creation.py 78.0 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16
import math
17
import re
18 19
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
20 21 22
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import core
23 24
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
25 26 27 28 29 30
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
31
from ..framework import convert_np_dtype_to_dtype_
32

33
# TODO: define functions to get create a tensor
34
import paddle
35
from paddle import _C_ops, _legacy_C_ops
36 37 38 39
from ..fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
)
40
import warnings
41

42 43
__all__ = []

W
wangchaochaohu 已提交
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
65
    Return fixed number of evenly spaced values within a given interval.
66 67 68 69 70 71 72 73 74 75

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
76
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
77 78 79 80

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
81
        the value with input :attr:`start`.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
102
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
103 104
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
105
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
106 107
    if not isinstance(num, Variable):
        with device_guard("cpu"):
108
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
109
    if in_dygraph_mode():
110 111 112 113 114 115 116
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
117
    if _in_legacy_dygraph():
118 119 120
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
121 122 123 124 125 126 127

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
128 129 130 131 132 133
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
134 135 136 137
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
138 139 140 141 142 143
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
144 145 146 147
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
148 149 150 151 152 153 154 155 156 157
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
158 159
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
160 161 162 163
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
164 165 166

    out = helper.create_variable_for_type_inference(dtype=dtype)

167 168 169 170 171 172
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
173
    if isinstance(num, int):
174
        out.desc.set_shape((num,))
175 176 177
    return out


178 179 180 181
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
182

183 184
    Notes:
        This API does not compute the gradient.
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
200
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
201 202 203 204 205

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
206
        just has the value with exponential of :attr:`start` with base :attr:`base`.
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
240 241 242
        return _legacy_C_ops.logspace(
            tensor_start, tensor_stop, tensor_num, tensor_base, 'dtype', dtype
        )
243 244 245 246 247 248 249 250

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
251 252 253 254 255 256
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
257 258 259 260
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
261 262 263 264 265 266
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
267 268 269 270 271 272 273
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
274 275 276 277 278 279
        check_dtype(
            base.dtype,
            'base',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
280 281 282
    else:
        check_type(base, 'base', (int, float), 'logspace')

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
    )
    if (
        (
            stop_dtype == "float64"
            or start_dtype == "float64"
            or base_dtype == "float64"
        )
        and out_dtype in ["float32", "int32"]
    ) or (
        (
            stop_dtype == "int64"
            or start_dtype == "int64"
            or base_dtype == "int64"
        )
        and out_dtype == "int32"
    ):
301 302
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
303 304 305 306
            "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                start_dtype, stop_dtype, base_dtype, dtype
            )
        )
307 308 309

    out = helper.create_variable_for_type_inference(dtype=dtype)

310 311 312 313 314 315 316 317 318 319 320
    helper.append_op(
        type='logspace',
        inputs={
            'Start': tensor_start,
            'Stop': tensor_stop,
            'Num': tensor_num,
            'Base': tensor_base,
        },
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
321
    if isinstance(num, int):
322
        out.desc.set_shape((num,))
323 324 325
    return out


326
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
327 328

    if not isinstance(data, np.ndarray):
329

330
        def _handle_dtype(data, dtype):
331 332 333 334 335
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

336 337 338 339
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
340
            if data.dtype == np.object_:
341 342 343 344
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
345 346 347 348 349 350
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
351
            data = data._copy_to(place, False)
352
            data = _handle_dtype(data, dtype)
353
            data.stop_gradient = stop_gradient
354
            return data
355
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
356
            # should't expose it to users, just for internal use.
357 358
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
359 360 361 362
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
363 364 365 366
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
367
            return data
368 369
        else:
            raise TypeError(
370 371 372 373
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
374 375
        if not dtype:
            if data.dtype in [
376 377 378 379 380
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
381 382 383
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
384 385 386 387 388
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
389 390 391 392 393
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
394 395

    if dtype and convert_dtype(dtype) != data.dtype:
396
        data = data.astype(convert_dtype(dtype))
397

J
Jiabin Yang 已提交
398
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
399 400 401 402 403 404 405 406
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
407
    else:
408 409 410 411 412 413 414
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
415 416


417 418 419 420 421
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
422 423 424 425 426 427 428

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

429 430 431 432 433
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
434 435 436 437 438
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

439 440
        if dtype:
            target_dtype = dtype
441
        elif hasattr(data, 'dtype') and data.dtype != 'object':
442 443 444 445 446 447
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

448 449 450 451 452
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
453
            if not all(
454 455
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


477 478
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
479
    Constructs a ``paddle.Tensor`` from ``data`` ,
480 481 482 483 484 485 486 487
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
488
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
489
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
490
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
491
            except for python float number which gets dtype from ``get_default_type`` .
492 493 494
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
495 496 497 498 499 500 501 502 503 504
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
520
        #        [1])
521 522 523 524 525 526 527 528 529 530 531 532 533 534

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
535 536 537 538
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

539 540 541 542 543
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
544
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
545 546 547
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
548
            return _to_tensor_static(data, dtype, stop_gradient)
549 550


551
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
552
    """
S
swtkiwi 已提交
553

554 555
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
556

P
Pei Yang 已提交
557
    Args:
558 559
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
560
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
561
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
562
            data type is the same as input.
563
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
564

P
Pei Yang 已提交
565
    Returns:
566
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
567

P
Pei Yang 已提交
568 569
    Examples:
        .. code-block:: python
570

P
Pei Yang 已提交
571
          import paddle
572

573
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
574
          output = paddle.full_like(input, 2.0)
575 576
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
577 578 579
    """

    if dtype is None:
580
        dtype = x.dtype
581
    else:
582 583 584
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

585
    if in_dygraph_mode():
586
        return _C_ops.full_like(x, fill_value, dtype, x.place)
587 588

    if _in_legacy_dygraph():
589 590 591
        return _legacy_C_ops.fill_any_like(
            x, 'value', fill_value, 'dtype', dtype
        )
P
Pei Yang 已提交
592

593
    helper = LayerHelper("full_like", **locals())
594
    check_variable_and_dtype(
595 596
        x,
        'x',
597
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
598 599
        'full_like',
    )
600
    check_dtype(
601 602
        dtype,
        'dtype',
603
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
604 605
        'full_like/zeros_like/ones_like',
    )
606
    out = helper.create_variable_for_type_inference(dtype=dtype)
607

608 609 610 611 612 613
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': fill_value, "dtype": dtype},
        outputs={'Out': [out]},
    )
614
    out.stop_gradient = True
P
Pei Yang 已提交
615 616 617
    return out


618
def ones(shape, dtype=None, name=None):
619
    """
B
BrilliantYuKaimin 已提交
620
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
621 622

    Args:
B
BrilliantYuKaimin 已提交
623 624 625 626
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
627

628
    Returns:
B
BrilliantYuKaimin 已提交
629
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
630 631 632 633

    Examples:
        .. code-block:: python

634
            import paddle
635 636

            # default dtype for ones OP
637
            data1 = paddle.ones(shape=[3, 2])
638 639 640 641
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

642
            data2 = paddle.ones(shape=[2, 2], dtype='int32')
643 644 645 646 647
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
648
            data3 = paddle.ones(shape=shape, dtype='int32')
649 650
            # [[1 1]
            #  [1 1]]
651
    """
652 653 654
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
655 656


657
def ones_like(x, dtype=None, name=None):
658
    """
C
Chen Long 已提交
659
    Returns a Tensor filled with the value 1, with the same shape and
660
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
661 662

    Args:
663 664
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
665
        dtype(str|np.dtype, optional): The data type of the
666 667 668
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
669
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
670

671
    Returns:
672 673 674
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

675 676 677
    Examples:
        .. code-block:: python

678
            import paddle
679

680
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
681 682
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
683

684 685
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
686 687


688
def zeros(shape, dtype=None, name=None):
689
    """
C
Chen Long 已提交
690
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
691 692

    Args:
693
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
694
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
695 696 697
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
698 699

    Returns:
700
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
701 702 703 704 705

    Examples:
        .. code-block:: python

          import paddle
706 707

          data = paddle.zeros(shape=[3, 2], dtype='float32')
708 709 710
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
711
          data = paddle.zeros(shape=[2, 2])
712 713
          # [[0. 0.]
          #  [0. 0.]]
714

715
          # shape is a Tensor
716
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
717
          data3 = paddle.zeros(shape=shape, dtype='int32')
718 719
          # [[0 0]
          #  [0 0]]
720
    """
721 722 723
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
724 725


726
def zeros_like(x, dtype=None, name=None):
727
    """
728
    Returns a Tensor filled with the value 0, with the same shape and
729
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
730 731

    Args:
732 733
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
734
        dtype(str|np.dtype, optional): The data type of the
735 736 737
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
738
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
739 740

    Returns:
741 742
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
743

744

745 746 747
    Examples:
        .. code-block:: python

748
            import paddle
749

Z
zhupengyang 已提交
750
            x = paddle.to_tensor([1, 2, 3])
751 752
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
753

754 755
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
756 757


758
def eye(num_rows, num_columns=None, dtype=None, name=None):
759
    """
760

761
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
762

763
    Args:
764 765
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
766
            If None, default: num_rows.
W
wangchaochaohu 已提交
767
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
768 769
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
770
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
771

772
    Returns:
773
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
774

775 776
    Examples:
        .. code-block:: python
777

778
          import paddle
779

780
          data = paddle.eye(3, dtype='int32')
781 782 783
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
784
          data = paddle.eye(2, 3, dtype='int32')
785 786
          # [[1 0 0]
          #  [0 1 0]]
787 788
    """

789 790 791 792 793 794 795 796
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

797 798
    if dtype is None:
        dtype = 'float32'
799 800 801
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
802
        _check_attr(num_columns, "num_columns")
803 804 805 806
    else:
        num_columns = num_rows

    if _non_static_mode():
807
        if in_dygraph_mode():
808 809 810
            out = _C_ops.eye(
                num_rows, num_columns, dtype, _current_expected_place()
            )
811
        elif _in_legacy_dygraph():
812 813 814
            out = _legacy_C_ops.eye(
                'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
            )
815 816 817

    else:
        helper = LayerHelper("eye", **locals())
818 819 820 821 822 823
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
824
        out = helper.create_variable_for_type_inference(dtype=dtype)
825 826 827 828 829 830 831 832 833 834 835
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
836 837 838

    out.stop_gradient = True
    return out
839 840


841
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
842
    """
S
swtkiwi 已提交
843

844
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
845

W
wangchaochaohu 已提交
846
    Args:
847
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
848 849
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
850
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
851 852
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
853
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
854
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
855 856
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
857

858
    Returns:
859
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
860

W
wangchaochaohu 已提交
861 862 863
    Examples:
        .. code-block:: python

864
            import paddle
W
wangchaochaohu 已提交
865

866
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
867 868 869 870 871 872 873 874 875 876
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
877 878
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
            # [[True True]
879
            #  [True True]]
880

881 882 883
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
884
            # [[2.0]
885
            #  [2.0]]
W
wangchaochaohu 已提交
886 887 888 889 890
    """

    if dtype is None:
        dtype = 'float32'

891
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
892 893


894
def arange(start=0, end=None, step=1, dtype=None, name=None):
895
    """
896
    Returns a 1-D Tensor with spaced values within a given interval.
897

898 899
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
900

901 902
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
903 904

    Parameters:
905 906 907 908 909 910 911 912 913 914 915 916
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
917
        dtype(str|np.dtype, optional): The data type of the
918 919
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
920
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
921

922
    Returns:
923
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
924 925
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
926

Z
zhupengyang 已提交
927
    Examples:
928 929
        .. code-block:: python

Z
zhupengyang 已提交
930
            import paddle
931

Z
zhupengyang 已提交
932 933
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
934

Z
zhupengyang 已提交
935 936
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
937

Z
zhupengyang 已提交
938 939 940
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
941

Z
zhupengyang 已提交
942 943 944
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
945

946 947 948 949 950 951
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
952

953
    out_shape = None
954 955 956 957 958
    if (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
959 960
        out_shape = [int(math.ceil((end - start) / step))]

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
983
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
984 985

    if _in_legacy_dygraph():
986
        out = _legacy_C_ops.range(start, end, step)
987 988 989
        out.stop_gradient = True
        return out

990 991 992
    check_dtype(
        dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
    )
993 994
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
995 996 997 998 999
    helper.append_op(
        type='range',
        inputs={'Start': start, 'End': end, 'Step': step},
        outputs={'Out': out},
    )
1000
    out.stop_gradient = True
1001 1002
    if out_shape is not None:
        out.desc.set_shape(out_shape)
1003
    return out
W
WuHaobo 已提交
1004 1005 1006


def _tril_triu_op(helper):
1007
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1008
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1009
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1010 1011

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1012
    check_variable_and_dtype(
1013 1014 1015 1016 1017
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1018
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1019
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1020
    diagonal = helper.kwargs.get('diagonal', 0)
1021
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1022 1023 1024 1025 1026 1027
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1028 1029 1030
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1031 1032 1033 1034 1035 1036 1037 1038

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1039 1040
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1041 1042 1043 1044

    return out


Y
yaoxuefeng 已提交
1045
def tril(x, diagonal=0, name=None):
1046
    r"""
1047
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1048 1049
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1050 1051 1052
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1053
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1054
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1055 1056 1057 1058 1059 1060 1061
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1062
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1063 1064

    Returns:
Y
yaoxuefeng 已提交
1065
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1066
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1067 1068 1069 1070

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1071
            import paddle
W
WuHaobo 已提交
1072

1073 1074 1075 1076 1077
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1078

1079 1080 1081 1082 1083
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1084 1085

            # example 2, positive diagonal value
1086 1087 1088 1089 1090
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1091 1092

            # example 3, negative diagonal value
1093 1094 1095 1096 1097
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1098
    """
F
From00 已提交
1099
    if in_dygraph_mode():
1100
        return _C_ops.tril(x, diagonal, True)
F
From00 已提交
1101 1102

    if _in_legacy_dygraph():
1103
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1104
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1105 1106 1107 1108

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1109
def triu(x, diagonal=0, name=None):
1110
    r"""
1111
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1112
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1113 1114 1115 1116
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1117
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1118 1119 1120 1121 1122 1123 1124 1125
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1126
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1127 1128

    Returns:
Y
yaoxuefeng 已提交
1129
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1130
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1131 1132 1133 1134

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1135
            import paddle
W
WuHaobo 已提交
1136

1137 1138 1139 1140 1141
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1142 1143

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1144
            triu1 = paddle.tensor.triu(x)
1145 1146 1147 1148
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1149 1150

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1151
            triu2 = paddle.tensor.triu(x, diagonal=2)
1152 1153 1154 1155
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1156 1157

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1158
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1159 1160 1161 1162
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1163 1164

    """
F
From00 已提交
1165
    if in_dygraph_mode():
1166
        return _C_ops.tril(x, diagonal, False)
F
From00 已提交
1167 1168

    if _in_legacy_dygraph():
1169
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1170
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1171 1172

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1173 1174


1175
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1176
    """
1177
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1178

S
suytingwan 已提交
1179
    Args:
1180
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1181
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1182
        **kwargs (optional): Currently, only accept name in **kwargs
1183
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1184
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1185

S
suytingwan 已提交
1186
    Returns:
Y
yaoxuefeng 已提交
1187
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1188 1189 1190 1191 1192 1193

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1194 1195 1196 1197
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1198

Y
yaoxuefeng 已提交
1199 1200
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1201 1202 1203 1204 1205 1206

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1207 1208
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1209
    if _in_legacy_dygraph():
1210
        num = len(args)
1211
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1212
        return out
Y
YuanRisheng 已提交
1213
    if in_dygraph_mode():
1214
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1215

1216
    name = kwargs.get("name", None)
S
suytingwan 已提交
1217 1218
    helper = LayerHelper('meshgrid', **locals())

1219 1220
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1221

1222
    for id, input_ in enumerate(args):
1223 1224 1225 1226 1227 1228
        check_dtype(
            input_.dtype,
            'create data type',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'meshgrid',
        )
S
suytingwan 已提交
1229

1230
    num = len(args)
S
suytingwan 已提交
1231
    out = [
1232
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1233 1234
        for i in range(num)
    ]
1235 1236 1237
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
    )
S
suytingwan 已提交
1238 1239

    return out
1240 1241


L
Li Min 已提交
1242 1243
def diagflat(x, offset=0, name=None):
    """
1244
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1260
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1261 1262 1263 1264 1265 1266

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1267
            :name: code-example-1
L
Li Min 已提交
1268

1269 1270 1271 1272
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1273 1274 1275 1276 1277
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1278 1279

            y = paddle.diagflat(x, offset=1)
1280 1281 1282 1283 1284 1285
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1286 1287

            y = paddle.diagflat(x, offset=-1)
1288 1289 1290 1291 1292 1293
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1294 1295

        .. code-block:: python
1296
            :name: code-example-2
L
Li Min 已提交
1297

1298
            import paddle
L
Li Min 已提交
1299

1300 1301
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1302 1303 1304 1305 1306 1307
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1308 1309

            y = paddle.diagflat(x, offset=1)
1310 1311 1312 1313 1314 1315 1316
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1317 1318

            y = paddle.diagflat(x, offset=-1)
1319 1320 1321 1322 1323 1324 1325
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1326 1327
    """
    padding_value = 0
1328 1329
    if in_dygraph_mode():
        if len(x.shape) == 1:
1330
            return _C_ops.diag(x, offset, padding_value)
1331
        else:
1332 1333
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1334 1335

    if _in_legacy_dygraph():
L
Li Min 已提交
1336
        if len(x.shape) == 1:
1337 1338 1339
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1340
        else:
1341
            y, _ = _legacy_C_ops.flatten_contiguous_range(
1342 1343 1344 1345 1346
                x, "start_axis", 0, "stop_axis", -1
            )
            return _legacy_C_ops.diag_v2(
                y, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1347 1348

    check_type(x, 'x', (Variable), 'diagflat')
1349 1350 1351
    check_dtype(
        x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat'
    )
L
Li Min 已提交
1352 1353 1354 1355 1356 1357 1358 1359
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1360 1361 1362 1363 1364 1365
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1366
    else:
1367 1368 1369 1370 1371 1372
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1, 'XShape': out1_shape},
            attrs={'start_axis': 0, 'stop_axis': -1},
        )
L
Li Min 已提交
1373 1374
        out1.stop_gradient = True

1375 1376 1377 1378 1379 1380
        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1381 1382 1383 1384
    out2.stop_gradient = True
    return out2


1385 1386
def diag(x, offset=0, padding_value=0, name=None):
    """
1387
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1403
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1404

1405 1406 1407 1408 1409
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1410
            :name: code-example-1
1411

1412
            import paddle
1413

1414 1415 1416
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1417 1418 1419 1420 1421
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1422 1423

            y = paddle.diag(x, offset=1)
1424 1425 1426 1427 1428 1429
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1430 1431

            y = paddle.diag(x, padding_value=6)
1432 1433 1434 1435 1436
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1437 1438

        .. code-block:: python
1439
            :name: code-example-2
1440

1441
            import paddle
1442

1443 1444 1445
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1446 1447 1448
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1449

1450
            y = paddle.diag(x, offset=1)
1451 1452 1453
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1454

1455
            y = paddle.diag(x, offset=-1)
1456 1457 1458
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1459
    """
J
Jiabin Yang 已提交
1460
    if in_dygraph_mode():
1461
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1462 1463
    else:
        if _in_legacy_dygraph():
1464 1465 1466
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
J
Jiabin Yang 已提交
1467 1468
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
1469 1470 1471 1472 1473 1474
            check_dtype(
                x.dtype,
                'x',
                ['float32', 'float64', 'int32', 'int64'],
                'diag_v2',
            )
J
Jiabin Yang 已提交
1475 1476 1477 1478
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1479 1480 1481 1482
                    "The dimension of input x must be either 1 or 2, but received {}".format(
                        len(x.shape)
                    )
                )
1483

J
Jiabin Yang 已提交
1484
            helper = LayerHelper("diag_v2", **locals())
1485

J
Jiabin Yang 已提交
1486
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1487

1488 1489 1490 1491 1492 1493
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
1494

J
Jiabin Yang 已提交
1495 1496
            out.stop_gradient = True
            return out
1497 1498 1499 1500


def empty(shape, dtype=None, name=None):
    """
1501
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1512
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1513

1514 1515 1516 1517 1518 1519
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1520
            import paddle
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1546 1547 1548 1549 1550 1551 1552
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1553 1554
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1555 1556 1557
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1558 1559 1560 1561
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1562
        shape = utils.convert_shape_to_list(shape)
1563 1564 1565
        out = _legacy_C_ops.empty(
            'shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1566 1567 1568 1569 1570 1571
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

1572 1573 1574 1575 1576 1577
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty',
    )
1578 1579 1580 1581 1582 1583
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1584 1585 1586
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
    )
1587 1588 1589

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1590 1591 1592 1593 1594 1595 1596
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1597 1598
    out.stop_gradient = True
    return out
1599 1600 1601 1602


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1603
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1604
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1605

1606 1607 1608
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1609
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1610
            data type is the same as input.
1611
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1633
    if in_dygraph_mode():
1634 1635 1636 1637 1638
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1639 1640 1641 1642
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1643 1644 1645
        out = _legacy_C_ops.empty(
            'shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1646 1647 1648 1649 1650
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
1662 1663 1664 1665 1666 1667
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
    )

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1679 1680
    out.stop_gradient = True
    return out
1681 1682 1683 1684


def assign(x, output=None):
    """
1685

1686
    Copy value of the :attr:`x` to the :attr:`output`.
1687

1688
    Parameters:
1689 1690
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1691
            data limitation.
1692
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1693

1694
    Returns:
1695
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1696

1697 1698
    Examples:
        .. code-block:: python
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1710
    """
1711 1712
    input = x
    helper = LayerHelper('assign', **locals())
1713 1714 1715 1716 1717 1718
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1730
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1731
        if in_dygraph_mode():
1732
            if output is None:
1733
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1734
            else:
1735
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1736 1737 1738
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1739
            _legacy_C_ops.assign(input, output)
1740
        else:
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1757 1758
            if output is None:
                output = helper.create_variable_for_type_inference(
1759 1760 1761 1762 1763
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1764
    elif isinstance(input, np.ndarray):
1765
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1766
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1767
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1768 1769 1770 1771
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1772
                    if isinstance(x, (Variable, core.eager.Tensor))
1773 1774
                ]
            ):
1775 1776 1777 1778 1779
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1780
                if not isinstance(x, (Variable, core.eager.Tensor)):
1781 1782 1783 1784 1785 1786 1787 1788 1789
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
1790
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1791
            raise TypeError(
1792
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1793
            )
1794

1795 1796 1797 1798 1799 1800 1801
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
1802 1803
                "it to float32"
            )
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
1821 1822
                "received %s." % convert_dtype(dtype)
            )
1823
        if input.size > 1024 * 1024:
1824 1825 1826 1827
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
1828 1829 1830
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
1831 1832 1833 1834 1835 1836 1837
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
1838 1839 1840
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1841 1842 1843 1844 1845 1846 1847 1848 1849
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
1850
        else:
1851 1852
            if output is None:
                output = helper.create_variable_for_type_inference(
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
1864

Z
zyfncg 已提交
1865
    if is_inplace and _in_legacy_dygraph():
1866 1867 1868
        output._bump_inplace_version()

    return output
1869 1870


1871 1872
def clone(x, name=None):
    """
1873 1874
    Returns a copy of input Tensor. It will always have a Tensor copy.

1875 1876 1877 1878
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1879
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1880

1881
    Returns:
1882
        Tensor, A Tensor copied from ``input``.
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1901
# NOTE(zhiqiu): not public
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1915
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1916 1917 1918 1919 1920

    Examples:
        .. code-block:: python

          import paddle
1921

1922 1923 1924 1925 1926 1927 1928
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1966 1967 1968 1969 1970 1971
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
1972
    return output
F
Feiyu Chan 已提交
1973 1974 1975 1976 1977 1978 1979 1980


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1981
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
1996 1997 1998 1999
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2000
    """
2001
    if in_dygraph_mode():
2002
        return _C_ops.complex(real, imag)
2003

Z
zhiboniu 已提交
2004
    if paddle.in_dynamic_mode():
2005
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
2006 2007 2008 2009 2010 2011 2012 2013

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
2014 2015
        dtype=_real_to_complex_dtype(real.dtype)
    )
F
Feiyu Chan 已提交
2016 2017 2018 2019
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
2020 2021 2022 2023


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2024 2025
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2026 2027
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2028

2029 2030 2031 2032 2033
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2034 2035 2036 2037
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2048

2049 2050 2051
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2052
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2053 2054 2055 2056 2057
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2058
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2083 2084 2085
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2086 2087 2088
        return out

    if _in_legacy_dygraph():
2089 2090 2091
        out = _legacy_C_ops.tril_indices(
            'rows', row, 'cols', col, 'offset', offset, "dtype", dtype
        )
2092 2093 2094 2095 2096 2097 2098
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2099 2100 2101 2102 2103 2104
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2105
    return out
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2167 2168 2169
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2170 2171 2172
        return out

    if _in_legacy_dygraph():
2173 2174 2175
        out = _legacy_C_ops.triu_indices(
            'row', row, 'col', col, 'offset', offset, "dtype", dtype
        )
2176 2177 2178 2179 2180 2181 2182
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2183 2184 2185 2186 2187 2188
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2189
    return out