Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2cd10fc4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2cd10fc4
编写于
11月 17, 2020
作者:
Z
zhupengyang
提交者:
GitHub
11月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix 2.0 api docs (#28445)
上级
a083c76a
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
154 addition
and
170 deletion
+154
-170
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+16
-24
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+20
-25
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+16
-23
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+19
-35
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+75
-43
python/paddle/tensor/stat.py
python/paddle/tensor/stat.py
+8
-20
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
2cd10fc4
...
...
@@ -9730,15 +9730,13 @@ def swish(x, beta=1.0, name=None):
return out
@deprecated(since="2.0.0", update_to="paddle.
nn.functional
.prelu")
@deprecated(since="2.0.0", update_to="paddle.
static.nn
.prelu")
def prelu(x, mode, param_attr=None, name=None):
"""
:api_attr: Static Graph
Equation:
prelu activation.
.. math::
y = \max(0, x) + \\alpha * \
min(0, x)
prelu(x) = max(0, x) + \\alpha *
min(0, x)
There are three modes for the activation:
...
...
@@ -9748,34 +9746,28 @@ def prelu(x, mode, param_attr=None, name=None):
channel: Elements in same channel share same alpha.
element: All elements do not share alpha. Each element has its own alpha.
Arg
s:
x (
Variable
): The input Tensor or LoDTensor with data type float32.
Parameter
s:
x (
Tensor
): The input Tensor or LoDTensor with data type float32.
mode (str): The mode for weight sharing.
param_attr(ParamAttr|None): The parameter attribute for the learnable
weight (alpha), it can be create by ParamAttr. None by default.
For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
name(str|None): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
param_attr (ParamAttr|None, optional): The parameter attribute for the learnable
weight (alpha), it can be create by ParamAttr. None by default.
For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable:
output(Variable): The tensor or LoDTensor with the same shape as input.
The data type is float32.
Tensor: A tensor with the same shape and data type as x.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
from paddle.fluid.param_attr import ParamAttr
x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
mode = 'channel'
output = fluid.layers.prelu(
x,mode,param_attr=ParamAttr(name='alpha'))
x = paddle.to_tensor([-1., 2., 3.])
param = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.2))
out = paddle.static.nn.prelu(x, 'all', param)
# [-0.2, 2., 3.]
"""
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'prelu')
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
2cd10fc4
...
...
@@ -79,9 +79,8 @@ def elu(x, alpha=1.0, name=None):
import paddle
import paddle.nn.functional as F
import numpy as np
x = paddle.to_tensor(
np.array([[-1,6],[1,15.6]])
)
x = paddle.to_tensor(
[[-1., 6.], [1., 15.6]]
)
out = F.elu(x, alpha=0.2)
# [[-0.12642411 6. ]
# [ 1. 15.6 ]]
...
...
@@ -131,11 +130,14 @@ def gelu(x, approximate=False, name=None):
import paddle
import paddle.nn.functional as F
import numpy as np
x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
out1 = F.gelu(x) # [-0.158655 0.345731 0.841345 1.39979]
out2 = F.gelu(x, True) # [-0.158808 0.345714 0.841192 1.39957]
x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
out1 = F.gelu(x)
# [[-0.15865529, 0.34573123],
# [ 0.84134471, 1.39978933]]
out2 = F.gelu(x, True)
# [[-0.15880799, 0.34571400],
# [ 0.84119201, 1.39957154]]
"""
if
in_dygraph_mode
():
...
...
@@ -181,11 +183,8 @@ def hardshrink(x, threshold=0.5, name=None):
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(
np.array([-1, 0.3, 2.5])
)
x = paddle.to_tensor(
[-1, 0.3, 2.5]
)
out = F.hardshrink(x) # [-1., 0., 2.5]
"""
...
...
@@ -385,11 +384,8 @@ def leaky_relu(x, negative_slope=0.01, name=None):
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(
np.array([-2, 0, 1], 'float32')
)
x = paddle.to_tensor(
[-2., 0., 1.]
)
out = F.leaky_relu(x) # [-0.02, 0., 1.]
"""
...
...
@@ -1147,8 +1143,10 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
.. math::
log
\\
_softmax[i, j] = log(softmax(x))
= log(
\\
frac{\exp(X[i, j])}{
\\
sum_j(exp(X[i, j])})
\\
begin{aligned}
log
\\
_softmax[i, j] &= log(softmax(x))
\\\\
&= log(
\\
frac{
\\
exp(X[i, j])}{
\\
sum_j(
\\
exp(X[i, j])})
\\
end{aligned}
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
...
...
@@ -1174,16 +1172,13 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x =
np.array(
[[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]], 'float32')
x = [[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]]
x = paddle.to_tensor(x)
out1 = F.log_softmax(x)
out2 = F.log_softmax(x, dtype='float64')
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
2cd10fc4
...
...
@@ -70,9 +70,8 @@ class ELU(layers.Layer):
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(
np.array([[-1,6],[1,15.6]])
)
x = paddle.to_tensor(
[[-1. ,6.], [1., 15.6]]
)
m = paddle.nn.ELU(0.2)
out = m(x)
# [[-0.12642411 6. ]
...
...
@@ -166,11 +165,8 @@ class Hardshrink(layers.Layer):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
x = paddle.to_tensor([-1, 0.3, 2.5])
m = paddle.nn.Hardshrink()
out = m(x) # [-1., 0., 2.5]
"""
...
...
@@ -293,11 +289,10 @@ class Hardtanh(layers.Layer):
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(
np.array([-1.5, 0.3, 2.5])
)
x = paddle.to_tensor(
[-1.5, 0.3, 2.5]
)
m = paddle.nn.Hardtanh()
out = m(x) #
#
[-1., 0.3, 1.]
out = m(x) # [-1., 0.3, 1.]
"""
def
__init__
(
self
,
min
=-
1.0
,
max
=
1.0
,
name
=
None
):
...
...
@@ -397,9 +392,8 @@ class ReLU(layers.Layer):
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(
np.array([-2, 0, 1]).astype('float32')
)
x = paddle.to_tensor(
[-2., 0., 1.]
)
m = paddle.nn.ReLU()
out = m(x) # [0., 0., 1.]
"""
...
...
@@ -613,7 +607,7 @@ class Hardsigmoid(layers.Layer):
import paddle
m = paddle.nn.
S
igmoid()
m = paddle.nn.
Hards
igmoid()
x = paddle.to_tensor([-4., 5., 1.])
out = m(x) # [0., 1, 0.666667]
"""
...
...
@@ -1016,8 +1010,10 @@ class LogSoftmax(layers.Layer):
.. math::
Out[i, j] = log(softmax(x))
= log(
\\
frac{\exp(X[i, j])}{
\\
sum_j(exp(X[i, j])})
\\
begin{aligned}
Out[i, j] &= log(softmax(x))
\\\\
&= log(
\\
frac{
\\
exp(X[i, j])}{
\\
sum_j(
\\
exp(X[i, j])})
\\
end{aligned}
Parameters:
axis (int, optional): The axis along which to perform log_softmax
...
...
@@ -1035,16 +1031,13 @@ class LogSoftmax(layers.Layer):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x =
np.array(
[[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]])
x = [[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]]
m = paddle.nn.LogSoftmax()
x = paddle.to_tensor(x)
out = m(x)
...
...
python/paddle/tensor/creation.py
浏览文件 @
2cd10fc4
...
...
@@ -300,9 +300,6 @@ def ones(shape, dtype=None, name=None):
def
ones_like
(
x
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.ones_like
:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
This OP returns a Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
...
...
@@ -323,18 +320,16 @@ def ones_like(x, dtype=None, name=None):
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([1,2,3])
out1 = paddle.
zero
s_like(x) # [1., 1., 1.]
out2 = paddle.
zero
s_like(x, dtype='int32') # [1, 1, 1]
out1 = paddle.
one
s_like(x) # [1., 1., 1.]
out2 = paddle.
one
s_like(x, dtype='int32') # [1, 1, 1]
"""
return
full_like
(
x
=
x
,
fill_value
=
1
,
dtype
=
dtype
,
name
=
name
)
...
...
@@ -380,9 +375,6 @@ def zeros(shape, dtype=None, name=None):
def
zeros_like
(
x
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.zeros_like
:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
This OP returns a Tensor filled with the value 0, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
...
...
@@ -403,16 +395,14 @@ def zeros_like(x, dtype=None, name=None):
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([1,2,3])
x = paddle.to_tensor([1, 2, 3])
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
...
...
@@ -519,9 +509,6 @@ def full(shape, fill_value, dtype=None, name=None):
def
arange
(
start
=
0
,
end
=
None
,
step
=
1
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.arange
:alias: paddle.tensor.arange, paddle.tensor.creation.arange
This OP returns a 1-D Tensor with spaced values within a given interval.
Values are generated into the half-open interval [``start``, ``end``) with
...
...
@@ -552,33 +539,30 @@ def arange(start=0, end=None, step=1, dtype=None, name=None):
Returns:
Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
taken with common difference ``step`` beginning from ``start``. Its
data type is set by ``dtype``.
taken with common difference ``step`` beginning from ``start``. Its
data type is set by ``dtype``.
Raises:
TypeError: If ``dtype`` is not int32, int64, float32, float64.
examples:
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
import paddle
out1 = paddle.arange(5)
# [0, 1, 2, 3, 4]
out1 = paddle.arange(5)
# [0, 1, 2, 3, 4]
out2 = paddle.arange(3, 9, 2.0)
# [3, 5, 7]
out2 = paddle.arange(3, 9, 2.0)
# [3, 5, 7]
# use 4.999 instead of 5.0 to avoid floating point rounding errors
out3 = paddle.arange(4.999, dtype='float32')
# [0., 1., 2., 3., 4.]
# use 4.999 instead of 5.0 to avoid floating point rounding errors
out3 = paddle.arange(4.999, dtype='float32')
# [0., 1., 2., 3., 4.]
start_var = paddle.to_tensor([3])
out4 = paddle.arange(start_var, 7)
# [3, 4, 5, 6]
start_var = paddle.to_tensor([3])
out4 = paddle.arange(start_var, 7)
# [3, 4, 5, 6]
"""
if
dtype
is
None
:
...
...
python/paddle/tensor/random.py
浏览文件 @
2cd10fc4
...
...
@@ -252,16 +252,14 @@ def standard_normal(shape, dtype=None, name=None):
import paddle
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
out1 = paddle.standard_normal(shape=[2, 3])
# [[-2.923464 , 0.11934398, -0.51249987], # random
# [ 0.39632758, 0.08177969, 0.2692008 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim1 = paddle.
full([1], 2, "int64"
)
dim2 = paddle.
full([1], 3, "int32"
)
dim1 = paddle.
to_tensor([2], 'int64'
)
dim2 = paddle.
to_tensor([3], 'int32'
)
out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
# [[[-2.8852394 , -0.25898588], # random
# [-0.47420555, 0.17683524], # random
...
...
@@ -272,8 +270,7 @@ def standard_normal(shape, dtype=None, name=None):
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
shape_tensor = paddle.to_tensor([2, 3])
result_3 = paddle.standard_normal(shape_tensor)
out3 = paddle.standard_normal(shape_tensor)
# [[-2.878077 , 0.17099959, 0.05111201] # random
# [-0.3761474, -1.044801 , 1.1870178 ]] # random
...
...
@@ -281,7 +278,58 @@ def standard_normal(shape, dtype=None, name=None):
return
gaussian
(
shape
=
shape
,
mean
=
0.0
,
std
=
1.0
,
dtype
=
dtype
,
name
=
name
)
randn
=
standard_normal
def
randn
(
shape
,
dtype
=
None
,
name
=
None
):
"""
This OP returns a Tensor filled with random values sampled from a standard
normal distribution with mean 0 and standard deviation 1, with ``shape``
and ``dtype``.
Args:
shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype (str|np.dtype, optional): The data type of the output Tensor.
Supported data types: float32, float64.
Default is None, use global default dtype (see ``get_default_dtype``
for details).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a standard
normal distribution with mean 0 and standard deviation 1, with
``shape`` and ``dtype``.
Examples:
.. code-block:: python
import paddle
# example 1: attr shape is a list which doesn't contain Tensor.
out1 = paddle.randn(shape=[2, 3])
# [[-2.923464 , 0.11934398, -0.51249987], # random
# [ 0.39632758, 0.08177969, 0.2692008 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim1 = paddle.to_tensor([2], 'int64')
dim2 = paddle.to_tensor([3], 'int32')
out2 = paddle.randn(shape=[dim1, dim2, 2])
# [[[-2.8852394 , -0.25898588], # random
# [-0.47420555, 0.17683524], # random
# [-0.7989969 , 0.00754541]], # random
# [[ 0.85201347, 0.32320443], # random
# [ 1.1399018 , 0.48336947], # random
# [ 0.8086993 , 0.6868893 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
shape_tensor = paddle.to_tensor([2, 3])
out3 = paddle.randn(shape_tensor)
# [[-2.878077 , 0.17099959, 0.05111201] # random
# [-0.3761474, -1.044801 , 1.1870178 ]] # random
"""
return
standard_normal
(
shape
,
dtype
,
name
)
def
normal
(
mean
=
0.0
,
std
=
1.0
,
shape
=
None
,
name
=
None
):
...
...
@@ -322,8 +370,6 @@ def normal(mean=0.0, std=1.0, shape=None, name=None):
import paddle
paddle.disable_static()
out1 = paddle.normal(shape=[2, 3])
# [[ 0.17501129 0.32364586 1.561118 ] # random
# [-1.7232178 1.1545963 -0.76156676]] # random
...
...
@@ -381,7 +427,7 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
Examples:
::
.. code-block:: text
Input:
shape = [1, 2]
...
...
@@ -423,33 +469,27 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
import paddle
paddle.disable_static()
# example 1:
# attr shape is a list which doesn't contain Tensor.
result_1 = paddle.tensor.random
.uniform(shape=[3, 4])
# [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357],
# [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
# [ 0.433519, 0.39483607, -0.8660099, 0.83664286]]
out1 = paddle
.uniform(shape=[3, 4])
# [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357],
# random
# [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
# random
# [ 0.433519, 0.39483607, -0.8660099, 0.83664286]]
# random
# example 2:
# attr shape is a list which contains Tensor.
dim
_1 = paddle.full([1], 2, "int64"
)
dim
_2 = paddle.full([1], 3, "int32"
)
result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_
2])
# [[-0.9951253, 0.30757582, 0.9899647 ],
# [ 0.5864527, 0.6607096, -0.8886161
]]
dim
1 = paddle.to_tensor([2], 'int64'
)
dim
2 = paddle.to_tensor([3], 'int32'
)
out2 = paddle.uniform(shape=[dim1, dim
2])
# [[-0.9951253, 0.30757582, 0.9899647 ],
# random
# [ 0.5864527, 0.6607096, -0.8886161
]] # random
# example 3:
# attr shape is a Tensor, the data type must be int64 or int32.
shape_tensor = paddle.to_tensor([2, 3])
result_3 = paddle.tensor.random.uniform(shape_tensor)
# if shape_tensor's value is [2, 3]
# result_3 is:
# [[-0.8517412, -0.4006908, 0.2551912 ],
# [ 0.3364414, 0.36278176, -0.16085452]]
out3 = paddle.uniform(shape_tensor)
# [[-0.8517412, -0.4006908, 0.2551912 ], # random
# [ 0.3364414, 0.36278176, -0.16085452]] # random
"""
if
dtype
is
None
:
dtype
=
paddle
.
framework
.
get_default_dtype
()
...
...
@@ -517,8 +557,6 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
import paddle
paddle.disable_static()
# example 1:
# attr shape is a list which doesn't contain Tensor.
out1 = paddle.randint(low=-5, high=5, shape=[3])
...
...
@@ -526,18 +564,16 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
# example 2:
# attr shape is a list which contains Tensor.
dim1 = paddle.
full([1], 2, "int64"
)
dim2 = paddle.
full([1], 3, "int32"
)
out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2]
, dtype="int32"
)
dim1 = paddle.
to_tensor([2], 'int64'
)
dim2 = paddle.
to_tensor([3], 'int32'
)
out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
# [[0, -1, -3], # random
# [4, -2, 0]] # random
# example 3:
# attr shape is a Tensor
shape_tensor = paddle.to_tensor(3)
result_3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
# [-2, 2, 3] # random
# example 4:
...
...
@@ -611,8 +647,6 @@ def randperm(n, dtype="int64", name=None):
import paddle
paddle.disable_static()
out1 = paddle.randperm(5)
# [4, 1, 2, 3, 0] # random
...
...
@@ -668,15 +702,14 @@ def rand(shape, dtype=None, name=None):
import paddle
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
out1 = paddle.rand(shape=[2, 3])
# [[0.451152 , 0.55825245, 0.403311 ], # random
# [0.22550228, 0.22106001, 0.7877319 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim1 = paddle.
full([1], 2, "int64"
)
dim2 = paddle.
full([1], 3, "int32"
)
dim1 = paddle.
to_tensor([2], 'int64'
)
dim2 = paddle.
to_tensor([3], 'int32'
)
out2 = paddle.rand(shape=[dim1, dim2, 2])
# [[[0.8879919 , 0.25788337], # random
# [0.28826773, 0.9712097 ], # random
...
...
@@ -687,8 +720,7 @@ def rand(shape, dtype=None, name=None):
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
shape_tensor = paddle.to_tensor([2, 3])
result_3 = paddle.rand(shape_tensor)
out3 = paddle.rand(shape_tensor)
# [[0.22920267, 0.841956 , 0.05981819], # random
# [0.4836288 , 0.24573246, 0.7516129 ]] # random
...
...
python/paddle/tensor/stat.py
浏览文件 @
2cd10fc4
...
...
@@ -56,17 +56,13 @@ def mean(x, axis=None, keepdim=False, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]],
[[13, 14, 15, 16],
[17, 18, 19, 20],
[21, 22, 23, 24]]], 'float32')
x = paddle.to_tensor(x)
x = paddle.to_tensor([[[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.]],
[[13., 14., 15., 16.],
[17., 18., 19., 20.],
[21., 22., 23., 24.]]])
out1 = paddle.mean(x)
# [12.5]
out2 = paddle.mean(x, axis=-1)
...
...
@@ -145,12 +141,8 @@ def var(x, axis=None, unbiased=True, keepdim=False, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
x = paddle.to_tensor(x)
x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
out1 = paddle.var(x)
# [2.66666667]
out2 = paddle.var(x, axis=1)
...
...
@@ -208,12 +200,8 @@ def std(x, axis=None, unbiased=True, keepdim=False, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
x = paddle.to_tensor(x)
x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
out1 = paddle.std(x)
# [1.63299316]
out2 = paddle.std(x, axis=1)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录