creation.py 83.6 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25
from paddle.common_ops_import import fill_constant
26

27 28
from ..fluid.data_feeder import (
    check_dtype,
29 30
    check_type,
    check_variable_and_dtype,
31 32 33
    convert_dtype,
)
from ..fluid.framework import (
34
    Variable,
35
    _in_eager_without_dygraph_check,
36
    device_guard,
37
)
38
from ..fluid.param_attr import ParamAttr
39 40 41 42 43 44 45 46
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
47

48 49
__all__ = []

W
wangchaochaohu 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
141 142 143 144
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
145 146 147 148 149
    )

    return var


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
180
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
218
        (type(None), paddle.nn.initializer.Initializer),
219 220 221 222 223 224 225 226 227 228 229
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


272 273
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
274
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
275 276

    Args:
277 278
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
279
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
280 281 282
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
283 284
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
285
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
286 287 288 289

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
290
        the value with input :attr:`start`.
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
311
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
312 313
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
314
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
315 316
    if not isinstance(num, Variable):
        with device_guard("cpu"):
317
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
318
    if in_dygraph_mode():
319 320 321 322 323 324 325
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
326
    else:
327 328 329 330 331 332 333 334 335 336 337 338 339 340
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
341

342 343 344 345 346 347 348 349 350 351 352
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
353
        check_dtype(
354
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
355
        )
356 357 358 359 360 361 362 363 364 365 366 367
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
368
            )
369

370
        out = helper.create_variable_for_type_inference(dtype=dtype)
371

372 373 374 375 376 377 378 379 380 381 382 383 384
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
385 386


387 388 389 390
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
391

392 393
    Notes:
        This API does not compute the gradient.
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
409
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
410 411 412 413 414

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
415
        just has the value with exponential of :attr:`start` with base :attr:`base`.
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
448
    if in_dygraph_mode():
C
Chen Weihang 已提交
449 450 451 452 453 454 455
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
456
        )
457 458
    else:
        helper = LayerHelper("logspace", **locals())
459

460 461 462 463 464 465 466 467 468 469 470 471 472
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
473

474 475 476 477 478 479 480 481 482
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
483

484 485
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
486

487 488 489 490 491 492 493 494 495
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
496

497
        check_dtype(
498
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
499
        )
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
520
            )
521

522
        out = helper.create_variable_for_type_inference(dtype=dtype)
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
538 539


540
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
541

542 543 544
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

545
    if not isinstance(data, np.ndarray):
546

547
        def _handle_dtype(data, dtype):
548 549 550 551 552
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

553 554 555 556
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
557
            if data.dtype == np.object_:
558 559 560 561
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
562 563 564 565 566 567
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
568
            data = data._copy_to(place, False)
569
            data = _handle_dtype(data, dtype)
570
            data.stop_gradient = stop_gradient
571
            return data
572
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
573
            # should't expose it to users, just for internal use.
574 575
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
576 577 578 579
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
580 581 582 583
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
584
            return data
585 586
        else:
            raise TypeError(
587 588 589 590
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
591 592
        if not dtype:
            if data.dtype in [
593 594 595 596 597
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
598 599 600
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
601 602 603 604 605
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
606 607 608 609 610
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
611 612

    if dtype and convert_dtype(dtype) != data.dtype:
613
        data = data.astype(convert_dtype(dtype))
614

J
Jiabin Yang 已提交
615
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
616 617 618 619 620 621 622 623
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
624
    else:
625 626 627 628 629 630 631
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
632 633


634 635 636 637 638
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
639 640
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
641 642 643 644 645 646 647

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

648 649 650 651 652
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
653 654 655 656 657
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

658 659
        if dtype:
            target_dtype = dtype
660
        elif hasattr(data, 'dtype') and data.dtype != 'object':
661 662 663 664 665 666
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

667 668 669 670 671
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
672
            if not all(
673 674
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


696 697
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
698
    Constructs a ``paddle.Tensor`` from ``data`` ,
699 700 701 702 703
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

704 705 706 707 708 709 710 711 712 713 714 715
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

716 717 718
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
719
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
720
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
721
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
722
            except for python float number which gets dtype from ``get_default_type`` .
723 724 725
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
726 727 728 729 730 731 732 733 734 735
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
736

737 738 739 740 741 742 743 744 745 746 747 748 749 750
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
751
        #        [1])
752 753 754 755 756 757 758 759 760 761 762 763 764 765

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
766 767 768 769
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

770
    if paddle.fluid.framework._non_static_mode():
771 772 773 774
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
775
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
776 777 778
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
779
            return _to_tensor_static(data, dtype, stop_gradient)
780 781


782
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
783
    """
S
swtkiwi 已提交
784

785 786
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
787

P
Pei Yang 已提交
788
    Args:
789 790
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
791
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
792
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
793
            data type is the same as input.
794
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
795

P
Pei Yang 已提交
796
    Returns:
797
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
798

P
Pei Yang 已提交
799 800
    Examples:
        .. code-block:: python
801

P
Pei Yang 已提交
802
          import paddle
803

804
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
805
          output = paddle.full_like(input, 2.0)
806 807
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
808 809
    """
    if dtype is None:
810
        dtype = x.dtype
811
    else:
812 813
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
814
    if in_dygraph_mode():
815
        return _C_ops.full_like(x, fill_value, dtype, x.place)
816 817 818 819 820 821 822 823 824 825 826 827 828
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
829
                'uint16',
830 831
            ],
            'full_like',
832
        )
833 834 835 836 837 838 839 840 841 842 843
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
844
                'uint16',
845 846 847 848
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
849

850 851 852 853 854 855 856 857
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
858 859


860
def ones(shape, dtype=None, name=None):
861
    """
B
BrilliantYuKaimin 已提交
862
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
863 864

    Args:
865 866 867
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
868 869 870
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
871

872
    Returns:
B
BrilliantYuKaimin 已提交
873
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
874 875 876 877

    Examples:
        .. code-block:: python

878
            import paddle
879

880
            # shape is a list/tuple
881
            data1 = paddle.ones(shape=[3, 2])
882 883 884 885 886
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
887 888 889 890 891 892 893 894 895 896 897 898
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
899
    """
900
    if dtype is None:
W
Weilong Wu 已提交
901
        dtype = core.VarDesc.VarType.FP32
902
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
903 904


905
def ones_like(x, dtype=None, name=None):
906
    """
C
Chen Long 已提交
907
    Returns a Tensor filled with the value 1, with the same shape and
908
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
909 910

    Args:
911 912
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
913
        dtype(str|np.dtype, optional): The data type of the
914 915 916
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
917
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
918

919
    Returns:
920 921 922
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

923 924 925
    Examples:
        .. code-block:: python

926
            import paddle
927

928
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
929 930
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
931

932 933
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
934 935


936
def zeros(shape, dtype=None, name=None):
937
    """
C
Chen Long 已提交
938
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
939 940

    Args:
941 942 943
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
944
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
945 946 947
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
948 949

    Returns:
950
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
951 952 953 954

    Examples:
        .. code-block:: python

955
            import paddle
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
976
    """
977 978 979
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
980 981


982
def zeros_like(x, dtype=None, name=None):
983
    """
984
    Returns a Tensor filled with the value 0, with the same shape and
985
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
986 987

    Args:
988 989
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
990
        dtype(str|np.dtype, optional): The data type of the
991 992 993
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
994
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
995 996

    Returns:
997 998
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
999

1000

1001 1002 1003
    Examples:
        .. code-block:: python

1004
            import paddle
1005

Z
zhupengyang 已提交
1006
            x = paddle.to_tensor([1, 2, 3])
1007 1008
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1009

1010 1011
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1012 1013


1014
def eye(num_rows, num_columns=None, dtype=None, name=None):
1015
    """
1016

1017
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1018

1019
    Args:
1020 1021
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1022
            If None, default: num_rows.
W
wangchaochaohu 已提交
1023
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1024 1025
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1026
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1027

1028
    Returns:
1029
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1030

1031 1032
    Examples:
        .. code-block:: python
1033

1034
          import paddle
1035

1036
          data = paddle.eye(3, dtype='int32')
1037 1038 1039
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1040
          data = paddle.eye(2, 3, dtype='int32')
1041 1042
          # [[1 0 0]
          #  [0 1 0]]
1043 1044
    """

1045
    def _check_attr(attr, message):
1046
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1047 1048 1049 1050 1051 1052
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

1053
    if dtype is None:
1054 1055
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1056 1057
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1058
        _check_attr(num_columns, "num_columns")
1059 1060 1061
    else:
        num_columns = num_rows

1062 1063 1064 1065
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1066 1067
    else:
        helper = LayerHelper("eye", **locals())
1068 1069 1070 1071 1072 1073
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1074
        out = helper.create_variable_for_type_inference(dtype=dtype)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1086 1087 1088

    out.stop_gradient = True
    return out
1089 1090


1091
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1092
    """
S
swtkiwi 已提交
1093

1094
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1095

W
wangchaochaohu 已提交
1096
    Args:
1097 1098 1099 1100 1101
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1102
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1103
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1104 1105
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1106

1107
    Returns:
1108
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1109

W
wangchaochaohu 已提交
1110 1111 1112
    Examples:
        .. code-block:: python

1113
            import paddle
W
wangchaochaohu 已提交
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1141 1142 1143 1144 1145
    """

    if dtype is None:
        dtype = 'float32'

1146
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1147 1148


1149
def arange(start=0, end=None, step=1, dtype=None, name=None):
1150
    """
1151
    Returns a 1-D Tensor with spaced values within a given interval.
1152

1153 1154
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1155

1156 1157
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1158 1159

    Parameters:
1160 1161
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1162 1163
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1164
        end(float|int|Tensor, optional): End of interval. The interval does not
1165 1166 1167 1168
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1169 1170
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1171 1172
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1173
        dtype(str|np.dtype, optional): The data type of the
1174 1175
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1176
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1177

1178
    Returns:
1179
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1180 1181
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1182

Z
zhupengyang 已提交
1183
    Examples:
1184 1185
        .. code-block:: python

Z
zhupengyang 已提交
1186
            import paddle
1187

Z
zhupengyang 已提交
1188 1189
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1190

Z
zhupengyang 已提交
1191 1192
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1193

Z
zhupengyang 已提交
1194 1195 1196
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1197

1198
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1199 1200
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1201

1202 1203 1204 1205 1206 1207
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1231
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1232 1233 1234 1235
    else:
        check_dtype(
            dtype,
            'dtype',
1236
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1237 1238 1239
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
1240 1241 1242 1243 1244 1245 1246
        out_shape = None
        if (
            not isinstance(start, Variable)
            and not isinstance(end, Variable)
            and not isinstance(step, Variable)
        ):
            out_shape = [int(math.ceil((end - start) / step))]
1247 1248 1249 1250 1251 1252
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1253
        out.stop_gradient = True
1254 1255
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1256 1257
        return out

W
WuHaobo 已提交
1258 1259

def _tril_triu_op(helper):
1260
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1261
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1262
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1263 1264

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1265
    check_variable_and_dtype(
1266 1267 1268 1269 1270
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1271
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1272
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1273
    diagonal = helper.kwargs.get('diagonal', 0)
1274
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1275 1276 1277 1278 1279 1280
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1281 1282 1283
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1284 1285 1286 1287 1288 1289 1290 1291

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1292 1293
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1294 1295 1296 1297

    return out


Y
yaoxuefeng 已提交
1298
def tril(x, diagonal=0, name=None):
1299
    r"""
1300
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1301 1302
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1303 1304 1305
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1306
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1307
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1308 1309 1310 1311 1312 1313 1314
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1315
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1316 1317

    Returns:
Y
yaoxuefeng 已提交
1318
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1319
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1320 1321 1322 1323

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1324
            import paddle
W
WuHaobo 已提交
1325

1326 1327 1328 1329 1330
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1331

1332 1333 1334 1335 1336
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1337 1338

            # example 2, positive diagonal value
1339 1340 1341 1342 1343
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1344 1345

            # example 3, negative diagonal value
1346 1347 1348 1349 1350
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1351
    """
F
From00 已提交
1352
    if in_dygraph_mode():
Z
zyfncg 已提交
1353
        return _C_ops.tril(x, diagonal)
1354 1355
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1356 1357


Y
yaoxuefeng 已提交
1358
def triu(x, diagonal=0, name=None):
1359
    r"""
1360
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1361
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1362 1363 1364 1365
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1366
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1367 1368 1369 1370 1371 1372 1373 1374
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1376 1377

    Returns:
Y
yaoxuefeng 已提交
1378
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1379
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1380 1381 1382 1383

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1384
            import paddle
W
WuHaobo 已提交
1385

1386 1387 1388 1389 1390
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1391 1392

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1393
            triu1 = paddle.tensor.triu(x)
1394 1395 1396 1397
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1398 1399

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1400
            triu2 = paddle.tensor.triu(x, diagonal=2)
1401 1402 1403 1404
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1405 1406

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1407
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1408 1409 1410 1411
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1412 1413

    """
F
From00 已提交
1414
    if in_dygraph_mode():
Z
zyfncg 已提交
1415
        return _C_ops.triu(x, diagonal)
1416 1417
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1418 1419


1420
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1421
    """
1422

1423
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1424

S
suytingwan 已提交
1425
    Args:
1426
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1427
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1428
        **kwargs (optional): Currently, only accept name in **kwargs
1429
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1430
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1431

S
suytingwan 已提交
1432
    Returns:
Y
yaoxuefeng 已提交
1433
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1434 1435 1436 1437 1438 1439

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1440 1441 1442 1443
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1444

Y
yaoxuefeng 已提交
1445 1446
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1447 1448 1449 1450 1451 1452

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1453 1454
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1455
    if in_dygraph_mode():
1456
        return _C_ops.meshgrid(list(args))
1457 1458 1459
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1460

1461 1462 1463 1464
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1465

1466 1467 1468 1469 1470 1471 1472
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1473

1474 1475 1476 1477 1478 1479 1480
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1481
        )
S
suytingwan 已提交
1482

1483
        return out
1484 1485


L
Li Min 已提交
1486 1487
def diagflat(x, offset=0, name=None):
    """
1488
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1502
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1503
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1504
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1505 1506 1507 1508 1509 1510

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1511
            :name: code-example-1
L
Li Min 已提交
1512

1513 1514 1515 1516
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1517 1518 1519 1520 1521
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1522 1523

            y = paddle.diagflat(x, offset=1)
1524 1525 1526 1527 1528 1529
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1530 1531

            y = paddle.diagflat(x, offset=-1)
1532 1533 1534 1535 1536 1537
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1538 1539

        .. code-block:: python
1540
            :name: code-example-2
L
Li Min 已提交
1541

1542
            import paddle
L
Li Min 已提交
1543

1544 1545
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1546 1547 1548 1549 1550 1551
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1552 1553

            y = paddle.diagflat(x, offset=1)
1554 1555 1556 1557 1558 1559 1560
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1561 1562

            y = paddle.diagflat(x, offset=-1)
1563 1564 1565 1566 1567 1568 1569
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1570
    """
1571
    if in_dygraph_mode():
1572
        if len(x.shape) <= 1:
1573
            return _C_ops.diag(x, offset, 0)
1574
        else:
1575
            y = _C_ops.flatten(x, 0, -1)
1576 1577 1578 1579 1580
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1581 1582 1583 1584
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1585 1586
        )
        check_type(offset, 'offset', (int), 'diagflat')
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1599
            )
L
Li Min 已提交
1600
        else:
1601 1602 1603 1604 1605
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1606
            )
1607
            out1.stop_gradient = True
L
Li Min 已提交
1608

1609 1610 1611 1612 1613 1614 1615 1616
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1617 1618


1619 1620
def diag(x, offset=0, padding_value=0, name=None):
    """
1621
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1634
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1635 1636
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1637
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1638

1639 1640 1641 1642 1643
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1644
            :name: code-example-1
1645

1646
            import paddle
1647

1648 1649 1650
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1651 1652 1653 1654 1655
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1656 1657

            y = paddle.diag(x, offset=1)
1658 1659 1660 1661 1662 1663
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1664 1665

            y = paddle.diag(x, padding_value=6)
1666 1667 1668 1669 1670
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1671 1672

        .. code-block:: python
1673
            :name: code-example-2
1674

1675
            import paddle
1676

1677 1678 1679
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1680 1681 1682
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1683

1684
            y = paddle.diag(x, offset=1)
1685 1686 1687
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1688

1689
            y = paddle.diag(x, offset=-1)
1690 1691 1692
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1693
    """
J
Jiabin Yang 已提交
1694
    if in_dygraph_mode():
1695
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1696
    else:
1697 1698 1699 1700
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1701
            ['float16', 'float32', 'float64', 'int32', 'int64'],
1702 1703 1704 1705 1706 1707 1708 1709
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1710
                )
1711
            )
1712

1713
        helper = LayerHelper("diag_v2", **locals())
1714

1715
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1716

1717 1718 1719 1720 1721 1722
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1723

1724 1725
        out.stop_gradient = True
        return out
1726 1727 1728 1729


def empty(shape, dtype=None, name=None):
    """
1730
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1731

1732
    Args:
1733 1734 1735
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1736
        dtype(np.dtype|str, optional): Data type of the output Tensor
1737
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1738 1739
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1740
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1741

1742 1743 1744 1745 1746 1747
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1748
            import paddle
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1769 1770 1771 1772 1773 1774 1775
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1776
    if in_dygraph_mode():
1777
        shape = paddle.utils.convert_shape_to_list(shape)
1778 1779 1780
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1781 1782
        out.stop_gradient = True
        return out
1783 1784 1785
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1786

1787 1788 1789
        check_dtype(
            dtype,
            'dtype',
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1800
            'empty',
1801
        )
1802
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1803

1804 1805
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1806

1807
        attrs = {}
1808
        paddle.utils.get_shape_tensor_inputs(
1809 1810
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1823 1824 1825 1826


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1827
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1828
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1829

1830 1831 1832
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1833
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1834
            data type is the same as input.
1835
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1857
    if in_dygraph_mode():
1858 1859 1860 1861 1862
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1863 1864
        out.stop_gradient = True
        return out
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1880

1881 1882 1883 1884
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1885
        paddle.utils.get_shape_tensor_inputs(
1886 1887 1888 1889 1890 1891 1892 1893 1894
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
1895
        )
1896 1897 1898
        out.stop_gradient = True
        return out

1899 1900 1901

def assign(x, output=None):
    """
1902

1903
    Copy value of the :attr:`x` to the :attr:`output`.
1904

1905
    Parameters:
1906 1907
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1908
            data limitation.
1909
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1910

1911
    Returns:
1912
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1913

1914 1915
    Examples:
        .. code-block:: python
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1927
    """
1928 1929
    input = x
    helper = LayerHelper('assign', **locals())
1930 1931 1932 1933 1934 1935
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1947
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1948
        if in_dygraph_mode():
1949
            if output is None:
1950
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1951
            else:
1952
                _C_ops.assign_out_(input, output)
1953
        else:
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1970 1971
            if output is None:
                output = helper.create_variable_for_type_inference(
1972 1973 1974 1975 1976
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1977
    elif isinstance(input, np.ndarray):
1978
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1979
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1980
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1981 1982 1983 1984
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1985
                    if isinstance(x, (Variable, core.eager.Tensor))
1986 1987
                ]
            ):
1988 1989 1990 1991 1992
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1993
                if not isinstance(x, (Variable, core.eager.Tensor)):
1994 1995 1996 1997 1998 1999 2000 2001 2002
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2003
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2004
            raise TypeError(
2005
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2006
            )
2007

2008 2009 2010 2011 2012 2013 2014
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2015 2016
                "it to float32"
            )
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2034 2035
                "received %s." % convert_dtype(dtype)
            )
2036
        if input.size > 1024 * 1024:
2037 2038 2039 2040
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2041 2042 2043
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2044 2045 2046 2047 2048 2049 2050
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2051
        else:
2052 2053
            if output is None:
                output = helper.create_variable_for_type_inference(
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2065 2066

    return output
2067 2068


2069 2070
def clone(x, name=None):
    """
2071 2072
    Returns a copy of input Tensor. It will always have a Tensor copy.

2073 2074 2075 2076
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2077
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2078

2079
    Returns:
2080
        Tensor, A Tensor copied from ``input``.
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2099
# NOTE(zhiqiu): not public
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2113
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2114 2115 2116 2117 2118

    Examples:
        .. code-block:: python

          import paddle
2119

2120 2121 2122 2123 2124 2125 2126
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
2164 2165 2166 2167 2168 2169
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2170
    return output
F
Feiyu Chan 已提交
2171 2172 2173 2174 2175 2176 2177 2178


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2179
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2180 2181 2182 2183

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2184 2185 2186 2187
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2188 2189 2190 2191 2192 2193 2194 2195

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2196 2197 2198 2199
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2200
    """
2201
    if in_dygraph_mode():
2202
        return _C_ops.complex(real, imag)
2203 2204 2205 2206 2207 2208 2209
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2210

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2223 2224 2225 2226


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2227 2228
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2229 2230
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2231

2232 2233 2234 2235 2236
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2237 2238 2239 2240
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2251

2252 2253 2254
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2255
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2256 2257 2258 2259 2260
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2261
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2274 2275
        if col is None:
            col = row
2276 2277 2278
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2279
        return out
2280 2281 2282
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2283

2284 2285 2286 2287 2288 2289 2290 2291
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2292 2293 2294 2295 2296

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2297 2298 2299 2300 2301 2302
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2303
    return out
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2353 2354
        if col is None:
            col = row
2355 2356 2357
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2358
        return out
2359 2360 2361
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2362

2363 2364 2365 2366 2367 2368 2369 2370
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2371 2372 2373 2374 2375

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2376 2377 2378 2379 2380 2381
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2382
    return out