creation.py 88.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30
    convert_dtype,
31
    convert_float_to_uint16,
32 33
)
from ..fluid.framework import (
34
    Variable,
35
    _in_eager_without_dygraph_check,
36
    device_guard,
37
)
38
from ..fluid.param_attr import ParamAttr
39 40 41 42 43 44 45 46
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
47

48 49
__all__ = []

W
wangchaochaohu 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
141 142 143 144
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
145 146 147 148 149
    )

    return var


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
180
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
204
            'uint16',
205 206 207 208 209 210 211 212 213 214 215 216 217 218
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
219
        (type(None), paddle.nn.initializer.Initializer),
220 221 222 223 224 225 226 227 228 229 230
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


273 274
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
275
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
276 277

    Args:
278 279
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
280
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
281 282 283
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
284 285
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
286
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
287 288 289 290

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
291
        the value with input :attr:`start`.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
312
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
313 314
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
315
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
316 317
    if not isinstance(num, Variable):
        with device_guard("cpu"):
318
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
319
    if in_dygraph_mode():
320 321 322 323 324 325 326
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
327
    else:
328 329 330 331 332 333 334 335 336
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
337
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
338 339 340 341
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
342

343 344 345 346
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
347
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
348 349 350 351 352 353
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
354
        check_dtype(
355 356
            dtype,
            'dtype',
357
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
358
            'linspace',
359
        )
360 361 362 363 364 365 366 367 368 369 370 371
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
372
            )
373

374
        out = helper.create_variable_for_type_inference(dtype=dtype)
375

376 377 378 379 380 381 382 383 384 385 386 387 388
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
389 390


391 392 393 394
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
395

396 397
    Notes:
        This API does not compute the gradient.
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
413
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
414 415 416 417 418

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
419
        just has the value with exponential of :attr:`start` with base :attr:`base`.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
452
    if in_dygraph_mode():
C
Chen Weihang 已提交
453 454 455 456 457 458 459
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
460
        )
461 462
    else:
        helper = LayerHelper("logspace", **locals())
463

464 465 466 467 468 469 470 471 472 473 474 475 476
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
477

478 479 480 481 482 483 484 485 486
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
487

488 489
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
490

491 492 493 494 495 496 497 498 499
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
500

501
        check_dtype(
502
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
503
        )
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
524
            )
525

526
        out = helper.create_variable_for_type_inference(dtype=dtype)
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
542 543


544
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
545

546 547 548
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

549
    if not isinstance(data, np.ndarray):
550

551
        def _handle_dtype(data, dtype):
552 553 554 555 556
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

557
        if np.isscalar(data) and not isinstance(data, str):
558
            data = np.array(data)
559 560
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
561
            if data.dtype == np.object_:
562 563 564 565
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
566 567 568 569 570 571
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
572
            data = data._copy_to(place, False)
573
            data = _handle_dtype(data, dtype)
574
            data.stop_gradient = stop_gradient
575
            return data
576
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
577
            # should't expose it to users, just for internal use.
W
wanghuancoder 已提交
578
            # convert core.Tensor/core.LoDTensor to Tensor first
579
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
580 581 582 583
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
584 585 586 587
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
588
            return data
589 590
        else:
            raise TypeError(
591 592 593 594
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
595 596
        if not dtype:
            if data.dtype in [
597 598 599 600 601
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
602 603 604
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
605 606 607 608 609
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
610 611 612 613 614
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
615 616

    if dtype and convert_dtype(dtype) != data.dtype:
617 618 619 620 621
        if convert_dtype(dtype) in ['uint16']:
            # should not ndarray.astype('uint16') directly, data bits is wrong
            data = convert_float_to_uint16(data.astype('float32'))
        else:
            data = data.astype(convert_dtype(dtype))
622

J
Jiabin Yang 已提交
623
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
624 625 626 627 628 629 630 631
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
632
    else:
633 634 635 636 637 638 639
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
640 641


642 643 644 645 646
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
647 648
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
649 650 651

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
652
                data = np.array(data)
653 654 655
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

656 657 658 659 660
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
661 662 663 664 665
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

666 667
        if dtype:
            target_dtype = dtype
668
        elif hasattr(data, 'dtype') and data.dtype != 'object':
669 670 671 672 673 674
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

675 676 677 678 679
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


698 699
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
700
    Constructs a ``paddle.Tensor`` from ``data`` ,
701 702 703 704 705
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

706 707 708 709 710 711 712 713
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
714
                                        (0D-Tensor)
715 716 717
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

718 719 720
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
721
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
722
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
723
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
724
            except for python float number which gets dtype from ``get_default_type`` .
725 726 727
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
728 729 730 731 732 733 734 735 736 737
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
738

739 740 741 742
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
743 744
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        1)
745 746 747

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
748 749
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        1)
750 751

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
752 753
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        1)
754 755 756 757 758 759 760 761 762 763 764 765 766 767

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
768 769 770 771
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

772
    if paddle.fluid.framework._non_static_mode():
773 774 775 776
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
777
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
778 779 780
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
781
            return _to_tensor_static(data, dtype, stop_gradient)
782 783


784
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
785
    """
S
swtkiwi 已提交
786

787 788
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
789

P
Pei Yang 已提交
790
    Args:
791 792
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
793
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
794
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
795
            data type is the same as input.
796
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
797

P
Pei Yang 已提交
798
    Returns:
799
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
800

P
Pei Yang 已提交
801 802
    Examples:
        .. code-block:: python
803

P
Pei Yang 已提交
804
          import paddle
805

806
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
807
          output = paddle.full_like(input, 2.0)
808 809
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
810 811
    """
    if dtype is None:
812
        dtype = x.dtype
813
    else:
814 815
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
816
    if in_dygraph_mode():
817
        return _C_ops.full_like(x, fill_value, dtype, x.place)
818 819 820 821 822 823 824 825 826 827 828 829 830
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
831
                'uint16',
832 833
            ],
            'full_like',
834
        )
835 836 837 838 839 840 841 842 843 844 845
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
846
                'uint16',
847 848 849 850
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
851

852 853 854 855 856 857 858 859
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
860 861


862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
887
            if dtype in ['int8', 'uint8', 'int16', 'int32', 'int64']:
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
910
                'int8',
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


947
def ones(shape, dtype=None, name=None):
948
    """
B
BrilliantYuKaimin 已提交
949
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
950 951

    Args:
952 953 954
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
955 956 957
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
958

959
    Returns:
B
BrilliantYuKaimin 已提交
960
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
961 962 963 964

    Examples:
        .. code-block:: python

965
            import paddle
966

967
            # shape is a list/tuple
968
            data1 = paddle.ones(shape=[3, 2])
969 970 971 972 973
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
974 975 976 977 978 979 980 981 982 983 984 985
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
986
    """
987
    if dtype is None:
W
Weilong Wu 已提交
988
        dtype = core.VarDesc.VarType.FP32
989
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
990 991


992
def ones_like(x, dtype=None, name=None):
993
    """
C
Chen Long 已提交
994
    Returns a Tensor filled with the value 1, with the same shape and
995
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
996 997

    Args:
998 999
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1000
        dtype(str|np.dtype, optional): The data type of the
1001 1002 1003
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1004
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1005

1006
    Returns:
1007 1008 1009
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1010 1011 1012
    Examples:
        .. code-block:: python

1013
            import paddle
1014

1015
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1016 1017
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1018

1019 1020
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1021 1022


1023
def zeros(shape, dtype=None, name=None):
1024
    """
C
Chen Long 已提交
1025
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1026 1027

    Args:
1028 1029 1030
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1031
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1032 1033 1034
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1035 1036

    Returns:
1037
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1038 1039 1040 1041

    Examples:
        .. code-block:: python

1042
            import paddle
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1063
    """
1064 1065 1066
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1067 1068


1069
def zeros_like(x, dtype=None, name=None):
1070
    """
1071
    Returns a Tensor filled with the value 0, with the same shape and
1072
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1073 1074

    Args:
1075 1076
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1077
        dtype(str|np.dtype, optional): The data type of the
1078 1079 1080
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1081
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1082 1083

    Returns:
1084 1085
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1086

1087

1088 1089 1090
    Examples:
        .. code-block:: python

1091
            import paddle
1092

Z
zhupengyang 已提交
1093
            x = paddle.to_tensor([1, 2, 3])
1094 1095
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1096

1097 1098
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1099 1100


1101
def eye(num_rows, num_columns=None, dtype=None, name=None):
1102
    """
1103

1104
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1105

1106
    Args:
1107 1108
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1109
            If None, default: num_rows.
W
wangchaochaohu 已提交
1110
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1111 1112
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1113
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1114

1115
    Returns:
1116
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1117

1118 1119
    Examples:
        .. code-block:: python
1120

1121
          import paddle
1122

1123
          data = paddle.eye(3, dtype='int32')
1124 1125 1126
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1127
          data = paddle.eye(2, 3, dtype='int32')
1128 1129
          # [[1 0 0]
          #  [0 1 0]]
1130 1131
    """

1132
    def _check_attr(attr, message):
1133
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1134 1135
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
1136
            raise TypeError(f"{message} should be a non-negative int.")
1137 1138 1139

    _check_attr(num_rows, "num_rows")

1140
    if dtype is None:
1141 1142
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1143 1144
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1145
        _check_attr(num_columns, "num_columns")
1146 1147 1148
    else:
        num_columns = num_rows

1149 1150 1151 1152
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1153 1154
    else:
        helper = LayerHelper("eye", **locals())
1155 1156 1157 1158 1159 1160
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1161
        out = helper.create_variable_for_type_inference(dtype=dtype)
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1173 1174 1175

    out.stop_gradient = True
    return out
1176 1177


1178
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1179
    """
S
swtkiwi 已提交
1180

1181
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1182

W
wangchaochaohu 已提交
1183
    Args:
1184 1185 1186 1187 1188
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1189
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1190
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1191 1192
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1193

1194
    Returns:
1195
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1196

W
wangchaochaohu 已提交
1197 1198 1199
    Examples:
        .. code-block:: python

1200
            import paddle
W
wangchaochaohu 已提交
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1228 1229 1230 1231 1232
    """

    if dtype is None:
        dtype = 'float32'

1233
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1234 1235


1236
def arange(start=0, end=None, step=1, dtype=None, name=None):
1237
    """
1238
    Returns a 1-D Tensor with spaced values within a given interval.
1239

1240 1241
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1242

1243 1244
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1245 1246

    Parameters:
1247 1248
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1249 1250
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1251
        end(float|int|Tensor, optional): End of interval. The interval does not
1252 1253 1254 1255
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1256 1257
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1258 1259
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1260
        dtype(str|np.dtype, optional): The data type of the
1261 1262
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1263
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1264

1265
    Returns:
1266
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1267 1268
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1269

Z
zhupengyang 已提交
1270
    Examples:
1271 1272
        .. code-block:: python

Z
zhupengyang 已提交
1273
            import paddle
1274

Z
zhupengyang 已提交
1275 1276
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1277

Z
zhupengyang 已提交
1278 1279
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1280

Z
zhupengyang 已提交
1281 1282 1283
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1284

1285
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1286 1287
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1288

1289 1290 1291 1292 1293 1294
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1295

1296 1297 1298 1299 1300 1301 1302 1303
    out_shape = None
    if not in_dygraph_mode() and (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
        out_shape = [int(math.ceil((end - start) / step))]

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1326
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1327 1328 1329 1330
    else:
        check_dtype(
            dtype,
            'dtype',
1331
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1332 1333 1334 1335 1336 1337 1338 1339 1340
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1341
        out.stop_gradient = True
1342 1343
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1344 1345
        return out

W
WuHaobo 已提交
1346 1347

def _tril_triu_op(helper):
1348
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1349
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1350
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1351

1352
    assert x is not None, f'x cannot be None in {op_type}'
1353
    check_variable_and_dtype(
1354 1355
        x,
        'x',
1356
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'bool'],
1357 1358
        op_type,
    )
W
WuHaobo 已提交
1359
    if len(x.shape) < 2:
1360
        raise ValueError(f"x shape in {op_type} must be at least 2-D")
W
WuHaobo 已提交
1361
    diagonal = helper.kwargs.get('diagonal', 0)
1362
    if not isinstance(diagonal, (int,)):
1363
        raise TypeError(f"diagonal in {op_type} must be a python Int")
W
WuHaobo 已提交
1364 1365 1366 1367 1368
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1369 1370 1371
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1372 1373 1374 1375 1376 1377 1378 1379

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1380 1381
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1382 1383 1384 1385

    return out


Y
yaoxuefeng 已提交
1386
def tril(x, diagonal=0, name=None):
1387
    r"""
1388
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1389 1390
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1391 1392 1393
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1394
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1395
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1396 1397 1398 1399 1400 1401 1402
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1403
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1404 1405

    Returns:
Y
yaoxuefeng 已提交
1406
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1407
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1408 1409 1410 1411

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1412
            import paddle
W
WuHaobo 已提交
1413

1414 1415 1416 1417 1418
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1419

1420 1421 1422 1423 1424
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1425 1426

            # example 2, positive diagonal value
1427 1428 1429 1430 1431
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1432 1433

            # example 3, negative diagonal value
1434 1435 1436 1437 1438
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1439
    """
F
From00 已提交
1440
    if in_dygraph_mode():
Z
zyfncg 已提交
1441
        return _C_ops.tril(x, diagonal)
1442 1443
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1444 1445


Y
yaoxuefeng 已提交
1446
def triu(x, diagonal=0, name=None):
1447
    r"""
1448
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1449
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1450 1451 1452 1453
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1454
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1455 1456 1457 1458 1459 1460 1461 1462
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1463
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1464 1465

    Returns:
Y
yaoxuefeng 已提交
1466
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1467
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1468 1469 1470 1471

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1472
            import paddle
W
WuHaobo 已提交
1473

1474 1475 1476 1477 1478
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1479 1480

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1481
            triu1 = paddle.tensor.triu(x)
1482 1483 1484 1485
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1486 1487

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1488
            triu2 = paddle.tensor.triu(x, diagonal=2)
1489 1490 1491 1492
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1493 1494

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1495
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1496 1497 1498 1499
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1500 1501

    """
F
From00 已提交
1502
    if in_dygraph_mode():
Z
zyfncg 已提交
1503
        return _C_ops.triu(x, diagonal)
1504 1505
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1506 1507


1508
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1509
    """
1510

1511
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1512

S
suytingwan 已提交
1513
    Args:
1514
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
1515
            (N2,),..., (Nk,). Support data types: ``float64``, ``float16``, ``float32``, ``int32``, ``int64``.
1516
        **kwargs (optional): Currently, only accept name in **kwargs
1517
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1518
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1519

S
suytingwan 已提交
1520
    Returns:
Y
yaoxuefeng 已提交
1521
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1522 1523 1524 1525 1526 1527

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1528 1529 1530 1531
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1532

Y
yaoxuefeng 已提交
1533 1534
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1535 1536 1537 1538 1539 1540

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1541 1542
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1543
    if in_dygraph_mode():
1544
        return _C_ops.meshgrid(list(args))
1545 1546 1547
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1548

1549 1550 1551 1552
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1553

1554 1555 1556 1557 1558 1559 1560
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1561

1562 1563 1564 1565 1566 1567 1568
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1569
        )
S
suytingwan 已提交
1570

1571
        return out
1572 1573


L
Li Min 已提交
1574 1575
def diagflat(x, offset=0, name=None):
    """
1576
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1590
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1591
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1592
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1593 1594 1595 1596 1597 1598

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1599
            :name: code-example-1
L
Li Min 已提交
1600

1601 1602 1603 1604
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1605 1606 1607 1608 1609
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1610 1611

            y = paddle.diagflat(x, offset=1)
1612 1613 1614 1615 1616 1617
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1618 1619

            y = paddle.diagflat(x, offset=-1)
1620 1621 1622 1623 1624 1625
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1626 1627

        .. code-block:: python
1628
            :name: code-example-2
L
Li Min 已提交
1629

1630
            import paddle
L
Li Min 已提交
1631

1632 1633
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1634 1635 1636 1637 1638 1639
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1640 1641

            y = paddle.diagflat(x, offset=1)
1642 1643 1644 1645 1646 1647 1648
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1649 1650

            y = paddle.diagflat(x, offset=-1)
1651 1652 1653 1654 1655 1656 1657
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1658
    """
1659
    if in_dygraph_mode():
1660
        if len(x.shape) <= 1:
1661
            return _C_ops.diag(x, offset, 0)
1662
        else:
1663
            y = _C_ops.flatten(x, 0, -1)
1664 1665 1666 1667 1668
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1669 1670 1671 1672
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1673 1674
        )
        check_type(offset, 'offset', (int), 'diagflat')
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1687
            )
L
Li Min 已提交
1688
        else:
1689 1690 1691 1692 1693
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1694
            )
1695
            out1.stop_gradient = True
L
Li Min 已提交
1696

1697 1698 1699 1700 1701 1702 1703 1704
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1705 1706


1707 1708
def diag(x, offset=0, padding_value=0, name=None):
    """
1709
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1722
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1723 1724
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1725
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1726

1727 1728 1729 1730 1731
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1732
            :name: code-example-1
1733

1734
            import paddle
1735

1736 1737 1738
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1739 1740 1741 1742 1743
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1744 1745

            y = paddle.diag(x, offset=1)
1746 1747 1748 1749 1750 1751
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1752 1753

            y = paddle.diag(x, padding_value=6)
1754 1755 1756 1757 1758
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1759 1760

        .. code-block:: python
1761
            :name: code-example-2
1762

1763
            import paddle
1764

1765 1766 1767
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1768 1769 1770
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1771

1772
            y = paddle.diag(x, offset=1)
1773 1774 1775
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1776

1777
            y = paddle.diag(x, offset=-1)
1778 1779 1780
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1781
    """
J
Jiabin Yang 已提交
1782
    if in_dygraph_mode():
1783
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1784
    else:
1785 1786 1787 1788
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1789
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
1790 1791 1792 1793 1794 1795 1796 1797
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1798
                )
1799
            )
1800

1801
        helper = LayerHelper("diag_v2", **locals())
1802

1803
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1804

1805 1806 1807 1808 1809 1810
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1811

1812 1813
        out.stop_gradient = True
        return out
1814 1815 1816 1817


def empty(shape, dtype=None, name=None):
    """
1818
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1819

1820
    Args:
1821 1822 1823
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1824
        dtype(np.dtype|str, optional): Data type of the output Tensor
1825
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1826 1827
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1828
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1829

1830 1831 1832 1833 1834 1835
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1836
            import paddle
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1857 1858 1859 1860 1861 1862 1863
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1864
    if in_dygraph_mode():
1865
        shape = paddle.utils.convert_shape_to_list(shape)
1866 1867 1868
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1869 1870
        out.stop_gradient = True
        return out
1871 1872 1873
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1874

1875 1876 1877
        check_dtype(
            dtype,
            'dtype',
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1888
            'empty',
1889
        )
1890
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1891

1892 1893
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1894

1895
        attrs = {}
1896
        paddle.utils.get_shape_tensor_inputs(
1897 1898
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1911 1912 1913 1914


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1915
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1916
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1917

1918 1919 1920
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1921
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1922
            data type is the same as input.
1923
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1945
    if in_dygraph_mode():
1946 1947 1948 1949 1950
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1951 1952
        out.stop_gradient = True
        return out
1953 1954 1955 1956 1957
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
1958 1959 1960 1961 1962 1963 1964 1965 1966
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1967 1968 1969 1970 1971
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
1972 1973 1974 1975 1976 1977 1978 1979 1980
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1981 1982 1983
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1984

1985 1986 1987 1988
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1989
        paddle.utils.get_shape_tensor_inputs(
1990 1991 1992 1993 1994 1995 1996 1997 1998
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
1999
        )
2000 2001 2002
        out.stop_gradient = True
        return out

2003 2004 2005

def assign(x, output=None):
    """
2006

2007
    Copy value of the :attr:`x` to the :attr:`output`.
2008

2009
    Parameters:
2010 2011
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
2012
            data limitation.
2013
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
2014

2015
    Returns:
2016
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
2017

2018 2019
    Examples:
        .. code-block:: python
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2031
    """
2032 2033
    input = x
    helper = LayerHelper('assign', **locals())
2034 2035 2036 2037 2038 2039
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2040 2041 2042 2043 2044 2045
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
W
wanghuancoder 已提交
2046 2047
    # NOTE(Aurelius84): Why we judge core.Tensor?
    # In case of @to_static, a Tensor can be as input of `assign`,
2048
    # but _non_static_mode()==False under @to_static, which means
W
wanghuancoder 已提交
2049
    # isinstance(Tensor, Variable) == False. It will cause return None
2050
    # after this api.
W
wanghuancoder 已提交
2051
    if isinstance(input, (Variable, core.eager.Tensor)):
Z
zyfncg 已提交
2052
        if in_dygraph_mode():
2053
            if output is None:
2054
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2055
            else:
2056
                _C_ops.assign_out_(input, output)
2057
        else:
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
2069
                    'int8',
2070 2071 2072 2073 2074
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2075 2076
            if output is None:
                output = helper.create_variable_for_type_inference(
2077 2078 2079 2080 2081
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2082
    elif isinstance(input, np.ndarray):
2083
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2084
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2085
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2086 2087 2088 2089
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2090
                    if isinstance(x, (Variable, core.eager.Tensor))
2091 2092
                ]
            ):
2093 2094 2095 2096 2097
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2098
                if not isinstance(x, (Variable, core.eager.Tensor)):
2099 2100 2101 2102 2103 2104 2105 2106 2107
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2108
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2109
            raise TypeError(
2110
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2111
            )
2112

2113 2114 2115 2116 2117 2118 2119
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2120 2121
                "it to float32"
            )
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2139 2140
                "received %s." % convert_dtype(dtype)
            )
2141
        if input.size > 1024 * 1024:
2142 2143 2144 2145
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2146 2147 2148
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2149 2150 2151 2152 2153 2154 2155
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2156
        else:
2157 2158
            if output is None:
                output = helper.create_variable_for_type_inference(
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2170 2171

    return output
2172 2173


2174 2175
def clone(x, name=None):
    """
2176 2177
    Returns a copy of input Tensor. It will always have a Tensor copy.

2178 2179 2180 2181
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2182
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2183

2184
    Returns:
2185
        Tensor, A Tensor copied from ``input``.
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2204
# NOTE(zhiqiu): not public
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2218
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2219 2220 2221 2222 2223

    Examples:
        .. code-block:: python

          import paddle
2224

2225 2226 2227 2228 2229 2230
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

W
wanghuancoder 已提交
2231
    if isinstance(input, (Variable, core.eager.Tensor)):
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
2243
                'int8',
2244 2245 2246 2247 2248
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3

    attrs = {'dst_place_type': dst_place_type}
2268 2269 2270 2271 2272 2273
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2274
    return output
F
Feiyu Chan 已提交
2275 2276 2277 2278 2279 2280 2281 2282


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2283
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2284 2285 2286 2287

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2288 2289 2290 2291
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2292 2293 2294 2295 2296 2297 2298 2299

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2300 2301 2302 2303
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2304
    """
2305
    if in_dygraph_mode():
2306
        return _C_ops.complex(real, imag)
2307 2308 2309 2310 2311 2312 2313
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2314

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2327 2328 2329 2330


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2331 2332
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2333 2334
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2335

2336 2337 2338 2339 2340
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2341 2342 2343 2344
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2355

2356 2357 2358
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2359
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2360 2361 2362 2363 2364
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2365
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2378 2379
        if col is None:
            col = row
2380 2381 2382
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2383
        return out
2384 2385 2386
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2387

2388 2389 2390 2391 2392 2393 2394 2395
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2396 2397 2398 2399 2400

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2401 2402 2403 2404 2405 2406
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2407
    return out
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2457 2458
        if col is None:
            col = row
2459 2460 2461
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2462
        return out
2463 2464 2465
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2466

2467 2468 2469 2470 2471 2472 2473 2474
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2475 2476 2477 2478 2479

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2480 2481 2482 2483 2484 2485
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2486
    return out
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))