creation.py 87.9 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31 32
    convert_dtype,
)
from ..fluid.framework import (
33
    Variable,
34
    _in_eager_without_dygraph_check,
35
    device_guard,
36
)
37
from ..fluid.param_attr import ParamAttr
38 39 40 41 42 43 44 45
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
46

47 48
__all__ = []

W
wangchaochaohu 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
140 141 142 143
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
144 145 146 147 148
    )

    return var


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
179
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
217
        (type(None), paddle.nn.initializer.Initializer),
218 219 220 221 222 223 224 225 226 227 228
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


271 272
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
273
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
274 275

    Args:
276 277
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
278
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
279 280 281
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
282 283
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
284
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
285 286 287 288

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
289
        the value with input :attr:`start`.
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
310
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
311 312
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
313
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
314 315
    if not isinstance(num, Variable):
        with device_guard("cpu"):
316
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
317
    if in_dygraph_mode():
318 319 320 321 322 323 324
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
325
    else:
326 327 328 329 330 331 332 333 334
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
335
                ['float32', 'float64', 'int32', 'int64', 'float16', 'bfloat16'],
336 337 338 339
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
340

341 342 343 344
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
345
                ['float32', 'float64', 'int32', 'int64', 'float16', 'bfloat16'],
346 347 348 349 350 351
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
352
        check_dtype(
353 354 355 356
            dtype,
            'dtype',
            ['int32', 'int64', 'float32', 'float64', 'float16', 'bfloat16'],
            'linspace',
357
        )
358 359 360 361 362 363 364 365 366 367 368 369
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
370
            )
371

372
        out = helper.create_variable_for_type_inference(dtype=dtype)
373

374 375 376 377 378 379 380 381 382 383 384 385 386
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
387 388


389 390 391 392
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
393

394 395
    Notes:
        This API does not compute the gradient.
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
411
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
412 413 414 415 416

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
417
        just has the value with exponential of :attr:`start` with base :attr:`base`.
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
450
    if in_dygraph_mode():
C
Chen Weihang 已提交
451 452 453 454 455 456 457
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
458
        )
459 460
    else:
        helper = LayerHelper("logspace", **locals())
461

462 463 464 465 466 467 468 469 470 471 472 473 474
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
475

476 477 478 479 480 481 482 483 484
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
485

486 487
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
488

489 490 491 492 493 494 495 496 497
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
498

499
        check_dtype(
500
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
501
        )
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
522
            )
523

524
        out = helper.create_variable_for_type_inference(dtype=dtype)
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
540 541


542
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
543

544 545 546
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

547
    if not isinstance(data, np.ndarray):
548

549
        def _handle_dtype(data, dtype):
550 551 552 553 554
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

555 556 557 558
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
559
            if data.dtype == np.object_:
560 561 562 563
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
564 565 566 567 568 569
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
570
            data = data._copy_to(place, False)
571
            data = _handle_dtype(data, dtype)
572
            data.stop_gradient = stop_gradient
573
            return data
574
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
575
            # should't expose it to users, just for internal use.
W
wanghuancoder 已提交
576
            # convert core.Tensor/core.LoDTensor to Tensor first
577
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
578 579 580 581
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
582 583 584 585
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
586
            return data
587 588
        else:
            raise TypeError(
589 590 591 592
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
593 594
        if not dtype:
            if data.dtype in [
595 596 597 598 599
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
600 601 602
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
603 604 605 606 607
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
608 609 610 611 612
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
613 614

    if dtype and convert_dtype(dtype) != data.dtype:
615
        data = data.astype(convert_dtype(dtype))
616

J
Jiabin Yang 已提交
617
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
618 619 620 621 622 623 624 625
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
626
    else:
627 628 629 630 631 632 633
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
634 635


636 637 638 639 640
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
641 642
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
643 644 645 646 647 648 649

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

650 651 652 653 654
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
655 656 657 658 659
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

660 661
        if dtype:
            target_dtype = dtype
662
        elif hasattr(data, 'dtype') and data.dtype != 'object':
663 664 665 666 667 668
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

669 670 671 672 673
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
674
            if not all(
675 676
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


698 699
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
700
    Constructs a ``paddle.Tensor`` from ``data`` ,
701 702 703 704 705
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

706 707 708 709 710 711 712 713 714 715 716 717
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

718 719 720
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
721
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
722
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
723
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
724
            except for python float number which gets dtype from ``get_default_type`` .
725 726 727
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
728 729 730 731 732 733 734 735 736 737
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
753
        #        [1])
754 755 756 757 758 759 760 761 762 763 764 765 766 767

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
768 769 770 771
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

772
    if paddle.fluid.framework._non_static_mode():
773 774 775 776
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
777
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
778 779 780
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
781
            return _to_tensor_static(data, dtype, stop_gradient)
782 783


784
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
785
    """
S
swtkiwi 已提交
786

787 788
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
789

P
Pei Yang 已提交
790
    Args:
791 792
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
793
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
794
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
795
            data type is the same as input.
796
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
797

P
Pei Yang 已提交
798
    Returns:
799
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
800

P
Pei Yang 已提交
801 802
    Examples:
        .. code-block:: python
803

P
Pei Yang 已提交
804
          import paddle
805

806
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
807
          output = paddle.full_like(input, 2.0)
808 809
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
810 811
    """
    if dtype is None:
812
        dtype = x.dtype
813
    else:
814 815
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
816
    if in_dygraph_mode():
817
        return _C_ops.full_like(x, fill_value, dtype, x.place)
818 819 820 821 822 823 824 825 826 827 828 829 830
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
831
                'uint16',
832 833
            ],
            'full_like',
834
        )
835 836 837 838 839 840 841 842 843 844 845
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
846
                'uint16',
847 848 849 850
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
851

852 853 854 855 856 857 858 859
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
860 861


862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
887
            if dtype in ['int8', 'uint8', 'int16', 'int32', 'int64']:
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
910
                'int8',
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


947
def ones(shape, dtype=None, name=None):
948
    """
B
BrilliantYuKaimin 已提交
949
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
950 951

    Args:
952 953 954
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
955 956 957
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
958

959
    Returns:
B
BrilliantYuKaimin 已提交
960
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
961 962 963 964

    Examples:
        .. code-block:: python

965
            import paddle
966

967
            # shape is a list/tuple
968
            data1 = paddle.ones(shape=[3, 2])
969 970 971 972 973
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
974 975 976 977 978 979 980 981 982 983 984 985
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
986
    """
987
    if dtype is None:
W
Weilong Wu 已提交
988
        dtype = core.VarDesc.VarType.FP32
989
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
990 991


992
def ones_like(x, dtype=None, name=None):
993
    """
C
Chen Long 已提交
994
    Returns a Tensor filled with the value 1, with the same shape and
995
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
996 997

    Args:
998 999
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1000
        dtype(str|np.dtype, optional): The data type of the
1001 1002 1003
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1004
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1005

1006
    Returns:
1007 1008 1009
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1010 1011 1012
    Examples:
        .. code-block:: python

1013
            import paddle
1014

1015
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1016 1017
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1018

1019 1020
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1021 1022


1023
def zeros(shape, dtype=None, name=None):
1024
    """
C
Chen Long 已提交
1025
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1026 1027

    Args:
1028 1029 1030
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1031
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1032 1033 1034
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1035 1036

    Returns:
1037
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1038 1039 1040 1041

    Examples:
        .. code-block:: python

1042
            import paddle
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1063
    """
1064 1065 1066
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1067 1068


1069
def zeros_like(x, dtype=None, name=None):
1070
    """
1071
    Returns a Tensor filled with the value 0, with the same shape and
1072
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1073 1074

    Args:
1075 1076
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1077
        dtype(str|np.dtype, optional): The data type of the
1078 1079 1080
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1081
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1082 1083

    Returns:
1084 1085
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1086

1087

1088 1089 1090
    Examples:
        .. code-block:: python

1091
            import paddle
1092

Z
zhupengyang 已提交
1093
            x = paddle.to_tensor([1, 2, 3])
1094 1095
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1096

1097 1098
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1099 1100


1101
def eye(num_rows, num_columns=None, dtype=None, name=None):
1102
    """
1103

1104
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1105

1106
    Args:
1107 1108
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1109
            If None, default: num_rows.
W
wangchaochaohu 已提交
1110
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1111 1112
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1113
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1114

1115
    Returns:
1116
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1117

1118 1119
    Examples:
        .. code-block:: python
1120

1121
          import paddle
1122

1123
          data = paddle.eye(3, dtype='int32')
1124 1125 1126
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1127
          data = paddle.eye(2, 3, dtype='int32')
1128 1129
          # [[1 0 0]
          #  [0 1 0]]
1130 1131
    """

1132
    def _check_attr(attr, message):
1133
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1134 1135
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
1136
            raise TypeError(f"{message} should be a non-negative int.")
1137 1138 1139

    _check_attr(num_rows, "num_rows")

1140
    if dtype is None:
1141 1142
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1143 1144
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1145
        _check_attr(num_columns, "num_columns")
1146 1147 1148
    else:
        num_columns = num_rows

1149 1150 1151 1152
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1153 1154
    else:
        helper = LayerHelper("eye", **locals())
1155 1156 1157 1158 1159 1160
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1161
        out = helper.create_variable_for_type_inference(dtype=dtype)
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1173 1174 1175

    out.stop_gradient = True
    return out
1176 1177


1178
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1179
    """
S
swtkiwi 已提交
1180

1181
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1182

W
wangchaochaohu 已提交
1183
    Args:
1184 1185 1186 1187 1188
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1189
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1190
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1191 1192
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1193

1194
    Returns:
1195
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1196

W
wangchaochaohu 已提交
1197 1198 1199
    Examples:
        .. code-block:: python

1200
            import paddle
W
wangchaochaohu 已提交
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1228 1229 1230 1231 1232
    """

    if dtype is None:
        dtype = 'float32'

1233
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1234 1235


1236
def arange(start=0, end=None, step=1, dtype=None, name=None):
1237
    """
1238
    Returns a 1-D Tensor with spaced values within a given interval.
1239

1240 1241
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1242

1243 1244
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1245 1246

    Parameters:
1247 1248
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1249 1250
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1251
        end(float|int|Tensor, optional): End of interval. The interval does not
1252 1253 1254 1255
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1256 1257
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1258 1259
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1260
        dtype(str|np.dtype, optional): The data type of the
1261 1262
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1263
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1264

1265
    Returns:
1266
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1267 1268
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1269

Z
zhupengyang 已提交
1270
    Examples:
1271 1272
        .. code-block:: python

Z
zhupengyang 已提交
1273
            import paddle
1274

Z
zhupengyang 已提交
1275 1276
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1277

Z
zhupengyang 已提交
1278 1279
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1280

Z
zhupengyang 已提交
1281 1282 1283
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1284

1285
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1286 1287
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1288

1289 1290 1291 1292 1293 1294
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1318
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1319 1320 1321 1322
    else:
        check_dtype(
            dtype,
            'dtype',
1323
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1324 1325 1326
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
1327 1328 1329 1330 1331 1332 1333
        out_shape = None
        if (
            not isinstance(start, Variable)
            and not isinstance(end, Variable)
            and not isinstance(step, Variable)
        ):
            out_shape = [int(math.ceil((end - start) / step))]
1334 1335 1336 1337 1338 1339
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1340
        out.stop_gradient = True
1341 1342
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1343 1344
        return out

W
WuHaobo 已提交
1345 1346

def _tril_triu_op(helper):
1347
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1348
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1349
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1350

1351
    assert x is not None, f'x cannot be None in {op_type}'
1352
    check_variable_and_dtype(
1353 1354 1355 1356 1357
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1358
    if len(x.shape) < 2:
1359
        raise ValueError(f"x shape in {op_type} must be at least 2-D")
W
WuHaobo 已提交
1360
    diagonal = helper.kwargs.get('diagonal', 0)
1361
    if not isinstance(diagonal, (int,)):
1362
        raise TypeError(f"diagonal in {op_type} must be a python Int")
W
WuHaobo 已提交
1363 1364 1365 1366 1367
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1368 1369 1370
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1371 1372 1373 1374 1375 1376 1377 1378

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1379 1380
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1381 1382 1383 1384

    return out


Y
yaoxuefeng 已提交
1385
def tril(x, diagonal=0, name=None):
1386
    r"""
1387
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1388 1389
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1390 1391 1392
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1393
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1394
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1395 1396 1397 1398 1399 1400 1401
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1402
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1403 1404

    Returns:
Y
yaoxuefeng 已提交
1405
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1406
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1407 1408 1409 1410

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1411
            import paddle
W
WuHaobo 已提交
1412

1413 1414 1415 1416 1417
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1418

1419 1420 1421 1422 1423
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1424 1425

            # example 2, positive diagonal value
1426 1427 1428 1429 1430
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1431 1432

            # example 3, negative diagonal value
1433 1434 1435 1436 1437
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1438
    """
F
From00 已提交
1439
    if in_dygraph_mode():
Z
zyfncg 已提交
1440
        return _C_ops.tril(x, diagonal)
1441 1442
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1443 1444


Y
yaoxuefeng 已提交
1445
def triu(x, diagonal=0, name=None):
1446
    r"""
1447
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1448
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1449 1450 1451 1452
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1453
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1454 1455 1456 1457 1458 1459 1460 1461
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1462
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1463 1464

    Returns:
Y
yaoxuefeng 已提交
1465
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1466
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1467 1468 1469 1470

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1471
            import paddle
W
WuHaobo 已提交
1472

1473 1474 1475 1476 1477
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1478 1479

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1480
            triu1 = paddle.tensor.triu(x)
1481 1482 1483 1484
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1485 1486

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1487
            triu2 = paddle.tensor.triu(x, diagonal=2)
1488 1489 1490 1491
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1492 1493

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1494
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1495 1496 1497 1498
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1499 1500

    """
F
From00 已提交
1501
    if in_dygraph_mode():
Z
zyfncg 已提交
1502
        return _C_ops.triu(x, diagonal)
1503 1504
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1505 1506


1507
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1508
    """
1509

1510
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1511

S
suytingwan 已提交
1512
    Args:
1513
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1514
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1515
        **kwargs (optional): Currently, only accept name in **kwargs
1516
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1517
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1518

S
suytingwan 已提交
1519
    Returns:
Y
yaoxuefeng 已提交
1520
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1521 1522 1523 1524 1525 1526

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1527 1528 1529 1530
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1531

Y
yaoxuefeng 已提交
1532 1533
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1534 1535 1536 1537 1538 1539

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1540 1541
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1542
    if in_dygraph_mode():
1543
        return _C_ops.meshgrid(list(args))
1544 1545 1546
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1547

1548 1549 1550 1551
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1552

1553 1554 1555 1556 1557 1558 1559
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1560

1561 1562 1563 1564 1565 1566 1567
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1568
        )
S
suytingwan 已提交
1569

1570
        return out
1571 1572


L
Li Min 已提交
1573 1574
def diagflat(x, offset=0, name=None):
    """
1575
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1589
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1590
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1591
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1592 1593 1594 1595 1596 1597

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1598
            :name: code-example-1
L
Li Min 已提交
1599

1600 1601 1602 1603
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1604 1605 1606 1607 1608
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1609 1610

            y = paddle.diagflat(x, offset=1)
1611 1612 1613 1614 1615 1616
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1617 1618

            y = paddle.diagflat(x, offset=-1)
1619 1620 1621 1622 1623 1624
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1625 1626

        .. code-block:: python
1627
            :name: code-example-2
L
Li Min 已提交
1628

1629
            import paddle
L
Li Min 已提交
1630

1631 1632
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1633 1634 1635 1636 1637 1638
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1639 1640

            y = paddle.diagflat(x, offset=1)
1641 1642 1643 1644 1645 1646 1647
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1648 1649

            y = paddle.diagflat(x, offset=-1)
1650 1651 1652 1653 1654 1655 1656
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1657
    """
1658
    if in_dygraph_mode():
1659
        if len(x.shape) <= 1:
1660
            return _C_ops.diag(x, offset, 0)
1661
        else:
1662
            y = _C_ops.flatten(x, 0, -1)
1663 1664 1665 1666 1667
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1668 1669 1670 1671
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1672 1673
        )
        check_type(offset, 'offset', (int), 'diagflat')
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1686
            )
L
Li Min 已提交
1687
        else:
1688 1689 1690 1691 1692
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1693
            )
1694
            out1.stop_gradient = True
L
Li Min 已提交
1695

1696 1697 1698 1699 1700 1701 1702 1703
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1704 1705


1706 1707
def diag(x, offset=0, padding_value=0, name=None):
    """
1708
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1721
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1722 1723
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1724
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1725

1726 1727 1728 1729 1730
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1731
            :name: code-example-1
1732

1733
            import paddle
1734

1735 1736 1737
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1738 1739 1740 1741 1742
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1743 1744

            y = paddle.diag(x, offset=1)
1745 1746 1747 1748 1749 1750
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1751 1752

            y = paddle.diag(x, padding_value=6)
1753 1754 1755 1756 1757
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1758 1759

        .. code-block:: python
1760
            :name: code-example-2
1761

1762
            import paddle
1763

1764 1765 1766
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1767 1768 1769
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1770

1771
            y = paddle.diag(x, offset=1)
1772 1773 1774
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1775

1776
            y = paddle.diag(x, offset=-1)
1777 1778 1779
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1780
    """
J
Jiabin Yang 已提交
1781
    if in_dygraph_mode():
1782
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1783
    else:
1784 1785 1786 1787
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1788
            ['float16', 'float32', 'float64', 'int32', 'int64'],
1789 1790 1791 1792 1793 1794 1795 1796
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1797
                )
1798
            )
1799

1800
        helper = LayerHelper("diag_v2", **locals())
1801

1802
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1803

1804 1805 1806 1807 1808 1809
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1810

1811 1812
        out.stop_gradient = True
        return out
1813 1814 1815 1816


def empty(shape, dtype=None, name=None):
    """
1817
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1818

1819
    Args:
1820 1821 1822
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1823
        dtype(np.dtype|str, optional): Data type of the output Tensor
1824
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1825 1826
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1827
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1828

1829 1830 1831 1832 1833 1834
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1835
            import paddle
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1856 1857 1858 1859 1860 1861 1862
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1863
    if in_dygraph_mode():
1864
        shape = paddle.utils.convert_shape_to_list(shape)
1865 1866 1867
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1868 1869
        out.stop_gradient = True
        return out
1870 1871 1872
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1873

1874 1875 1876
        check_dtype(
            dtype,
            'dtype',
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1887
            'empty',
1888
        )
1889
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1890

1891 1892
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1893

1894
        attrs = {}
1895
        paddle.utils.get_shape_tensor_inputs(
1896 1897
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1910 1911 1912 1913


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1914
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1915
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1916

1917 1918 1919
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1920
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1921
            data type is the same as input.
1922
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1944
    if in_dygraph_mode():
1945 1946 1947 1948 1949
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1950 1951
        out.stop_gradient = True
        return out
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1967

1968 1969 1970 1971
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1972
        paddle.utils.get_shape_tensor_inputs(
1973 1974 1975 1976 1977 1978 1979 1980 1981
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
1982
        )
1983 1984 1985
        out.stop_gradient = True
        return out

1986 1987 1988

def assign(x, output=None):
    """
1989

1990
    Copy value of the :attr:`x` to the :attr:`output`.
1991

1992
    Parameters:
1993 1994
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1995
            data limitation.
1996
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1997

1998
    Returns:
1999
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
2000

2001 2002
    Examples:
        .. code-block:: python
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2014
    """
2015 2016
    input = x
    helper = LayerHelper('assign', **locals())
2017 2018 2019 2020 2021 2022
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2023 2024 2025 2026 2027 2028
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
W
wanghuancoder 已提交
2029 2030
    # NOTE(Aurelius84): Why we judge core.Tensor?
    # In case of @to_static, a Tensor can be as input of `assign`,
2031
    # but _non_static_mode()==False under @to_static, which means
W
wanghuancoder 已提交
2032
    # isinstance(Tensor, Variable) == False. It will cause return None
2033
    # after this api.
W
wanghuancoder 已提交
2034
    if isinstance(input, (Variable, core.eager.Tensor)):
Z
zyfncg 已提交
2035
        if in_dygraph_mode():
2036
            if output is None:
2037
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2038
            else:
2039
                _C_ops.assign_out_(input, output)
2040
        else:
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
2052
                    'int8',
2053 2054 2055 2056 2057
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2058 2059
            if output is None:
                output = helper.create_variable_for_type_inference(
2060 2061 2062 2063 2064
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2065
    elif isinstance(input, np.ndarray):
2066
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2067
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2068
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2069 2070 2071 2072
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2073
                    if isinstance(x, (Variable, core.eager.Tensor))
2074 2075
                ]
            ):
2076 2077 2078 2079 2080
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2081
                if not isinstance(x, (Variable, core.eager.Tensor)):
2082 2083 2084 2085 2086 2087 2088 2089 2090
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2091
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2092
            raise TypeError(
2093
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2094
            )
2095

2096 2097 2098 2099 2100 2101 2102
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2103 2104
                "it to float32"
            )
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2122 2123
                "received %s." % convert_dtype(dtype)
            )
2124
        if input.size > 1024 * 1024:
2125 2126 2127 2128
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2129 2130 2131
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2132 2133 2134 2135 2136 2137 2138
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2139
        else:
2140 2141
            if output is None:
                output = helper.create_variable_for_type_inference(
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2153 2154

    return output
2155 2156


2157 2158
def clone(x, name=None):
    """
2159 2160
    Returns a copy of input Tensor. It will always have a Tensor copy.

2161 2162 2163 2164
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2165
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2166

2167
    Returns:
2168
        Tensor, A Tensor copied from ``input``.
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2187
# NOTE(zhiqiu): not public
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2201
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2202 2203 2204 2205 2206

    Examples:
        .. code-block:: python

          import paddle
2207

2208 2209 2210 2211 2212 2213
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

W
wanghuancoder 已提交
2214
    if isinstance(input, (Variable, core.eager.Tensor)):
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
2226
                'int8',
2227 2228 2229 2230 2231
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3

    attrs = {'dst_place_type': dst_place_type}
2251 2252 2253 2254 2255 2256
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2257
    return output
F
Feiyu Chan 已提交
2258 2259 2260 2261 2262 2263 2264 2265


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2266
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2267 2268 2269 2270

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2271 2272 2273 2274
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2275 2276 2277 2278 2279 2280 2281 2282

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2283 2284 2285 2286
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2287
    """
2288
    if in_dygraph_mode():
2289
        return _C_ops.complex(real, imag)
2290 2291 2292 2293 2294 2295 2296
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2297

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2310 2311 2312 2313


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2314 2315
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2316 2317
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2318

2319 2320 2321 2322 2323
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2324 2325 2326 2327
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2338

2339 2340 2341
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2342
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2343 2344 2345 2346 2347
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2348
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2361 2362
        if col is None:
            col = row
2363 2364 2365
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2366
        return out
2367 2368 2369
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2370

2371 2372 2373 2374 2375 2376 2377 2378
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2379 2380 2381 2382 2383

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2384 2385 2386 2387 2388 2389
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2390
    return out
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2440 2441
        if col is None:
            col = row
2442 2443 2444
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2445
        return out
2446 2447 2448
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2449

2450 2451 2452 2453 2454 2455 2456 2457
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2458 2459 2460 2461 2462

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2463 2464 2465 2466 2467 2468
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2469
    return out
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))