creation.py 87.9 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31 32
    convert_dtype,
)
from ..fluid.framework import (
33
    Variable,
34
    _in_eager_without_dygraph_check,
35
    device_guard,
36
)
37
from ..fluid.param_attr import ParamAttr
38 39 40 41 42 43 44 45
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
46

47 48
__all__ = []

W
wangchaochaohu 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
140 141 142 143
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
144 145 146 147 148
    )

    return var


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
179
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
217
        (type(None), paddle.nn.initializer.Initializer),
218 219 220 221 222 223 224 225 226 227 228
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


271 272
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
273
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
274 275

    Args:
276 277
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
278
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
279 280 281
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
282 283
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
284
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
285 286 287 288

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
289
        the value with input :attr:`start`.
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
310
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
311 312
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
313
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
314 315
    if not isinstance(num, Variable):
        with device_guard("cpu"):
316
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
317
    if in_dygraph_mode():
318 319 320 321 322 323 324
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
325
    else:
326 327 328 329 330 331 332 333 334 335 336 337 338 339
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
340

341 342 343 344 345 346 347 348 349 350 351
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
352
        check_dtype(
353
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
354
        )
355 356 357 358 359 360 361 362 363 364 365 366
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
367
            )
368

369
        out = helper.create_variable_for_type_inference(dtype=dtype)
370

371 372 373 374 375 376 377 378 379 380 381 382 383
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
384 385


386 387 388 389
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
390

391 392
    Notes:
        This API does not compute the gradient.
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
408
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
409 410 411 412 413

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
414
        just has the value with exponential of :attr:`start` with base :attr:`base`.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
447
    if in_dygraph_mode():
C
Chen Weihang 已提交
448 449 450 451 452 453 454
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
455
        )
456 457
    else:
        helper = LayerHelper("logspace", **locals())
458

459 460 461 462 463 464 465 466 467 468 469 470 471
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
472

473 474 475 476 477 478 479 480 481
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
482

483 484
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
485

486 487 488 489 490 491 492 493 494
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
495

496
        check_dtype(
497
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
498
        )
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
519
            )
520

521
        out = helper.create_variable_for_type_inference(dtype=dtype)
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
537 538


539
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
540

541 542 543
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

544
    if not isinstance(data, np.ndarray):
545

546
        def _handle_dtype(data, dtype):
547 548 549 550 551
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

552 553 554 555
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
556
            if data.dtype == np.object_:
557 558 559 560
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
561 562 563 564 565 566
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
567
            data = data._copy_to(place, False)
568
            data = _handle_dtype(data, dtype)
569
            data.stop_gradient = stop_gradient
570
            return data
571
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
572
            # should't expose it to users, just for internal use.
573 574
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
575 576 577 578
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
579 580 581 582
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
583
            return data
584 585
        else:
            raise TypeError(
586 587 588 589
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
590 591
        if not dtype:
            if data.dtype in [
592 593 594 595 596
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
597 598 599
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
600 601 602 603 604
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
605 606 607 608 609
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
610 611

    if dtype and convert_dtype(dtype) != data.dtype:
612
        data = data.astype(convert_dtype(dtype))
613

J
Jiabin Yang 已提交
614
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
615 616 617 618 619 620 621 622
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
623
    else:
624 625 626 627 628 629 630
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
631 632


633 634 635 636 637
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
638 639
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
640 641 642 643 644 645 646

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

647 648 649 650 651
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
652 653 654 655 656
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

657 658
        if dtype:
            target_dtype = dtype
659
        elif hasattr(data, 'dtype') and data.dtype != 'object':
660 661 662 663 664 665
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

666 667 668 669 670
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
671
            if not all(
672 673
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


695 696
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
697
    Constructs a ``paddle.Tensor`` from ``data`` ,
698 699 700 701 702
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

703 704 705 706 707 708 709 710 711 712 713 714
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

715 716 717
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
718
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
719
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
720
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
721
            except for python float number which gets dtype from ``get_default_type`` .
722 723 724
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
725 726 727 728 729 730 731 732 733 734
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
750
        #        [1])
751 752 753 754 755 756 757 758 759 760 761 762 763 764

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
765 766 767 768
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

769
    if paddle.fluid.framework._non_static_mode():
770 771 772 773
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
774
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
775 776 777
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
778
            return _to_tensor_static(data, dtype, stop_gradient)
779 780


781
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
782
    """
S
swtkiwi 已提交
783

784 785
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
786

P
Pei Yang 已提交
787
    Args:
788 789
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
790
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
791
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
792
            data type is the same as input.
793
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
794

P
Pei Yang 已提交
795
    Returns:
796
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
797

P
Pei Yang 已提交
798 799
    Examples:
        .. code-block:: python
800

P
Pei Yang 已提交
801
          import paddle
802

803
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
804
          output = paddle.full_like(input, 2.0)
805 806
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
807 808
    """
    if dtype is None:
809
        dtype = x.dtype
810
    else:
811 812
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
813
    if in_dygraph_mode():
814
        return _C_ops.full_like(x, fill_value, dtype, x.place)
815 816 817 818 819 820 821 822 823 824 825 826 827
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
828
                'uint16',
829 830
            ],
            'full_like',
831
        )
832 833 834 835 836 837 838 839 840 841 842
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
843
                'uint16',
844 845 846 847
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
848

849 850 851 852 853 854 855 856
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
857 858


859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
884
            if dtype in ['int8', 'uint8', 'int16', 'int32', 'int64']:
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
907
                'int8',
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


944
def ones(shape, dtype=None, name=None):
945
    """
B
BrilliantYuKaimin 已提交
946
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
947 948

    Args:
949 950 951
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
952 953 954
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
955

956
    Returns:
B
BrilliantYuKaimin 已提交
957
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
958 959 960 961

    Examples:
        .. code-block:: python

962
            import paddle
963

964
            # shape is a list/tuple
965
            data1 = paddle.ones(shape=[3, 2])
966 967 968 969 970
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
971 972 973 974 975 976 977 978 979 980 981 982
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
983
    """
984
    if dtype is None:
W
Weilong Wu 已提交
985
        dtype = core.VarDesc.VarType.FP32
986
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
987 988


989
def ones_like(x, dtype=None, name=None):
990
    """
C
Chen Long 已提交
991
    Returns a Tensor filled with the value 1, with the same shape and
992
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
993 994

    Args:
995 996
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
997
        dtype(str|np.dtype, optional): The data type of the
998 999 1000
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1001
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1002

1003
    Returns:
1004 1005 1006
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1007 1008 1009
    Examples:
        .. code-block:: python

1010
            import paddle
1011

1012
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1013 1014
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1015

1016 1017
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1018 1019


1020
def zeros(shape, dtype=None, name=None):
1021
    """
C
Chen Long 已提交
1022
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1023 1024

    Args:
1025 1026 1027
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1028
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1029 1030 1031
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1032 1033

    Returns:
1034
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1035 1036 1037 1038

    Examples:
        .. code-block:: python

1039
            import paddle
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1060
    """
1061 1062 1063
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1064 1065


1066
def zeros_like(x, dtype=None, name=None):
1067
    """
1068
    Returns a Tensor filled with the value 0, with the same shape and
1069
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1070 1071

    Args:
1072 1073
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1074
        dtype(str|np.dtype, optional): The data type of the
1075 1076 1077
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1078
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1079 1080

    Returns:
1081 1082
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1083

1084

1085 1086 1087
    Examples:
        .. code-block:: python

1088
            import paddle
1089

Z
zhupengyang 已提交
1090
            x = paddle.to_tensor([1, 2, 3])
1091 1092
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1093

1094 1095
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1096 1097


1098
def eye(num_rows, num_columns=None, dtype=None, name=None):
1099
    """
1100

1101
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1102

1103
    Args:
1104 1105
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1106
            If None, default: num_rows.
W
wangchaochaohu 已提交
1107
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1108 1109
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1110
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1111

1112
    Returns:
1113
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1114

1115 1116
    Examples:
        .. code-block:: python
1117

1118
          import paddle
1119

1120
          data = paddle.eye(3, dtype='int32')
1121 1122 1123
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1124
          data = paddle.eye(2, 3, dtype='int32')
1125 1126
          # [[1 0 0]
          #  [0 1 0]]
1127 1128
    """

1129
    def _check_attr(attr, message):
1130
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1131 1132 1133 1134 1135 1136
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

1137
    if dtype is None:
1138 1139
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1140 1141
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1142
        _check_attr(num_columns, "num_columns")
1143 1144 1145
    else:
        num_columns = num_rows

1146 1147 1148 1149
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1150 1151
    else:
        helper = LayerHelper("eye", **locals())
1152 1153 1154 1155 1156 1157
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1158
        out = helper.create_variable_for_type_inference(dtype=dtype)
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1170 1171 1172

    out.stop_gradient = True
    return out
1173 1174


1175
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1176
    """
S
swtkiwi 已提交
1177

1178
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1179

W
wangchaochaohu 已提交
1180
    Args:
1181 1182 1183 1184 1185
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1186
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1187
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1188 1189
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1190

1191
    Returns:
1192
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1193

W
wangchaochaohu 已提交
1194 1195 1196
    Examples:
        .. code-block:: python

1197
            import paddle
W
wangchaochaohu 已提交
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1225 1226 1227 1228 1229
    """

    if dtype is None:
        dtype = 'float32'

1230
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1231 1232


1233
def arange(start=0, end=None, step=1, dtype=None, name=None):
1234
    """
1235
    Returns a 1-D Tensor with spaced values within a given interval.
1236

1237 1238
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1239

1240 1241
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1242 1243

    Parameters:
1244 1245
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1246 1247
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1248
        end(float|int|Tensor, optional): End of interval. The interval does not
1249 1250 1251 1252
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1253 1254
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1255 1256
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1257
        dtype(str|np.dtype, optional): The data type of the
1258 1259
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1260
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1261

1262
    Returns:
1263
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1264 1265
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1266

Z
zhupengyang 已提交
1267
    Examples:
1268 1269
        .. code-block:: python

Z
zhupengyang 已提交
1270
            import paddle
1271

Z
zhupengyang 已提交
1272 1273
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1274

Z
zhupengyang 已提交
1275 1276
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1277

Z
zhupengyang 已提交
1278 1279 1280
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1281

1282
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1283 1284
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1285

1286 1287 1288 1289 1290 1291
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1315
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1316 1317 1318 1319
    else:
        check_dtype(
            dtype,
            'dtype',
1320
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1321 1322 1323
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
1324 1325 1326 1327 1328 1329 1330
        out_shape = None
        if (
            not isinstance(start, Variable)
            and not isinstance(end, Variable)
            and not isinstance(step, Variable)
        ):
            out_shape = [int(math.ceil((end - start) / step))]
1331 1332 1333 1334 1335 1336
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1337
        out.stop_gradient = True
1338 1339
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1340 1341
        return out

W
WuHaobo 已提交
1342 1343

def _tril_triu_op(helper):
1344
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1345
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1346
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1347 1348

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1349
    check_variable_and_dtype(
1350 1351 1352 1353 1354
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1355
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1356
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1357
    diagonal = helper.kwargs.get('diagonal', 0)
1358
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1359 1360 1361 1362 1363 1364
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1365 1366 1367
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1368 1369 1370 1371 1372 1373 1374 1375

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1376 1377
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1378 1379 1380 1381

    return out


Y
yaoxuefeng 已提交
1382
def tril(x, diagonal=0, name=None):
1383
    r"""
1384
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1385 1386
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1387 1388 1389
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1390
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1391
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1392 1393 1394 1395 1396 1397 1398
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1399
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1400 1401

    Returns:
Y
yaoxuefeng 已提交
1402
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1403
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1404 1405 1406 1407

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1408
            import paddle
W
WuHaobo 已提交
1409

1410 1411 1412 1413 1414
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1415

1416 1417 1418 1419 1420
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1421 1422

            # example 2, positive diagonal value
1423 1424 1425 1426 1427
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1428 1429

            # example 3, negative diagonal value
1430 1431 1432 1433 1434
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1435
    """
F
From00 已提交
1436
    if in_dygraph_mode():
Z
zyfncg 已提交
1437
        return _C_ops.tril(x, diagonal)
1438 1439
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1440 1441


Y
yaoxuefeng 已提交
1442
def triu(x, diagonal=0, name=None):
1443
    r"""
1444
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1445
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1446 1447 1448 1449
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1450
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1451 1452 1453 1454 1455 1456 1457 1458
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1459
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1460 1461

    Returns:
Y
yaoxuefeng 已提交
1462
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1463
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1464 1465 1466 1467

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1468
            import paddle
W
WuHaobo 已提交
1469

1470 1471 1472 1473 1474
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1475 1476

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1477
            triu1 = paddle.tensor.triu(x)
1478 1479 1480 1481
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1482 1483

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1484
            triu2 = paddle.tensor.triu(x, diagonal=2)
1485 1486 1487 1488
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1489 1490

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1491
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1492 1493 1494 1495
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1496 1497

    """
F
From00 已提交
1498
    if in_dygraph_mode():
Z
zyfncg 已提交
1499
        return _C_ops.triu(x, diagonal)
1500 1501
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1502 1503


1504
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1505
    """
1506

1507
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1508

S
suytingwan 已提交
1509
    Args:
1510
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1511
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1512
        **kwargs (optional): Currently, only accept name in **kwargs
1513
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1514
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1515

S
suytingwan 已提交
1516
    Returns:
Y
yaoxuefeng 已提交
1517
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1518 1519 1520 1521 1522 1523

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1524 1525 1526 1527
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1528

Y
yaoxuefeng 已提交
1529 1530
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1531 1532 1533 1534 1535 1536

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1537 1538
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1539
    if in_dygraph_mode():
1540
        return _C_ops.meshgrid(list(args))
1541 1542 1543
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1544

1545 1546 1547 1548
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1549

1550 1551 1552 1553 1554 1555 1556
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1557

1558 1559 1560 1561 1562 1563 1564
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1565
        )
S
suytingwan 已提交
1566

1567
        return out
1568 1569


L
Li Min 已提交
1570 1571
def diagflat(x, offset=0, name=None):
    """
1572
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1586
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1587
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1588
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1589 1590 1591 1592 1593 1594

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1595
            :name: code-example-1
L
Li Min 已提交
1596

1597 1598 1599 1600
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1601 1602 1603 1604 1605
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1606 1607

            y = paddle.diagflat(x, offset=1)
1608 1609 1610 1611 1612 1613
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1614 1615

            y = paddle.diagflat(x, offset=-1)
1616 1617 1618 1619 1620 1621
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1622 1623

        .. code-block:: python
1624
            :name: code-example-2
L
Li Min 已提交
1625

1626
            import paddle
L
Li Min 已提交
1627

1628 1629
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1630 1631 1632 1633 1634 1635
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1636 1637

            y = paddle.diagflat(x, offset=1)
1638 1639 1640 1641 1642 1643 1644
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1645 1646

            y = paddle.diagflat(x, offset=-1)
1647 1648 1649 1650 1651 1652 1653
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1654
    """
1655
    if in_dygraph_mode():
1656
        if len(x.shape) <= 1:
1657
            return _C_ops.diag(x, offset, 0)
1658
        else:
1659
            y = _C_ops.flatten(x, 0, -1)
1660 1661 1662 1663 1664
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1665 1666 1667 1668
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1669 1670
        )
        check_type(offset, 'offset', (int), 'diagflat')
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1683
            )
L
Li Min 已提交
1684
        else:
1685 1686 1687 1688 1689
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1690
            )
1691
            out1.stop_gradient = True
L
Li Min 已提交
1692

1693 1694 1695 1696 1697 1698 1699 1700
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1701 1702


1703 1704
def diag(x, offset=0, padding_value=0, name=None):
    """
1705
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1718
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1719 1720
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1721
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1722

1723 1724 1725 1726 1727
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1728
            :name: code-example-1
1729

1730
            import paddle
1731

1732 1733 1734
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1735 1736 1737 1738 1739
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1740 1741

            y = paddle.diag(x, offset=1)
1742 1743 1744 1745 1746 1747
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1748 1749

            y = paddle.diag(x, padding_value=6)
1750 1751 1752 1753 1754
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1755 1756

        .. code-block:: python
1757
            :name: code-example-2
1758

1759
            import paddle
1760

1761 1762 1763
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1764 1765 1766
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1767

1768
            y = paddle.diag(x, offset=1)
1769 1770 1771
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1772

1773
            y = paddle.diag(x, offset=-1)
1774 1775 1776
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1777
    """
J
Jiabin Yang 已提交
1778
    if in_dygraph_mode():
1779
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1780
    else:
1781 1782 1783 1784
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1785
            ['float16', 'float32', 'float64', 'int32', 'int64'],
1786 1787 1788 1789 1790 1791 1792 1793
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1794
                )
1795
            )
1796

1797
        helper = LayerHelper("diag_v2", **locals())
1798

1799
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1800

1801 1802 1803 1804 1805 1806
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1807

1808 1809
        out.stop_gradient = True
        return out
1810 1811 1812 1813


def empty(shape, dtype=None, name=None):
    """
1814
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1815

1816
    Args:
1817 1818 1819
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1820
        dtype(np.dtype|str, optional): Data type of the output Tensor
1821
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1822 1823
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1824
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1825

1826 1827 1828 1829 1830 1831
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1832
            import paddle
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1853 1854 1855 1856 1857 1858 1859
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1860
    if in_dygraph_mode():
1861
        shape = paddle.utils.convert_shape_to_list(shape)
1862 1863 1864
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1865 1866
        out.stop_gradient = True
        return out
1867 1868 1869
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1870

1871 1872 1873
        check_dtype(
            dtype,
            'dtype',
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1884
            'empty',
1885
        )
1886
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1887

1888 1889
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1890

1891
        attrs = {}
1892
        paddle.utils.get_shape_tensor_inputs(
1893 1894
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1895

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1907 1908 1909 1910


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1911
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1912
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1913

1914 1915 1916
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1917
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1918
            data type is the same as input.
1919
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1941
    if in_dygraph_mode():
1942 1943 1944 1945 1946
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1947 1948
        out.stop_gradient = True
        return out
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1964

1965 1966 1967 1968
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1969
        paddle.utils.get_shape_tensor_inputs(
1970 1971 1972 1973 1974 1975 1976 1977 1978
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
1979
        )
1980 1981 1982
        out.stop_gradient = True
        return out

1983 1984 1985

def assign(x, output=None):
    """
1986

1987
    Copy value of the :attr:`x` to the :attr:`output`.
1988

1989
    Parameters:
1990 1991
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1992
            data limitation.
1993
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1994

1995
    Returns:
1996
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1997

1998 1999
    Examples:
        .. code-block:: python
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2011
    """
2012 2013
    input = x
    helper = LayerHelper('assign', **locals())
2014 2015 2016 2017 2018 2019
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
2031
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
2032
        if in_dygraph_mode():
2033
            if output is None:
2034
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2035
            else:
2036
                _C_ops.assign_out_(input, output)
2037
        else:
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
2049
                    'int8',
2050 2051 2052 2053 2054
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2055 2056
            if output is None:
                output = helper.create_variable_for_type_inference(
2057 2058 2059 2060 2061
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2062
    elif isinstance(input, np.ndarray):
2063
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2064
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2065
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2066 2067 2068 2069
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2070
                    if isinstance(x, (Variable, core.eager.Tensor))
2071 2072
                ]
            ):
2073 2074 2075 2076 2077
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2078
                if not isinstance(x, (Variable, core.eager.Tensor)):
2079 2080 2081 2082 2083 2084 2085 2086 2087
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2088
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2089
            raise TypeError(
2090
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2091
            )
2092

2093 2094 2095 2096 2097 2098 2099
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2100 2101
                "it to float32"
            )
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2119 2120
                "received %s." % convert_dtype(dtype)
            )
2121
        if input.size > 1024 * 1024:
2122 2123 2124 2125
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2126 2127 2128
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2129 2130 2131 2132 2133 2134 2135
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2136
        else:
2137 2138
            if output is None:
                output = helper.create_variable_for_type_inference(
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2150 2151

    return output
2152 2153


2154 2155
def clone(x, name=None):
    """
2156 2157
    Returns a copy of input Tensor. It will always have a Tensor copy.

2158 2159 2160 2161
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2162
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2163

2164
    Returns:
2165
        Tensor, A Tensor copied from ``input``.
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2184
# NOTE(zhiqiu): not public
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2198
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2199 2200 2201 2202 2203

    Examples:
        .. code-block:: python

          import paddle
2204

2205 2206 2207 2208 2209 2210 2211
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
2223
                'int8',
2224 2225 2226 2227 2228
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
2250 2251 2252 2253 2254 2255
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2256
    return output
F
Feiyu Chan 已提交
2257 2258 2259 2260 2261 2262 2263 2264


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2265
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2266 2267 2268 2269

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2270 2271 2272 2273
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2274 2275 2276 2277 2278 2279 2280 2281

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2282 2283 2284 2285
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2286
    """
2287
    if in_dygraph_mode():
2288
        return _C_ops.complex(real, imag)
2289 2290 2291 2292 2293 2294 2295
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2309 2310 2311 2312


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2313 2314
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2315 2316
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2317

2318 2319 2320 2321 2322
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2323 2324 2325 2326
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2337

2338 2339 2340
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2341
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2342 2343 2344 2345 2346
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2347
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2360 2361
        if col is None:
            col = row
2362 2363 2364
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2365
        return out
2366 2367 2368
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2369

2370 2371 2372 2373 2374 2375 2376 2377
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2378 2379 2380 2381 2382

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2383 2384 2385 2386 2387 2388
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2389
    return out
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2439 2440
        if col is None:
            col = row
2441 2442 2443
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2444
        return out
2445 2446 2447
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2448

2449 2450 2451 2452 2453 2454 2455 2456
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2457 2458 2459 2460 2461

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2462 2463 2464 2465 2466 2467
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2468
    return out
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))