未验证 提交 e21b13fb 编写于 作者: L liuyuhui 提交者: GitHub

[API 2.0: doc] transfer from paddle.fluid.layers.assign() into creation.py (#27999)

* transfer from paddle.fluid.layers.assign() into creation.py,test=develop

* fix ut fail,add support for paddle.assign,test=develop

* fix,test=develop

* fix UT coverage,test=coverage

* fix UT fail,test=coverage

* fix doc,test=develop
上级 d4668938
......@@ -77,6 +77,7 @@ from .tensor.creation import tril #DEFINE_ALIAS
from .tensor.creation import meshgrid #DEFINE_ALIAS
from .tensor.creation import empty #DEFINE_ALIAS
from .tensor.creation import empty_like #DEFINE_ALIAS
from .tensor.creation import assign #DEFINE_ALIAS
from .tensor.linalg import matmul #DEFINE_ALIAS
from .tensor.linalg import dot #DEFINE_ALIAS
# from .tensor.linalg import einsum #DEFINE_ALIAS
......@@ -262,7 +263,6 @@ from .fluid.framework import in_dygraph_mode as in_dynamic_mode #DEFINE_ALIAS
from .fluid.dygraph.base import no_grad_ as no_grad #DEFINE_ALIAS
from .fluid.layers import crop_tensor as crop #DEFINE_ALIAS
from . import jit
from . import static
from . import amp
......
......@@ -17,6 +17,7 @@ from __future__ import print_function
import op_test
import numpy as np
import unittest
import paddle
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
......@@ -99,5 +100,81 @@ class TestAssignOpError(unittest.TestCase):
self.assertRaises(TypeError, fluid.layers.assign, x5)
class TestAssignOApi(unittest.TestCase):
def test_assign_LoDTensorArray(self):
main_program = Program()
startup_program = Program()
with program_guard(main_program):
x = fluid.data(name='x', shape=[100, 10], dtype='float32')
x.stop_gradient = False
y = fluid.layers.fill_constant(
shape=[100, 10], dtype='float32', value=1)
z = fluid.layers.elementwise_add(x=x, y=y)
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
init_array = fluid.layers.array_write(x=z, i=i)
array = paddle.assign(init_array)
sums = fluid.layers.array_read(array=init_array, i=i)
mean = fluid.layers.mean(sums)
append_backward(mean)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
feed_x = np.random.random(size=(100, 10)).astype('float32')
ones = np.ones((100, 10)).astype('float32')
feed_add = feed_x + ones
res = exe.run(main_program,
feed={'x': feed_x},
fetch_list=[sums.name, x.grad_name])
self.assertTrue(np.allclose(res[0], feed_add))
self.assertTrue(np.allclose(res[1], ones / 1000.0))
def test_assign_NumpyArray(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.bool)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
def test_assign_NumpyArray1(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.float32)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
def test_assign_NumpyArray2(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.int32)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
def test_assign_NumpyArray3(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.int64)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
class TestAssignOpErrorApi(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The type of input must be Variable or numpy.ndarray.
x1 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
self.assertRaises(TypeError, paddle.assign, x1)
# When the type of input is Variable, the dtype of input must be float16, float32, float64, int32, int64, bool.
x3 = fluid.layers.data(name='x3', shape=[4], dtype="uint8")
self.assertRaises(TypeError, paddle.assign, x3)
# When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
x4 = np.array([[2.5, 2.5]], dtype='float64')
self.assertRaises(TypeError, paddle.assign, x4)
x5 = np.array([[2.5, 2.5]], dtype='uint8')
self.assertRaises(TypeError, paddle.assign, x5)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
......@@ -47,7 +47,8 @@ __all__ = [
'empty_like',
'triu',
'tril',
'meshgrid'
'meshgrid',
'assign',
]
......@@ -1106,3 +1107,77 @@ def empty_like(x, dtype=None, name=None):
stop_gradient=True)
out.stop_gradient = True
return out
def assign(x, output=None):
"""
The OP copies the :attr:`x` to the :attr:`output`.
Parameters:
x (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
float16, float32, float64, int32 and int64.
output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
be created as :attr:`output`. Default: None.
Returns:
Tensor: A tensor with the same shape, data type and value as :attr:`x`.
Examples:
.. code-block:: python
import paddle
import numpy as np
data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
array = np.array([[1, 1],
[3, 4],
[1, 3]]).astype(np.int64)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
result2 = paddle.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
"""
helper = LayerHelper('assign', **locals())
check_type(x, 'x', (Variable, numpy.ndarray), 'assign')
if isinstance(x, Variable):
check_dtype(
x.dtype, 'x',
['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
'assign', '(When the type of input in assign is Variable.)')
if output is None:
output = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='assign', inputs={'X': [x]}, outputs={'Out': [output]})
elif isinstance(x, numpy.ndarray):
dtype = convert_np_dtype_to_dtype_(x.dtype)
if dtype == VarDesc.VarType.BOOL:
value_name = "bool_values"
values = [bool(v) for v in x.flat]
elif dtype == VarDesc.VarType.FP32:
value_name = "fp32_values"
values = [float(v) for v in x.flat]
elif dtype == VarDesc.VarType.INT32:
value_name = "int32_values"
values = [int(v) for v in x.flat]
elif dtype == VarDesc.VarType.INT64:
value_name = "int64_values"
values = [int(v) for v in x.flat]
else:
raise TypeError(
"When the type of 'x' in assign is numpy.ndarray, "
"the data type of 'x' must be bool, float32, int32 or int64, but "
"received %s." % convert_dtype(dtype))
if x.size > 1024 * 1024:
raise ValueError("The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it")
if output is None:
output = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='assign_value',
outputs={'Out': [output]},
attrs={'dtype': dtype,
'shape': list(x.shape),
value_name: values})
return output
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册