linalg.py 122.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dygraph_mode
28
from .creation import full
29 30 31
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
32

33 34
__all__ = []

35 36 37
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
90
        return _C_ops.transpose(x, perm)
91
    else:
92 93 94 95 96 97 98 99 100 101
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
102
                'uint16',
103 104 105 106
                'complex64',
                'complex128',
            ],
            'transpose',
107
        )
108 109 110 111
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
112
            raise ValueError(
113 114
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
115 116 117 118
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
119
            )
120 121 122 123 124 125 126
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
127

128 129 130 131 132 133 134 135 136 137
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
138 139


S
ShenLiang 已提交
140
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
141
    """
142 143
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
144
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
145

S
ShenLiang 已提交
146 147
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
148 149 150 151 152

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
153 154
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
155 156 157 158 159 160 161 162
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

163 164
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
165
      After the matrix multiply, the prepended dimension is removed.
166 167

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
168 169
      the matrix-vector product is obtained.

170 171 172 173 174 175 176 177 178
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
179
      out will be a (j, k, n, p) tensor.
180 181

    Args:
S
ShenLiang 已提交
182 183
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
184 185 186
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
187 188 189
            will be named automatically.

    Returns:
S
ShenLiang 已提交
190
        Tensor: The output Tensor.
191 192 193

    Examples:

C
Chen Long 已提交
194 195 196 197 198 199 200 201 202
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
203
            # (1,)
C
Chen Long 已提交
204 205 206 207 208 209

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
210
            # (10,)
C
Chen Long 已提交
211 212 213 214 215 216

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
217
            # (10, 5)
C
Chen Long 已提交
218 219 220 221 222 223

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
224
            # (10, 5, 5)
C
Chen Long 已提交
225 226 227 228 229 230

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
231
            # (10, 3, 5, 5)
232 233

    """
234
    if in_dygraph_mode():
235
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
236 237 238 239 240
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
241

242 243 244 245 246 247 248
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
249
                        'uint16',
250 251 252 253 254 255 256 257
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
258

259
        __check_input(x, y)
260

261 262 263 264 265 266 267 268 269
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
376 377
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
378
            if dim is None:
379 380 381
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
382
            )
383

384 385 386 387
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
388

389 390 391 392 393 394 395
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
396

397 398 399
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
400 401 402 403 404 405 406 407
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
408
        if in_dygraph_mode():
409 410
            if axis is None:
                axis = -1
411
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
412 413 414 415 416 417
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
418 419 420 421
                input,
                'input',
                ['float16', 'uint16', 'float32', 'float64'],
                'p_norm',
422
            )
423

424 425 426 427 428 429 430 431 432 433 434
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
435

436 437 438 439 440 441 442
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
443

444 445 446
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
447
        if in_dygraph_mode():
448
            out = _C_ops.abs(input)
449
            if porder == np.float64('inf'):
450
                return _C_ops.max(out, axis, keepdim)
451
            else:
452
                return _C_ops.min(out, axis, keepdim)
453 454 455 456 457 458 459 460 461 462 463
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
464

465 466 467 468
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
469

470 471 472 473 474 475 476 477 478 479 480 481 482
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
483

484
            return reduce_out
myq406450149's avatar
myq406450149 已提交
485

486
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
487 488 489 490
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
491
        if in_dygraph_mode():
492 493 494
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
495
            out = _C_ops.pow(sum_out, float(1.0 / porder))
496 497
            return out

myq406450149's avatar
myq406450149 已提交
498 499
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
500 501
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
502
        abs_out = block.create_variable_for_type_inference(
503 504 505 506 507
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
508
        pow_out = block.create_variable_for_type_inference(
509 510
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
511

512 513 514 515 516 517
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
518
        sum_out = block.create_variable_for_type_inference(
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
537 538
        return out

539 540 541
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
542
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
543 544
            else:
                raise ValueError(
545
                    f"only valid string values are 'fro', found {p}"
546
                )
547
        elif isinstance(p, (int, float)):
548 549 550 551 552 553 554 555
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
556
        else:
557
            raise ValueError(
558
                f"only valid p type is string or float, found {type(p)}"
559
            )
560

myq406450149's avatar
myq406450149 已提交
561 562
    if isinstance(axis, tuple):
        axis = list(axis)
563 564 565
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

566
    # calculate vector norm, where axis is int or list with only one integer
567
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
568 569
        if isinstance(p, str):
            if p == "fro":
570 571 572 573 574 575 576 577
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
578 579 580

            else:
                raise ValueError(
581
                    f"only valid string values are 'fro', found {p}"
582
                )
myq406450149's avatar
myq406450149 已提交
583
        elif isinstance(p, (int, float)):
584 585 586 587 588 589 590 591
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
592 593
        else:
            raise ValueError(
594 595 596 597 598
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
599 600
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
601 602 603
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
604 605
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
606
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
607 608 609
                    axis
                )
            )
610
        else:
611 612 613
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
614 615
    else:
        raise ValueError(
616 617 618 619
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
620 621


622
def dist(x, y, p=2, name=None):
623
    r"""
S
swtkiwi 已提交
624

625
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
626
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
627
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
652 653 654 655 656 657 658

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
659
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
660 661 662 663 664

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
665
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
666 667 668 669 670 671 672 673 674 675 676 677

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
678 679
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
680
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
681 682
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
683 684

    Returns:
685
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
686 687 688 689 690 691

    Examples:
        .. code-block:: python

            import paddle

692 693
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
694 695
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
696

697 698
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
699

700 701
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
702

703 704
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
705
    """
H
hong 已提交
706
    if in_dygraph_mode():
707
        return _C_ops.dist(x, y, p)
H
hong 已提交
708

709 710
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
Z
Zhang Ting 已提交
711 712 713 714 715 716 717
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
718 719 720
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
721
    return out
L
liuwei1031 已提交
722 723


724 725 726 727 728 729
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
730 731
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
750 751
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
752 753 754

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
755 756
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
757 758 759

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
760 761
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
762 763 764

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
765 766
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
767 768 769

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
770 771
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
772 773 774

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
775 776
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
777 778 779

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
780 781
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
782 783

            # compute conditional number when order of the norm is inf
784 785 786
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
787 788

            # compute conditional number when order of the norm is -inf
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

805
            a_cond_fro = paddle.linalg.cond(a, p='fro')
806 807 808 809 810 811 812 813 814 815 816 817
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
818
            b_cond_2 = paddle.linalg.cond(b, p=2)
819 820
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
821 822 823

    """

824
    def mat_norm(input, porder=1.0, axis=None):
825 826 827 828 829
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
830 831
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
832
            sum_out = _C_ops.sum(abs_out, axis, None, False)
833 834

            if porder == 1 or porder == np.inf:
835
                return _C_ops.max(sum_out, [-1], False)
836
            if porder == -1 or porder == -np.inf:
837
                return _C_ops.min(sum_out, [-1], False)
838
        else:
839 840
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
841 842
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
843 844
                dtype=block.input_dtype()
            )
845
            sum_out = block.create_variable_for_type_inference(
846 847
                dtype=block.input_dtype()
            )
848
            out = block.create_variable_for_type_inference(
849 850 851 852 853 854 855 856 857 858 859
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
860
                    'keep_dim': False,
861 862 863
                    'reduce_all': reduce_all,
                },
            )
864
            if porder == 1 or porder == np.inf:
865 866 867 868 869 870
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
871
                        'keep_dim': False,
872 873 874
                        'reduce_all': reduce_all,
                    },
                )
875
            if porder == -1 or porder == -np.inf:
876 877 878 879 880 881
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
882
                        'keep_dim': False,
883 884 885
                        'reduce_all': reduce_all,
                    },
                )
886
            return out
887 888 889 890 891 892

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
893
        if in_dygraph_mode():
894
            pow_out = _C_ops.pow(input, porder)
895 896
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
897
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
898
        else:
899
            reduce_all = True if axis is None or axis == [] else False
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
946 947 948 949 950 951 952 953 954

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

955
        if in_dygraph_mode():
956
            if porder == "nuc":
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
980
                )
981 982 983 984 985 986 987
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
988
            block.append_op(
989
                type='reduce_max',
990
                inputs={'X': s},
991
                outputs={'Out': max_out},
992 993
                attrs={
                    'dim': axis,
994
                    'keep_dim': False,
995 996 997 998
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
999 1000 1001 1002 1003 1004 1005 1006
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1007
            )
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1024 1025

    def empty_tensor(input, shape):
1026
        if in_dygraph_mode():
1027
            return input.reshape(shape)
1028 1029 1030
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1031 1032 1033

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1034
        raise ValueError(
1035
            "input should be a matrix or batches of matrices, "
1036
            + f"but the dimention of received input is {len(x_shape)}"
1037
        )
1038
    if p is None:
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1051
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1052 1053
                    x_inv, porder=p, axis=[-2]
                )
1054
            if p in (np.inf, -np.inf):
1055
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1056 1057
                    x_inv, porder=p, axis=[-1]
                )
1058
        else:
1059
            raise ValueError(
1060
                f"only support p is {p} when input is a "
1061 1062
                + "square matrix or batches of square matrices"
            )
1063 1064 1065 1066 1067 1068
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1069
            f"unsupported {p} for p, only supporting ('fro', 'nuc', "
1070 1071
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1072 1073


L
liuwei1031 已提交
1074 1075 1076
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1077

1078
    Note:
1079 1080
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1081 1082

    Parameters:
S
ShenLiang 已提交
1083 1084
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1085 1086
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1087
    Returns:
1088
        Tensor: the calculated result Tensor.
1089

L
liuwei1031 已提交
1090 1091 1092 1093 1094
    Examples:

    .. code-block:: python

        import paddle
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1105
        z = paddle.dot(x, y)
1106
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1107 1108

    """
1109 1110
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1111 1112
    else:
        op_type = 'dot'
1113

1114 1115
        assert x is not None, f'x cannot be None in {op_type}'
        assert y is not None, f'y cannot be None in {op_type}'
L
liuwei1031 已提交
1116

1117
        check_variable_and_dtype(
1118 1119 1120 1121
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1122 1123
        )
        check_variable_and_dtype(
1124 1125 1126 1127
            y,
            'y',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1128
        )
L
liuwei1031 已提交
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1139
        )
1140
        return out
1141 1142


Z
zhiboniu 已提交
1143 1144 1145 1146 1147
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1148
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1182 1183
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1197 1198
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1199 1200 1201
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1202 1203 1204 1205
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1206 1207 1208
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1209 1210
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1211 1212 1213 1214 1215 1216 1217 1218
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1219 1220 1221 1222 1223
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1224 1225 1226
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1227 1228 1229 1230
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1231 1232 1233
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1234 1235
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1254
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1266 1267
def t(input, name=None):
    """
1268 1269
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1270
    the paddle.transpose function which perm dimensions set 0 and 1.
1271

1272
    Args:
1273
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1274
        name(str, optional): The default value is None.  Normally there is no need for
1275 1276
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1277
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1278

1279
    Examples:
1280

1281 1282 1283
        .. code-block:: python
           :name: code-example
             import paddle
1284

1285
             # Example 1 (0-D tensor)
1286 1287
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1288

1289
             # Example 2 (1-D tensor)
1290 1291 1292
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1293 1294

             # Example 3 (2-D tensor)
1295 1296 1297 1298 1299 1300 1301 1302
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1303

1304 1305 1306 1307 1308
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1309 1310
            "tensor.transpose() instead." % len(input.shape)
        )
1311
    if in_dygraph_mode():
1312
        if len(input.shape) <= 1:
1313 1314 1315
            return input
        # 2-D tensor
        perm = [1, 0]
1316
        out = _C_ops.transpose(input, perm)
1317
        return out
1318 1319 1320 1321 1322 1323 1324
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1325

1326 1327 1328
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1329
        if len(input.shape) <= 1:
1330 1331 1332 1333 1334 1335 1336 1337
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1338 1339
        return out

1340

W
wanghuancoder 已提交
1341
def cross(x, y, axis=9, name=None):
1342
    """
1343
    Computes the cross product between two tensors along an axis.
1344

1345 1346
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1347

1348
    Args:
1349 1350
        x (Tensor): The first input tensor, the data type is float16, float32, float64, int32, int64.
        y (Tensor): The second input tensor, the data type is float16, float32, float64, int32, int64.
W
wanghuancoder 已提交
1351
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1352
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1353 1354

    Returns:
1355
        Tensor. A Tensor with same data type as `x`.
1356

1357 1358
    Examples:
        .. code-block:: python
1359

1360
            import paddle
1361

Z
Zhou Wei 已提交
1362 1363 1364 1365 1366 1367
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1378
    """
J
Jiabin Yang 已提交
1379
    if in_dygraph_mode():
1380
        axis = K_DEFAULT_DIM if axis is None else axis
1381
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1382
    else:
1383 1384 1385
        check_variable_and_dtype(
            x,
            'x',
1386
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1387 1388 1389 1390 1391
            'cross',
        )
        check_variable_and_dtype(
            y,
            'y',
1392
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1393 1394
            'cross',
        )
1395 1396
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
1397
        attrs = {}
1398
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1399

1400 1401 1402 1403 1404 1405 1406
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1407 1408


1409
def cholesky(x, upper=False, name=None):
1410
    r"""
G
Guo Sheng 已提交
1411
    Computes the Cholesky decomposition of one symmetric positive-definite
1412 1413
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1414 1415 1416 1417 1418 1419
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1420
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1421 1422 1423 1424 1425
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1426 1427
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1428 1429

    Returns:
1430 1431
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1432

G
Guo Sheng 已提交
1433 1434 1435 1436 1437
    Examples:
        .. code-block:: python

            import paddle

1438 1439 1440 1441
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1442
            out = paddle.linalg.cholesky(x, upper=False)
1443
            print(out)
G
Guo Sheng 已提交
1444
    """
H
hong 已提交
1445
    if in_dygraph_mode():
1446
        return _C_ops.cholesky(x, upper)
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1459 1460


1461 1462 1463 1464
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1465
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1466
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1467 1468

    Args:
1469 1470 1471 1472
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1473
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1474 1475
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1476
            the lower triangular of the matrix to compute.
1477 1478 1479 1480
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1498

1499
    """
1500 1501 1502 1503 1504 1505 1506
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1507 1508 1509
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1510

1511 1512 1513 1514 1515 1516
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
Z
zhangyuqin1998 已提交
1517
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1518 1519 1520 1521 1522
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1523
        if tol is None:
1524
            attrs['use_default_tol'] = True
1525
        elif isinstance(tol, Variable):
1526
            attrs['use_default_tol'] = False
1527
            if tol.dtype != x.dtype:
1528
                inputs['TolTensor'] = cast(tol, x.dtype)
1529
            else:
1530
                inputs['TolTensor'] = tol
1531
        else:
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1544 1545


1546 1547 1548 1549 1550 1551 1552 1553 1554
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1555 1556
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1557 1558 1559 1560
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1561
        Tensor: The product Tensor.
1562 1563

    Examples:
S
sunzhongkai588 已提交
1564 1565 1566
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1567

S
sunzhongkai588 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1577 1578 1579 1580 1581 1582
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1583

1584
    """
1585
    if in_dygraph_mode():
1586
        return _C_ops.bmm(x, y)
1587
    else:
W
Weilong Wu 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1608 1609 1610 1611 1612 1613
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1614 1615


1616
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1617
    """
1618
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1619 1620 1621
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1622
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1623
            should be float32, float64, int32, int64.
1624 1625 1626 1627
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1628 1629

    Returns:
1630
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1631

1632
    Examples:
Q
Qi Li 已提交
1633
        .. code-block:: python
1634

Q
Qi Li 已提交
1635
            import paddle
1636

1637
            inputs = paddle.to_tensor([1, 2, 1])
1638 1639
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1640
    """
H
hong 已提交
1641
    if in_dygraph_mode():
1642
        return _C_ops.histogram(input, bins, min, max)
1643 1644 1645 1646
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1647
        )
1648 1649 1650 1651 1652 1653 1654 1655
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1656 1657 1658 1659


def bincount(x, weights=None, minlength=0, name=None):
    """
1660
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1688 1689
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
1690 1691
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1692

1693
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1710
        )
1711
        return out
1712 1713 1714 1715 1716 1717 1718


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1719
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1720
            should be one of float32, float64.
F
furnace 已提交
1721
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1737 1738
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1739
            out = paddle.mv(x, vec)
1740 1741 1742
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1743
    """
J
Jiabin Yang 已提交
1744
    if in_dygraph_mode():
1745
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1746
    else:
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1760
                    )
1761 1762 1763 1764 1765
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1766
                    )
1767
                )
J
Jiabin Yang 已提交
1768

1769
        __check_input(x, vec)
J
Jiabin Yang 已提交
1770

1771 1772 1773 1774 1775 1776
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1777 1778


1779
def det(x, name=None):
H
huangxu96 已提交
1780
    """
1781

H
huangxu96 已提交
1782
    Calculates determinant value of a square matrix or batches of square matrices.
1783

H
huangxu96 已提交
1784
    Args:
1785
        x (Tensor): the input matrix of size `(n, n)` or the
1786 1787
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1788 1789
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1790

H
huangxu96 已提交
1791
    Returns:
1792
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1793

1794
    Examples:
H
huangxu96 已提交
1795 1796
        .. code-block:: python

1797
            import paddle
H
huangxu96 已提交
1798

1799
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1800

1801
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1802

1803
            print(A)
1804

1805
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1806

1807

H
huangxu96 已提交
1808
    """
C
chentianyu03 已提交
1809
    if in_dygraph_mode():
1810
        return _C_ops.det(x)
1811
    else:
1812
        check_dtype(x.dtype, 'Input', ['float16', 'float32', 'float64'], 'det')
C
chentianyu03 已提交
1813

1814 1815 1816 1817 1818
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1819

1820 1821
        assert (
            input_shape[-1] == input_shape[-2]
1822
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1823 1824 1825 1826 1827
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1828

1829 1830 1831 1832
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1833 1834


1835
def slogdet(x, name=None):
H
huangxu96 已提交
1836
    """
1837

H
huangxu96 已提交
1838
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1839
    The determinant can be computed with ``sign * exp`` (logabsdet)
1840

H
huangxu96 已提交
1841 1842 1843
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1844

H
huangxu96 已提交
1845 1846 1847 1848 1849
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1850
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1851 1852
        of the absolute value of determinant, respectively.

1853
    Examples:
1854
        .. code-block:: python
H
huangxu96 已提交
1855

1856
            import paddle
H
huangxu96 已提交
1857

1858
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1859

1860
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1861

1862
            print(A)
1863

1864 1865
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1866 1867

    """
1868
    if in_dygraph_mode():
1869
        return _C_ops.slogdet(x)
1870 1871
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1872

1873 1874 1875 1876 1877
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1878

1879 1880
        assert (
            input_shape[-1] == input_shape[-2]
1881
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1882 1883 1884 1885 1886
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1887

1888 1889 1890 1891 1892 1893
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1894 1895


1896 1897
def svd(x, full_matrices=False, name=None):
    r"""
1898 1899 1900 1901 1902
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1903 1904
        X = U * diag(S) * VT

1905 1906
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1907
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1908 1909
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1910
        full_matrices (bool, optional): A flag to control the behavor of svd.
1911
            If full_matrices = True, svd op will compute full U and V matrics,
1912
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1913
            If full_matrices = False, svd op will use a economic method to store U and V.
1914
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1915
            Default value is False.
1916
        name (str, optional): Name for the operation (optional, default is None).
1917
            For more information, please refer to :ref:`api_guide_Name`.
1918 1919

    Returns:
Z
Zman 已提交
1920 1921 1922 1923 1924
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1925

1926 1927 1928 1929
    Examples:
        .. code-block:: python

            import paddle
1930 1931 1932

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1933
            u, s, vh = paddle.linalg.svd(x)
1934 1935 1936 1937 1938
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1939
            print (s)
1940
            #S = [8.14753743, 0.78589688]
1941
            print (vh)
1942 1943
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1944

1945
            # one can verify : U * S * VT == X
1946
            #                  U * UH == I
1947
            #                  V * VH == I
1948
    """
1949

1950
    if in_dygraph_mode():
1951
        return _C_ops.svd(x, full_matrices)
1952 1953 1954 1955 1956 1957 1958
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
1959
        attrs = {}
1960 1961 1962 1963 1964 1965 1966 1967
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1968 1969


1970 1971
def matrix_power(x, n, name=None):
    r"""
1972

1973
    Computes the n-th power of a square matrix or a batch of square matrices.
1974

1975 1976 1977 1978 1979
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1980

1981 1982
    Specifically,

1983
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1984

1985 1986
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1987
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1988 1989 1990 1991 1992 1993

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1994
        name (str, optional): Name for the operation (optional, default is None).
1995 1996 1997
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1998 1999
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
2000 2001 2002 2003 2004 2005 2006 2007 2008

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2009
            print(paddle.linalg.matrix_power(x, 2))
2010 2011 2012 2013
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2014
            print(paddle.linalg.matrix_power(x, 0))
2015 2016 2017 2018
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2019
            print(paddle.linalg.matrix_power(x, -2))
2020 2021 2022 2023
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2024
    if in_dygraph_mode():
2025
        return _C_ops.matrix_power(x, n)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2040 2041


2042 2043 2044 2045 2046 2047 2048
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2049 2050
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2051
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2052
            If mode = "reduced", qr op will return reduced Q and R matrices,
2053
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2054
            If mode = "complete", qr op will return complete Q and R matrices,
2055 2056 2057 2058 2059
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2060

2061
    Returns:
2062
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2063
        If mode = "r", qr will return a tensor which represents R.
2064 2065

    Examples:
2066 2067
        .. code-block:: python

2068
            import paddle
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2081 2082

            # one can verify : X = Q * R ;
2083
    """
Y
Yulong Ao 已提交
2084
    if in_dygraph_mode():
2085
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2086 2087 2088 2089
        if mode == "r":
            return r
        else:
            return q, r
2090 2091 2092 2093 2094 2095
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
2096
        attrs = {}
2097 2098 2099 2100
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2101 2102 2103 2104 2105 2106
        if mode == "r":
            return r
        else:
            return q, r


2107 2108
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2109
    Computes the LU factorization of an N-D(N>=2) matrix x.
2110

2111
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2112 2113 2114 2115
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2116 2117 2118 2119 2120 2121

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2133

2134
    Returns:
2135
        factorization (Tensor), LU matrix, the factorization of input X.
2136

2137 2138 2139
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2140

2141 2142 2143
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2144

2145 2146

    Examples:
2147 2148
        .. code-block:: python

2149
            import paddle
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2165

2166 2167 2168 2169 2170 2171
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2172
            # [1., 0., 0.]]),
2173 2174 2175 2176
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2177
            # [0.60000000, 0.50000000]]),
2178 2179 2180 2181 2182
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2183 2184

            # one can verify : X = P @ L @ U ;
2185
    """
L
Lin Manhui 已提交
2186 2187

    if in_dygraph_mode():
2188
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2189 2190 2191 2192 2193 2194
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
2195
        attrs = {}
L
Lin Manhui 已提交
2196
        attrs['pivot'] = pivot
2197 2198 2199 2200 2201 2202
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2203 2204 2205 2206 2207 2208 2209 2210
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2211
    Unpack L U and P to single matrix tensor .
2212 2213 2214
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2215 2216 2217 2218 2219

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2233

2234
    Returns:
2235
        P (Tensor), Permutation matrix P of lu factorization.
2236

2237
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2238

2239
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2240

2241 2242

    Examples:
2243 2244
        .. code-block:: python

2245
            import paddle
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2261

2262 2263 2264 2265 2266 2267
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2268
            # [1., 0., 0.]]),
2269 2270 2271 2272
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2273
            # [0.60000000, 0.50000000]]),
2274 2275 2276 2277 2278
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2279
            # one can verify : X = P @ L @ U ;
2280 2281
    """

2282
    if in_dygraph_mode():
2283
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2284
        return P, L, U
2285 2286 2287
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2288
        )
2289 2290 2291 2292
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2293

2294
        attrs = {}
2295 2296 2297 2298 2299 2300 2301 2302 2303
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2304 2305


L
Lijunhui 已提交
2306 2307
def eig(x, name=None):
    """
2308
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2309

2310 2311 2312 2313 2314 2315
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2316 2317 2318 2319

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2320
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2334
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2335
                               [9.956216,  8.749598,  6.066444 ],
2336
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2337
            w, v = paddle.linalg.eig(x)
2338
            print(v)
L
Lijunhui 已提交
2339 2340 2341 2342 2343 2344 2345 2346
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2347
            print(w)
L
Lijunhui 已提交
2348 2349 2350 2351
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2352

2353
    if in_dygraph_mode():
2354
        return _C_ops.eig(x)
2355 2356 2357 2358 2359
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2360

2361 2362
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2363

2364 2365 2366
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2367

2368
        return w, v
L
Lijunhui 已提交
2369 2370


2371 2372 2373
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2374 2375 2376

    Warning:
        The gradient kernel of this operator does not yet developed.
2377 2378 2379 2380
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2381
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2382
            Its data type should be float32, float64, complex64, or complex128.
2383
        name (str, optional): Name for the operation (optional, default is None).
2384
            For more information, please refer to :ref:`api_guide_Name`.
2385

2386
    Returns:
2387 2388
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2389 2390 2391 2392 2393

    Examples:
        .. code-block:: python

            import paddle
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2410 2411 2412 2413
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2414 2415 2416

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2417 2418 2419 2420
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2421

R
Ruibiao Chen 已提交
2422
    if in_dygraph_mode():
2423
        return _C_ops.eigvals(x)
2424
    else:
2425 2426 2427 2428 2429 2430
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2431 2432 2433 2434
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2435 2436


2437 2438 2439 2440
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2441
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2478 2479
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2480
        out = paddle.linalg.multi_dot([A, B])
2481
        print(out.shape)
2482 2483 2484
        # [3, 5]

        # A * B * C
2485 2486 2487
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2488
        out = paddle.linalg.multi_dot([A, B, C])
2489
        print(out.shape)
2490 2491 2492
        # [10, 7]

    """
2493
    if in_dygraph_mode():
2494
        return _C_ops.multi_dot(x)
2495 2496 2497 2498 2499 2500
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
2501
                ['float16', 'float32', 'float64', 'uint16'],
2502 2503 2504 2505 2506 2507
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2508

2509 2510 2511 2512 2513
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2514
        )
2515
        return out
2516 2517 2518 2519


def eigh(x, UPLO='L', name=None):
    """
2520
    Compute the eigenvalues and eigenvectors of a
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2532 2533 2534 2535
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2536 2537 2538 2539 2540 2541

    Examples:
        .. code-block:: python

            import paddle

2542
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2543
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2544 2545 2546 2547 2548 2549 2550
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2551
    if in_dygraph_mode():
2552
        return _C_ops.eigh(x, UPLO)
2553
    else:
H
hong 已提交
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
2570
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
2571
                )
2572

2573
        __check_input(x, UPLO)
2574

2575 2576 2577 2578 2579 2580 2581
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2582

2583 2584
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2585

2586 2587 2588 2589 2590 2591 2592
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2593 2594 2595 2596


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2597
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2608

A
andyjpaddle 已提交
2609 2610 2611
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2612 2613 2614
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2615 2616 2617 2618
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2619
        rcond(Tensor, optional): the tolerance value to determine
2620
            when is a singular value zero. Default:1e-15.
2621 2622

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2623
            if complex or symmetric if real. Default: False.
2624 2625

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2626
            the layer will be named automatically.
2627

A
andyjpaddle 已提交
2628
    Returns:
2629
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2630
        pseudo inverse of x. Its shape should be (*, n, m).
2631

A
andyjpaddle 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2658 2659 2660
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2661 2662
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2663 2664 2665 2666
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2667

2668 2669 2670 2671 2672 2673
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2674
            st = _C_ops.unsqueeze(singular, [-2])
2675 2676 2677

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2678
            v = _C_ops.transpose(vt, perm)
2679 2680

            out_1 = v * st
2681
            out_2 = _C_ops.matmul(out_1, u, False, True)
2682 2683 2684
            return out_2
        else:
            # combine eigh and matmul op
2685
            s, u = _C_ops.eigh(x, 'UPLO')
2686
            s_abs = paddle.abs(s)
2687
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2699
            st = _C_ops.unsqueeze(singular, [-2])
2700 2701

            out_1 = u * st
2702 2703
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2704
            return out_2
A
andyjpaddle 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2717
                outputs={'U': u, 'VH': vt, 'S': s},
2718 2719
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2720 2721

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2722 2723 2724 2725 2726 2727
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2728

2729
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2730 2731
            cutoff = rcond * max_singular_val
            y = float('inf')
2732
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2733 2734

            condition = s > cutoff
2735 2736 2737 2738 2739
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2740 2741 2742

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2743 2744 2745 2746 2747 2748
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2749 2750 2751 2752 2753

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2754 2755 2756 2757 2758 2759
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2760 2761

            out_1 = helper.create_variable_for_type_inference(dtype)
2762 2763 2764 2765 2766 2767
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2768 2769 2770 2771 2772
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2773
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2774
                outputs={'Out': out_2},
2775
                attrs={'trans_x': False, 'trans_y': True},
2776
            )
A
andyjpaddle 已提交
2777 2778 2779 2780 2781
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2782 2783 2784 2785 2786
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2797 2798 2799 2800 2801 2802
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2803
            s_abs = helper.create_variable_for_type_inference(s_type)
2804 2805 2806
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2807
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2808 2809 2810 2811 2812 2813
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2814

2815
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2816 2817
            cutoff = rcond * max_singular_val
            y = float('inf')
2818
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2819 2820

            condition = s_abs > cutoff
2821 2822 2823 2824 2825
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2826 2827 2828

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2829 2830 2831 2832 2833 2834
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2835 2836

            out_1 = helper.create_variable_for_type_inference(dtype)
2837 2838 2839 2840 2841 2842
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2843 2844 2845
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2846 2847 2848
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2849 2850 2851 2852

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2853
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2854
                outputs={'Out': out_2},
2855
                attrs={'trans_x': False, 'trans_y': True},
2856
            )
A
andyjpaddle 已提交
2857
            return out_2
W
Weilong Wu 已提交
2858 2859 2860 2861


def solve(x, y, name=None):
    r"""
2862

W
Weilong Wu 已提交
2863
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2864
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2865
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2866

W
Weilong Wu 已提交
2867 2868
    .. math::
        Out = X^-1 * Y
2869 2870

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2871

W
Weilong Wu 已提交
2872
    Args:
2873
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2874
            more batch dimensions. Its data type should be float32 or float64.
2875
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2876
            more batch dimensions. Its data type should be float32 or float64.
2877
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2878
            For more information, please refer to :ref:`api_guide_Name`.
2879

W
Weilong Wu 已提交
2880
    Returns:
2881
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2882
        Its data type should be the same as that of `x`.
2883

W
Weilong Wu 已提交
2884
    Examples:
2885

2886
        .. code-block:: python
2887

2888 2889 2890
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2891

2892 2893 2894 2895 2896
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2897

2898 2899
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2900
    """
2901
    if in_dygraph_mode():
2902
        return _C_ops.solve(x, y)
2903 2904 2905 2906 2907 2908
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2909

2910 2911 2912 2913
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2914 2915


2916 2917 2918
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2919
    r"""
2920 2921
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2935 2936 2937 2938

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2939
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2940
            zero or more batch dimensions. Its data type should be float32 or float64.
2941
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2942 2943
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2944
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2945 2946 2947 2948 2949 2950 2951 2952
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2953
        .. code-block:: python
2954

2955 2956 2957 2958
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2959

2960 2961 2962 2963 2964 2965
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2966

2967 2968
            print(out)
            # [7, -2, -5]
2969
    """
H
hong 已提交
2970
    if in_dygraph_mode():
2971
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2972 2973 2974 2975 2976
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2977
        )
2978 2979 2980 2981
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2994 2995


Z
zhiboniu 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3006
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3016
        .. code-block:: python
Z
zhiboniu 已提交
3017

3018
            import paddle
Z
zhiboniu 已提交
3019

3020 3021 3022 3023 3024
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3025

3026 3027
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3028
    """
H
hong 已提交
3029
    if in_dygraph_mode():
3030
        return _C_ops.cholesky_solve(x, y, upper)
3031 3032 3033 3034 3035 3036 3037 3038 3039
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3040

3041 3042 3043 3044 3045 3046 3047
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3048 3049


3050 3051
def eigvalsh(x, UPLO='L', name=None):
    """
3052
    Computes the eigenvalues of a
3053 3054 3055
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3056
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3070
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3071 3072
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3073 3074
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3075
    """
3076
    if in_dygraph_mode():
3077
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3078
        return values
3079
    else:
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
3096
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
3097
                )
3098

3099
        __check_input(x, UPLO)
3100

3101 3102 3103 3104 3105 3106 3107
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3108

3109 3110
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3111

3112 3113 3114 3115 3116 3117 3118 3119
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3120 3121


3122 3123 3124 3125 3126 3127 3128 3129
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3130
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3131
            should be one of float32, float64.
3132 3133
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3134
            machine precision of x_dtype.
3135 3136 3137
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3138
            for CUDA inputs.
3139
        name(str, optional): The default value is None. Normally there is no need for user to set
3140 3141 3142
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3143 3144 3145 3146 3147 3148 3149
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3182 3183 3184
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3185 3186 3187 3188
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3189 3190 3191 3192
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3193 3194 3195 3196
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3197 3198 3199 3200
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3201
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3202 3203 3204 3205
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3221 3222 3223 3224 3225 3226
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3227 3228 3229 3230
    if in_dygraph_mode():
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3231 3232 3233 3234 3235 3236 3237
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3252

3253 3254 3255 3256 3257 3258
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3281

3282
        return solution, residuals, rank, singular_values
3283 3284 3285 3286


def corrcoef(x, rowvar=True, name=None):
    """
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3326 3327
            "length of Input(input) is %s." % len(x.shape)
        )
3328 3329 3330
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3331
    if c.ndim == 0:
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3346 3347 3348
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3349 3350 3351 3352
    else:
        c = paddle.clip(c, -1, 1)

    return c