name=None):
    r"""
2022 2023 2024 2025 2026
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
2027 2028
        X = U * diag(S) * VT

2029 2030
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
2031
            where `...` is zero or more batch dimensions. N and M can be arbitraty
2032 2033 2034 2035
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
2036
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
2037
            If full_matrices = False, svd op will use a economic method to store U and V.
2038
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
2039
        name (str, optional): Name for the operation (optional, default is None).
2040
            For more information, please refer to :ref:`api_guide_Name`.
2041 2042

    Returns:
2043
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2044

2045 2046 2047 2048
    Examples:
        .. code-block:: python

            import paddle
2049 2050 2051

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
2052
            u, s, vh = paddle.linalg.svd(x)
2053 2054 2055 2056 2057
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

2058
            print (s)
2059
            #S = [8.14753743, 0.78589688]
2060
            print (vh)
2061 2062
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
2063

2064
            # one can verify : U * S * VT == X
2065
            #                  U * UH == I
2066
            #                  V * VH == I
2067
    """
2068
    if in_dygraph_mode():
2069
        return _C_ops.svd(x, full_matrices)
2070
    if _in_legacy_dygraph():
2071
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
2083
        outputs={'U': u, 'VH': vh, 'S': s},
2084 2085
        attrs=attrs,
    )
2086 2087 2088
    return u, s, vh


2089 2090 2091
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
2092

2093 2094 2095 2096 2097
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2098

2099 2100
    Specifically,

2101
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
2102

2103 2104
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

2105
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
2106 2107 2108 2109 2110 2111

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2112
        name (str, optional): Name for the operation (optional, default is None).
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2127
            print(paddle.linalg.matrix_power(x, 2))
2128 2129 2130 2131
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2132
            print(paddle.linalg.matrix_power(x, 0))
2133 2134 2135 2136
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2137
            print(paddle.linalg.matrix_power(x, -2))
2138 2139 2140 2141
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2142
    if in_dygraph_mode():
2143
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2144 2145

    if _in_legacy_dygraph():
2146
        return _legacy_C_ops.matrix_power(x, "n", n)
2147 2148 2149 2150 2151

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2152 2153 2154 2155 2156 2157
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n},
    )
2158
    return out
2159 2160


2161 2162 2163 2164 2165 2166 2167
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2168 2169
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2170
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2171
            If mode = "reduced", qr op will return reduced Q and R matrices,
2172
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2173
            If mode = "complete", qr op will return complete Q and R matrices,
2174 2175 2176 2177 2178
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2179

2180
    Returns:
2181
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2182
        If mode = "r", qr will return a tensor which represents R.
2183 2184

    Examples:
2185 2186
        .. code-block:: python

2187
            import paddle
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2200 2201

            # one can verify : X = Q * R ;
2202
    """
Y
Yulong Ao 已提交
2203
    if in_dygraph_mode():
2204
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2205 2206 2207 2208 2209
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2210
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2222 2223 2224
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
    )
2225 2226 2227 2228 2229 2230
    if mode == "r":
        return r
    else:
        return q, r


2231 2232
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2233
    Computes the LU factorization of an N-D(N>=2) matrix x.
2234

2235
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2236 2237 2238 2239
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2240 2241 2242 2243 2244 2245

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2257

2258
    Returns:
2259
        factorization (Tensor), LU matrix, the factorization of input X.
2260

2261 2262 2263
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2264

2265 2266 2267
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2268

2269 2270

    Examples:
2271 2272
        .. code-block:: python

2273
            import paddle
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2289

2290 2291 2292 2293 2294 2295
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2296
            # [1., 0., 0.]]),
2297 2298 2299 2300
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2301
            # [0.60000000, 0.50000000]]),
2302 2303 2304 2305 2306
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2307 2308

            # one can verify : X = P @ L @ U ;
2309
    """
L
Lin Manhui 已提交
2310 2311

    if in_dygraph_mode():
2312
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2313
    elif paddle.in_dynamic_mode():
2314
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2315 2316 2317 2318 2319 2320 2321 2322
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2323 2324 2325 2326 2327 2328
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2329 2330 2331 2332 2333 2334 2335 2336
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2337
    Unpack L U and P to single matrix tensor .
2338 2339 2340
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2341 2342 2343 2344 2345

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2359

2360
    Returns:
2361
        P (Tensor), Permutation matrix P of lu factorization.
2362

2363
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2364

2365
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2366

2367 2368

    Examples:
2369 2370
        .. code-block:: python

2371
            import paddle
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2387

2388 2389 2390 2391 2392 2393
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2394
            # [1., 0., 0.]]),
2395 2396 2397 2398
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2399
            # [0.60000000, 0.50000000]]),
2400 2401 2402 2403 2404
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2405
            # one can verify : X = P @ L @ U ;
2406 2407
    """

2408
    if in_dygraph_mode():
2409
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2410 2411
        return P, L, U

Z
zhiboniu 已提交
2412
    if paddle.in_dynamic_mode():
2413 2414 2415
        P, L, U = _legacy_C_ops.lu_unpack(
            x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots
        )
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2427 2428 2429 2430 2431 2432
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x, 'Pivots': y},
        outputs={'Pmat': p, 'L': l, 'U': u},
        attrs=attrs,
    )
2433 2434 2435
    return p, l, u


L
Lijunhui 已提交
2436 2437
def eig(x, name=None):
    """
2438
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2439

2440 2441 2442 2443 2444 2445
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2446 2447 2448 2449

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2450
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2464
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2465
                               [9.956216,  8.749598,  6.066444 ],
2466
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2467
            w, v = paddle.linalg.eig(x)
2468
            print(v)
L
Lijunhui 已提交
2469 2470 2471 2472 2473 2474 2475 2476
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2477
            print(w)
L
Lijunhui 已提交
2478 2479 2480 2481
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2482
    if in_dygraph_mode():
2483
        return _C_ops.eig(x)
2484
    elif paddle.in_dynamic_mode():
2485
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2486 2487
        return w, v

2488 2489 2490
    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
    )
L
Lijunhui 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2503 2504 2505
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2506 2507 2508

    Warning:
        The gradient kernel of this operator does not yet developed.
2509 2510 2511 2512
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2513
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2514
            Its data type should be float32, float64, complex64, or complex128.
2515
        name (str, optional): Name for the operation (optional, default is None).
2516
            For more information, please refer to :ref:`api_guide_Name`.
2517

2518
    Returns:
2519 2520
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2521 2522 2523 2524 2525

    Examples:
        .. code-block:: python

            import paddle
2526

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

2539 2540 2541
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2542 2543 2544 2545

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2546 2547 2548 2549
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2550 2551 2552

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2553 2554 2555 2556
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2557

R
Ruibiao Chen 已提交
2558
    if in_dygraph_mode():
2559
        return _C_ops.eigvals(x)
2560 2561
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2562 2563 2564 2565 2566 2567 2568

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2569 2570 2571 2572
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2573
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2610 2611
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2612
        out = paddle.linalg.multi_dot([A, B])
2613
        print(out.shape)
2614 2615 2616
        # [3, 5]

        # A * B * C
2617 2618 2619
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2620
        out = paddle.linalg.multi_dot([A, B, C])
2621
        print(out.shape)
2622 2623 2624
        # [10, 7]

    """
2625
    if _in_legacy_dygraph():
2626
        return _legacy_C_ops.multi_dot(x)
2627
    if in_dygraph_mode():
2628
        return _C_ops.multi_dot(x)
2629 2630 2631

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
2632 2633 2634 2635 2636 2637
        check_variable_and_dtype(
            item,
            'x[' + str(id) + ']',
            ['float16', 'float32', 'float64'],
            'multi_dot',
        )
2638 2639
        if item.dtype != x[0].dtype:
            raise TypeError(
2640 2641
                "All the Tensors in the input must have the same data type."
            )
2642 2643 2644 2645 2646 2647

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2648 2649 2650 2651


def eigh(x, UPLO='L', name=None):
    """
2652
    Compute the eigenvalues and eigenvectors of a
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2664 2665 2666 2667
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2668 2669 2670 2671 2672 2673

    Examples:
        .. code-block:: python

            import paddle

2674
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2675
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2676 2677 2678 2679 2680 2681 2682
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2683
    if in_dygraph_mode():
2684
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2685 2686

    if _in_legacy_dygraph():
2687
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2688 2689 2690 2691 2692 2693

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
2694 2695
                "length of Input(input) is %s." % len(x.shape)
            )
2696 2697
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2698 2699 2700 2701
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
2702
        if UPLO != 'L' and UPLO != 'U':
2703
            raise ValueError(
2704 2705
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
2706 2707 2708 2709

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2710 2711 2712
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh'
    )
2713 2714 2715 2716

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2717 2718 2719 2720 2721 2722
    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO},
    )
2723
    return out_value, out_vector
A
andyjpaddle 已提交
2724 2725 2726 2727


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2728
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2739

A
andyjpaddle 已提交
2740 2741 2742
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2743 2744 2745
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2746 2747 2748 2749
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2750
        rcond(Tensor, optional): the tolerance value to determine
2751
            when is a singular value zero. Default:1e-15.
2752 2753

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2754
            if complex or symmetric if real. Default: False.
2755 2756

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2757
            the layer will be named automatically.
2758

A
andyjpaddle 已提交
2759
    Returns:
2760
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2761
        pseudo inverse of x. Its shape should be (*, n, m).
2762

A
andyjpaddle 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2789 2790 2791
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2792 2793
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2794 2795 2796 2797
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2798

2799 2800 2801 2802 2803 2804
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2805
            st = _C_ops.unsqueeze(singular, [-2])
2806 2807 2808

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2809
            v = _C_ops.transpose(vt, perm)
2810 2811

            out_1 = v * st
2812
            out_2 = _C_ops.matmul(out_1, u, False, True)
2813 2814 2815
            return out_2
        else:
            # combine eigh and matmul op
2816
            s, u = _C_ops.eigh(x, 'UPLO')
2817
            s_abs = paddle.abs(s)
2818
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2830
            st = _C_ops.unsqueeze(singular, [-2])
2831 2832

            out_1 = u * st
2833 2834
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2835 2836 2837
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2838 2839
        if not hermitian:
            # combine svd and matmul op
2840
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
2841 2842 2843
            max_singular_val = _legacy_C_ops.reduce_max(
                s, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2844 2845 2846 2847 2848 2849
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2850 2851 2852 2853 2854
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2855
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2856 2857 2858

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2859
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2860 2861

            out_1 = v * st
2862
            if in_dygraph_mode():
2863
                out_2 = _C_ops.matmul(out_1, u, False, True)
2864
            else:
2865 2866 2867
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2868 2869 2870
            return out_2
        else:
            # combine eigh and matmul op
2871
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2872
            s_abs = paddle.abs(s)
2873 2874 2875
            max_singular_val = _legacy_C_ops.reduce_max(
                s_abs, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2876 2877 2878 2879 2880 2881
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2882 2883 2884 2885 2886
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2887
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2888 2889

            out_1 = u * st
2890
            u_conj = _legacy_C_ops.conj(u)
2891
            if in_dygraph_mode():
2892
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2893
            else:
2894 2895 2896
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u_conj, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2910
                outputs={'U': u, 'VH': vt, 'S': s},
2911 2912
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2913 2914

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2915 2916 2917 2918 2919 2920
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2921

2922
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2923 2924
            cutoff = rcond * max_singular_val
            y = float('inf')
2925
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2926 2927

            condition = s > cutoff
2928 2929 2930 2931 2932
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2933 2934 2935

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2936 2937 2938 2939 2940 2941
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2942 2943 2944 2945 2946

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2947 2948 2949 2950 2951 2952
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2953 2954

            out_1 = helper.create_variable_for_type_inference(dtype)
2955 2956 2957 2958 2959 2960
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2961 2962 2963 2964 2965
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2966
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2967
                outputs={'Out': out_2},
2968
                attrs={'trans_x': False, 'trans_y': True},
2969
            )
A
andyjpaddle 已提交
2970 2971 2972 2973 2974
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2975 2976 2977 2978 2979
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2990 2991 2992 2993 2994 2995
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2996
            s_abs = helper.create_variable_for_type_inference(s_type)
2997 2998 2999
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
3000
            max_singular_val = helper.create_variable_for_type_inference(s_type)
3001 3002 3003 3004 3005 3006
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
3007

3008
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
3009 3010
            cutoff = rcond * max_singular_val
            y = float('inf')
3011
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
3012 3013

            condition = s_abs > cutoff
3014 3015 3016 3017 3018
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
3019 3020 3021

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
3022 3023 3024 3025 3026 3027
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3028 3029

            out_1 = helper.create_variable_for_type_inference(dtype)
3030 3031 3032 3033 3034 3035
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3036 3037 3038
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
3039 3040 3041
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3042 3043 3044 3045

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
3046
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3047
                outputs={'Out': out_2},
3048
                attrs={'trans_x': False, 'trans_y': True},
3049
            )
A
andyjpaddle 已提交
3050
            return out_2
W
Weilong Wu 已提交
3051 3052 3053 3054 3055 3056 3057


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3058

W
Weilong Wu 已提交
3059 3060
    .. math::
        Out = X^-1 * Y
3061 3062

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
3063

W
Weilong Wu 已提交
3064 3065 3066 3067 3068
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3069
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3070
            For more information, please refer to :ref:`api_guide_Name`.
3071

W
Weilong Wu 已提交
3072
    Returns:
3073
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3074
        Its data type should be the same as that of `x`.
3075

W
Weilong Wu 已提交
3076
    Examples:
3077

3078
        .. code-block:: python
3079

3080 3081 3082
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
3083

3084 3085 3086 3087 3088
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
3089

3090 3091
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
3092
    """
3093
    if in_dygraph_mode():
3094
        return _C_ops.solve(x, y)
3095 3096

    if _in_legacy_dygraph():
3097
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
3098 3099 3100 3101 3102 3103 3104

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3105 3106 3107
    helper.append_op(
        type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
    )
W
Weilong Wu 已提交
3108
    return out
3109 3110


3111 3112 3113
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3114
    r"""
3115 3116
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3130 3131 3132 3133

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3134
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3135
            zero or more batch dimensions. Its data type should be float32 or float64.
3136
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3137 3138
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3139
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3140 3141 3142 3143 3144 3145 3146 3147
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3148
        .. code-block:: python
3149

3150 3151 3152 3153
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3154

3155 3156 3157 3158 3159 3160
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3161

3162 3163
            print(out)
            # [7, -2, -5]
3164
    """
H
hong 已提交
3165
    if in_dygraph_mode():
3166
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3167

Z
zhiboniu 已提交
3168
    if paddle.in_dynamic_mode():
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
        return _legacy_C_ops.triangular_solve(
            x,
            y,
            'upper',
            upper,
            'transpose',
            transpose,
            'unitriangular',
            unitriangular,
        )
3179 3180 3181 3182 3183 3184 3185

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
    helper.append_op(
        type='triangular_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular,
        },
    )
3196 3197 3198
    return out


Z
zhiboniu 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3209
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3219
        .. code-block:: python
Z
zhiboniu 已提交
3220

3221
            import paddle
Z
zhiboniu 已提交
3222

3223 3224 3225 3226 3227
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3228

3229 3230
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3231
    """
H
hong 已提交
3232
    if in_dygraph_mode():
3233
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3234 3235

    if _in_legacy_dygraph():
3236
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3237 3238 3239 3240 3241 3242

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3243 3244 3245 3246 3247 3248
    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
Z
zhiboniu 已提交
3249 3250 3251
    return out


3252 3253
def eigvalsh(x, UPLO='L', name=None):
    """
3254
    Computes the eigenvalues of a
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3272
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3273 3274
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3275 3276
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3277
    """
3278
    if in_dygraph_mode():
3279
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3280 3281 3282
        return values

    elif paddle.in_dynamic_mode():
3283
        is_test = x.stop_gradient
3284
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3285 3286 3287 3288 3289 3290 3291
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
3292 3293
                "length of Input(input) is %s." % len(x.shape)
            )
3294 3295
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3296 3297 3298 3299
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
3300
        if UPLO != 'L' and UPLO != 'U':
3301
            raise ValueError(
3302 3303
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
3304 3305 3306 3307

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
3308 3309 3310 3311 3312 3313
    check_variable_and_dtype(
        x,
        'dtype',
        ['float32', 'float64', 'complex64', 'complex128'],
        'eigvalsh',
    )
3314 3315 3316 3317 3318

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3319 3320 3321 3322 3323 3324
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO, 'is_test': is_test},
    )
3325
    return out_value
3326 3327


3328 3329 3330 3331 3332 3333 3334 3335
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3336
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3337
            should be one of float32, float64.
3338 3339
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3340
            machine precision of x_dtype.
3341 3342 3343
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3344
            for CUDA inputs.
3345
        name(str, optional): The default value is None. Normally there is no need for user to set
3346 3347 3348
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3349 3350 3351 3352 3353 3354 3355
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3388 3389 3390
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3391 3392 3393 3394
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3395 3396 3397 3398
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3399 3400 3401 3402
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3403 3404 3405 3406
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3420
    if _non_static_mode():
3421
        if in_dygraph_mode():
3422
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3423 3424
                x, y, rcond, driver
            )
3425
        else:
3426
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3427 3428
                x, y, 'rcond', rcond, 'driver', driver
            )
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3439 3440 3441 3442 3443 3444
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
3445 3446 3447 3448 3449 3450

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    helper.append_op(
        type='lstsq',
        inputs={'X': x, 'Y': y},
        outputs={
            'Solution': solution,
            'Residuals': residuals,
            'Rank': rank,
            'SingularValues': singular_values,
        },
        attrs={'rcond': rcond, 'driver': driver},
    )
3462 3463 3464 3465 3466 3467 3468 3469

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3470 3471 3472 3473


def corrcoef(x, rowvar=True, name=None):
    """
3474

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3498

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3513 3514
            "length of Input(input) is %s." % len(x.shape)
        )
3515 3516 3517
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3518
    if c.ndim == 0:
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3533 3534 3535
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3536 3537 3538 3539
    else:
        c = paddle.clip(c, -1, 1)

    return c