creation.py 88.4 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30
    convert_dtype,
31
    convert_float_to_uint16,
32 33
)
from ..fluid.framework import (
34
    Variable,
35
    _in_eager_without_dygraph_check,
36
    device_guard,
37
)
38
from ..fluid.param_attr import ParamAttr
39 40 41 42 43 44 45 46
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
47

48 49
__all__ = []

W
wangchaochaohu 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
141 142 143 144
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
145 146 147 148 149
    )

    return var


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
180
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
204
            'uint16',
205 206 207 208 209 210 211 212 213 214 215 216 217 218
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
219
        (type(None), paddle.nn.initializer.Initializer),
220 221 222 223 224 225 226 227 228 229 230
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


273 274
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
275
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
276 277

    Args:
278 279
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
280
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
281 282 283
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
284 285
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
286
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
287 288 289 290

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
291
        the value with input :attr:`start`.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
312
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
313 314
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
315
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
316 317
    if not isinstance(num, Variable):
        with device_guard("cpu"):
318
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
319
    if in_dygraph_mode():
320 321 322 323 324 325 326
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
327
    else:
328 329 330 331 332 333 334 335 336
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
337
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
338 339 340 341
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
342

343 344 345 346
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
347
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
348 349 350 351 352 353
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
354
        check_dtype(
355 356
            dtype,
            'dtype',
357
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
358
            'linspace',
359
        )
360 361 362 363 364 365 366 367 368 369 370 371
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
372
            )
373

374
        out = helper.create_variable_for_type_inference(dtype=dtype)
375

376 377 378 379 380 381 382 383 384 385 386 387 388
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
389 390


391 392 393 394
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
395

396 397
    Notes:
        This API does not compute the gradient.
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
413
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
414 415 416 417 418

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
419
        just has the value with exponential of :attr:`start` with base :attr:`base`.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
452
    if in_dygraph_mode():
C
Chen Weihang 已提交
453 454 455 456 457 458 459
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
460
        )
461 462
    else:
        helper = LayerHelper("logspace", **locals())
463

464 465 466 467 468 469 470 471 472 473 474 475 476
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
477

478 479 480 481 482 483 484 485 486
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
487

488 489
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
490

491 492 493 494 495 496 497 498 499
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
500

501
        check_dtype(
502
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
503
        )
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
524
            )
525

526
        out = helper.create_variable_for_type_inference(dtype=dtype)
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
542 543


544
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
545

546 547 548
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

549
    if not isinstance(data, np.ndarray):
550

551
        def _handle_dtype(data, dtype):
552 553 554 555 556
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

557 558 559 560
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
561
            if data.dtype == np.object_:
562 563 564 565
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
566 567 568 569 570 571
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
572
            data = data._copy_to(place, False)
573
            data = _handle_dtype(data, dtype)
574
            data.stop_gradient = stop_gradient
575
            return data
576
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
577
            # should't expose it to users, just for internal use.
W
wanghuancoder 已提交
578
            # convert core.Tensor/core.LoDTensor to Tensor first
579
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
580 581 582 583
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
584 585 586 587
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
588
            return data
589 590
        else:
            raise TypeError(
591 592 593 594
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
595 596
        if not dtype:
            if data.dtype in [
597 598 599 600 601
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
602 603 604
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
605 606 607 608 609
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
610 611 612 613 614
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
615 616

    if dtype and convert_dtype(dtype) != data.dtype:
617 618 619 620 621
        if convert_dtype(dtype) in ['uint16']:
            # should not ndarray.astype('uint16') directly, data bits is wrong
            data = convert_float_to_uint16(data.astype('float32'))
        else:
            data = data.astype(convert_dtype(dtype))
622

J
Jiabin Yang 已提交
623
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
624 625 626 627 628 629 630 631
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
632
    else:
633 634 635 636 637 638 639
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
640 641


642 643 644 645 646
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
647 648
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
649 650 651 652 653 654 655

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

656 657 658 659 660
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
661 662 663 664 665
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

666 667
        if dtype:
            target_dtype = dtype
668
        elif hasattr(data, 'dtype') and data.dtype != 'object':
669 670 671 672 673 674
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

675 676 677 678 679
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
680
            if not all(
681 682
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


704 705
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
706
    Constructs a ``paddle.Tensor`` from ``data`` ,
707 708 709 710 711
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

712 713 714 715 716 717 718 719 720 721 722 723
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

724 725 726
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
727
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
728
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
729
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
730
            except for python float number which gets dtype from ``get_default_type`` .
731 732 733
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
734 735 736 737 738 739 740 741 742 743
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
759
        #        [1])
760 761 762 763 764 765 766 767 768 769 770 771 772 773

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
774 775 776 777
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

778
    if paddle.fluid.framework._non_static_mode():
779 780 781 782
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
783
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
784 785 786
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
787
            return _to_tensor_static(data, dtype, stop_gradient)
788 789


790
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
791
    """
S
swtkiwi 已提交
792

793 794
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
795

P
Pei Yang 已提交
796
    Args:
797 798
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
799
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
800
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
801
            data type is the same as input.
802
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
803

P
Pei Yang 已提交
804
    Returns:
805
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
806

P
Pei Yang 已提交
807 808
    Examples:
        .. code-block:: python
809

P
Pei Yang 已提交
810
          import paddle
811

812
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
813
          output = paddle.full_like(input, 2.0)
814 815
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
816 817
    """
    if dtype is None:
818
        dtype = x.dtype
819
    else:
820 821
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
822
    if in_dygraph_mode():
823
        return _C_ops.full_like(x, fill_value, dtype, x.place)
824 825 826 827 828 829 830 831 832 833 834 835 836
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
837
                'uint16',
838 839
            ],
            'full_like',
840
        )
841 842 843 844 845 846 847 848 849 850 851
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
852
                'uint16',
853 854 855 856
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
857

858 859 860 861 862 863 864 865
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
866 867


868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
893
            if dtype in ['int8', 'uint8', 'int16', 'int32', 'int64']:
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
916
                'int8',
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


953
def ones(shape, dtype=None, name=None):
954
    """
B
BrilliantYuKaimin 已提交
955
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
956 957

    Args:
958 959 960
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
961 962 963
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
964

965
    Returns:
B
BrilliantYuKaimin 已提交
966
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
967 968 969 970

    Examples:
        .. code-block:: python

971
            import paddle
972

973
            # shape is a list/tuple
974
            data1 = paddle.ones(shape=[3, 2])
975 976 977 978 979
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
980 981 982 983 984 985 986 987 988 989 990 991
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
992
    """
993
    if dtype is None:
W
Weilong Wu 已提交
994
        dtype = core.VarDesc.VarType.FP32
995
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
996 997


998
def ones_like(x, dtype=None, name=None):
999
    """
C
Chen Long 已提交
1000
    Returns a Tensor filled with the value 1, with the same shape and
1001
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1002 1003

    Args:
1004 1005
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1006
        dtype(str|np.dtype, optional): The data type of the
1007 1008 1009
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1010
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1011

1012
    Returns:
1013 1014 1015
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1016 1017 1018
    Examples:
        .. code-block:: python

1019
            import paddle
1020

1021
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1022 1023
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1024

1025 1026
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1027 1028


1029
def zeros(shape, dtype=None, name=None):
1030
    """
C
Chen Long 已提交
1031
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1032 1033

    Args:
1034 1035 1036
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1037
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1038 1039 1040
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1041 1042

    Returns:
1043
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1044 1045 1046 1047

    Examples:
        .. code-block:: python

1048
            import paddle
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1069
    """
1070 1071 1072
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1073 1074


1075
def zeros_like(x, dtype=None, name=None):
1076
    """
1077
    Returns a Tensor filled with the value 0, with the same shape and
1078
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1079 1080

    Args:
1081 1082
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1083
        dtype(str|np.dtype, optional): The data type of the
1084 1085 1086
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1087
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1088 1089

    Returns:
1090 1091
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1092

1093

1094 1095 1096
    Examples:
        .. code-block:: python

1097
            import paddle
1098

Z
zhupengyang 已提交
1099
            x = paddle.to_tensor([1, 2, 3])
1100 1101
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1102

1103 1104
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1105 1106


1107
def eye(num_rows, num_columns=None, dtype=None, name=None):
1108
    """
1109

1110
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1111

1112
    Args:
1113 1114
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1115
            If None, default: num_rows.
W
wangchaochaohu 已提交
1116
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1117 1118
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1119
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1120

1121
    Returns:
1122
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1123

1124 1125
    Examples:
        .. code-block:: python
1126

1127
          import paddle
1128

1129
          data = paddle.eye(3, dtype='int32')
1130 1131 1132
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1133
          data = paddle.eye(2, 3, dtype='int32')
1134 1135
          # [[1 0 0]
          #  [0 1 0]]
1136 1137
    """

1138
    def _check_attr(attr, message):
1139
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1140 1141
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
1142
            raise TypeError(f"{message} should be a non-negative int.")
1143 1144 1145

    _check_attr(num_rows, "num_rows")

1146
    if dtype is None:
1147 1148
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1149 1150
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1151
        _check_attr(num_columns, "num_columns")
1152 1153 1154
    else:
        num_columns = num_rows

1155 1156 1157 1158
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1159 1160
    else:
        helper = LayerHelper("eye", **locals())
1161 1162 1163 1164 1165 1166
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1167
        out = helper.create_variable_for_type_inference(dtype=dtype)
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1179 1180 1181

    out.stop_gradient = True
    return out
1182 1183


1184
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1185
    """
S
swtkiwi 已提交
1186

1187
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1188

W
wangchaochaohu 已提交
1189
    Args:
1190 1191 1192 1193 1194
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1195
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1196
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1197 1198
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1199

1200
    Returns:
1201
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1202

W
wangchaochaohu 已提交
1203 1204 1205
    Examples:
        .. code-block:: python

1206
            import paddle
W
wangchaochaohu 已提交
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1234 1235 1236 1237 1238
    """

    if dtype is None:
        dtype = 'float32'

1239
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1240 1241


1242
def arange(start=0, end=None, step=1, dtype=None, name=None):
1243
    """
1244
    Returns a 1-D Tensor with spaced values within a given interval.
1245

1246 1247
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1248

1249 1250
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1251 1252

    Parameters:
1253 1254
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1255 1256
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1257
        end(float|int|Tensor, optional): End of interval. The interval does not
1258 1259 1260 1261
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1262 1263
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1264 1265
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1266
        dtype(str|np.dtype, optional): The data type of the
1267 1268
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1270

1271
    Returns:
1272
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1273 1274
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1275

Z
zhupengyang 已提交
1276
    Examples:
1277 1278
        .. code-block:: python

Z
zhupengyang 已提交
1279
            import paddle
1280

Z
zhupengyang 已提交
1281 1282
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1283

Z
zhupengyang 已提交
1284 1285
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1286

Z
zhupengyang 已提交
1287 1288 1289
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1290

1291
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1292 1293
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1294

1295 1296 1297 1298 1299 1300
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1301

1302 1303 1304 1305 1306 1307 1308 1309
    out_shape = None
    if not in_dygraph_mode() and (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
        out_shape = [int(math.ceil((end - start) / step))]

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1332
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1333 1334 1335 1336
    else:
        check_dtype(
            dtype,
            'dtype',
1337
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1338 1339 1340 1341 1342 1343 1344 1345 1346
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1347
        out.stop_gradient = True
1348 1349
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1350 1351
        return out

W
WuHaobo 已提交
1352 1353

def _tril_triu_op(helper):
1354
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1355
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1356
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1357

1358
    assert x is not None, f'x cannot be None in {op_type}'
1359
    check_variable_and_dtype(
1360 1361
        x,
        'x',
1362
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'bool'],
1363 1364
        op_type,
    )
W
WuHaobo 已提交
1365
    if len(x.shape) < 2:
1366
        raise ValueError(f"x shape in {op_type} must be at least 2-D")
W
WuHaobo 已提交
1367
    diagonal = helper.kwargs.get('diagonal', 0)
1368
    if not isinstance(diagonal, (int,)):
1369
        raise TypeError(f"diagonal in {op_type} must be a python Int")
W
WuHaobo 已提交
1370 1371 1372 1373 1374
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1375 1376 1377
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1378 1379 1380 1381 1382 1383 1384 1385

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1386 1387
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1388 1389 1390 1391

    return out


Y
yaoxuefeng 已提交
1392
def tril(x, diagonal=0, name=None):
1393
    r"""
1394
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1395 1396
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1397 1398 1399
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1400
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1401
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1402 1403 1404 1405 1406 1407 1408
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1409
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1410 1411

    Returns:
Y
yaoxuefeng 已提交
1412
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1413
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1414 1415 1416 1417

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1418
            import paddle
W
WuHaobo 已提交
1419

1420 1421 1422 1423 1424
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1425

1426 1427 1428 1429 1430
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1431 1432

            # example 2, positive diagonal value
1433 1434 1435 1436 1437
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1438 1439

            # example 3, negative diagonal value
1440 1441 1442 1443 1444
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1445
    """
F
From00 已提交
1446
    if in_dygraph_mode():
Z
zyfncg 已提交
1447
        return _C_ops.tril(x, diagonal)
1448 1449
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1450 1451


Y
yaoxuefeng 已提交
1452
def triu(x, diagonal=0, name=None):
1453
    r"""
1454
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1455
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1456 1457 1458 1459
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1460
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1461 1462 1463 1464 1465 1466 1467 1468
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1469
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1470 1471

    Returns:
Y
yaoxuefeng 已提交
1472
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1473
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1474 1475 1476 1477

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1478
            import paddle
W
WuHaobo 已提交
1479

1480 1481 1482 1483 1484
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1485 1486

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1487
            triu1 = paddle.tensor.triu(x)
1488 1489 1490 1491
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1492 1493

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1494
            triu2 = paddle.tensor.triu(x, diagonal=2)
1495 1496 1497 1498
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1499 1500

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1501
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1502 1503 1504 1505
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1506 1507

    """
F
From00 已提交
1508
    if in_dygraph_mode():
Z
zyfncg 已提交
1509
        return _C_ops.triu(x, diagonal)
1510 1511
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1512 1513


1514
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1515
    """
1516

1517
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1518

S
suytingwan 已提交
1519
    Args:
1520
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1521
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1522
        **kwargs (optional): Currently, only accept name in **kwargs
1523
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1524
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1525

S
suytingwan 已提交
1526
    Returns:
Y
yaoxuefeng 已提交
1527
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1528 1529 1530 1531 1532 1533

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1534 1535 1536 1537
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1538

Y
yaoxuefeng 已提交
1539 1540
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1541 1542 1543 1544 1545 1546

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1547 1548
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1549
    if in_dygraph_mode():
1550
        return _C_ops.meshgrid(list(args))
1551 1552 1553
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1554

1555 1556 1557 1558
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1559

1560 1561 1562 1563 1564 1565 1566
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1567

1568 1569 1570 1571 1572 1573 1574
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1575
        )
S
suytingwan 已提交
1576

1577
        return out
1578 1579


L
Li Min 已提交
1580 1581
def diagflat(x, offset=0, name=None):
    """
1582
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1596
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1597
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1598
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1599 1600 1601 1602 1603 1604

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1605
            :name: code-example-1
L
Li Min 已提交
1606

1607 1608 1609 1610
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1611 1612 1613 1614 1615
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1616 1617

            y = paddle.diagflat(x, offset=1)
1618 1619 1620 1621 1622 1623
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1624 1625

            y = paddle.diagflat(x, offset=-1)
1626 1627 1628 1629 1630 1631
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1632 1633

        .. code-block:: python
1634
            :name: code-example-2
L
Li Min 已提交
1635

1636
            import paddle
L
Li Min 已提交
1637

1638 1639
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1640 1641 1642 1643 1644 1645
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1646 1647

            y = paddle.diagflat(x, offset=1)
1648 1649 1650 1651 1652 1653 1654
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1655 1656

            y = paddle.diagflat(x, offset=-1)
1657 1658 1659 1660 1661 1662 1663
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1664
    """
1665
    if in_dygraph_mode():
1666
        if len(x.shape) <= 1:
1667
            return _C_ops.diag(x, offset, 0)
1668
        else:
1669
            y = _C_ops.flatten(x, 0, -1)
1670 1671 1672 1673 1674
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1675 1676 1677 1678
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1679 1680
        )
        check_type(offset, 'offset', (int), 'diagflat')
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1693
            )
L
Li Min 已提交
1694
        else:
1695 1696 1697 1698 1699
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1700
            )
1701
            out1.stop_gradient = True
L
Li Min 已提交
1702

1703 1704 1705 1706 1707 1708 1709 1710
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1711 1712


1713 1714
def diag(x, offset=0, padding_value=0, name=None):
    """
1715
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1728
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1729 1730
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1731
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1732

1733 1734 1735 1736 1737
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1738
            :name: code-example-1
1739

1740
            import paddle
1741

1742 1743 1744
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1745 1746 1747 1748 1749
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1750 1751

            y = paddle.diag(x, offset=1)
1752 1753 1754 1755 1756 1757
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1758 1759

            y = paddle.diag(x, padding_value=6)
1760 1761 1762 1763 1764
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1765 1766

        .. code-block:: python
1767
            :name: code-example-2
1768

1769
            import paddle
1770

1771 1772 1773
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1774 1775 1776
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1777

1778
            y = paddle.diag(x, offset=1)
1779 1780 1781
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1782

1783
            y = paddle.diag(x, offset=-1)
1784 1785 1786
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1787
    """
J
Jiabin Yang 已提交
1788
    if in_dygraph_mode():
1789
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1790
    else:
1791 1792 1793 1794
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1795
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
1796 1797 1798 1799 1800 1801 1802 1803
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1804
                )
1805
            )
1806

1807
        helper = LayerHelper("diag_v2", **locals())
1808

1809
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1810

1811 1812 1813 1814 1815 1816
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1817

1818 1819
        out.stop_gradient = True
        return out
1820 1821 1822 1823


def empty(shape, dtype=None, name=None):
    """
1824
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1825

1826
    Args:
1827 1828 1829
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1830
        dtype(np.dtype|str, optional): Data type of the output Tensor
1831
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1832 1833
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1834
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1835

1836 1837 1838 1839 1840 1841
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1842
            import paddle
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1863 1864 1865 1866 1867 1868 1869
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1870
    if in_dygraph_mode():
1871
        shape = paddle.utils.convert_shape_to_list(shape)
1872 1873 1874
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1875 1876
        out.stop_gradient = True
        return out
1877 1878 1879
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1880

1881 1882 1883
        check_dtype(
            dtype,
            'dtype',
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1894
            'empty',
1895
        )
1896
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1897

1898 1899
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1900

1901
        attrs = {}
1902
        paddle.utils.get_shape_tensor_inputs(
1903 1904
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1917 1918 1919 1920


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1921
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1922
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1923

1924 1925 1926
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1927
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1928
            data type is the same as input.
1929
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1951
    if in_dygraph_mode():
1952 1953 1954 1955 1956
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1957 1958
        out.stop_gradient = True
        return out
1959 1960 1961 1962 1963
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
1964 1965 1966 1967 1968 1969 1970 1971 1972
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1973 1974 1975 1976 1977
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
1978 1979 1980 1981 1982 1983 1984 1985 1986
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1987 1988 1989
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1990

1991 1992 1993 1994
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1995
        paddle.utils.get_shape_tensor_inputs(
1996 1997 1998 1999 2000 2001 2002 2003 2004
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
2005
        )
2006 2007 2008
        out.stop_gradient = True
        return out

2009 2010 2011

def assign(x, output=None):
    """
2012

2013
    Copy value of the :attr:`x` to the :attr:`output`.
2014

2015
    Parameters:
2016 2017
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
2018
            data limitation.
2019
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
2020

2021
    Returns:
2022
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
2023

2024 2025
    Examples:
        .. code-block:: python
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2037
    """
2038 2039
    input = x
    helper = LayerHelper('assign', **locals())
2040 2041 2042 2043 2044 2045
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2046 2047 2048 2049 2050 2051
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
W
wanghuancoder 已提交
2052 2053
    # NOTE(Aurelius84): Why we judge core.Tensor?
    # In case of @to_static, a Tensor can be as input of `assign`,
2054
    # but _non_static_mode()==False under @to_static, which means
W
wanghuancoder 已提交
2055
    # isinstance(Tensor, Variable) == False. It will cause return None
2056
    # after this api.
W
wanghuancoder 已提交
2057
    if isinstance(input, (Variable, core.eager.Tensor)):
Z
zyfncg 已提交
2058
        if in_dygraph_mode():
2059
            if output is None:
2060
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2061
            else:
2062
                _C_ops.assign_out_(input, output)
2063
        else:
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
2075
                    'int8',
2076 2077 2078 2079 2080
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2081 2082
            if output is None:
                output = helper.create_variable_for_type_inference(
2083 2084 2085 2086 2087
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2088
    elif isinstance(input, np.ndarray):
2089
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2090
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2091
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2092 2093 2094 2095
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2096
                    if isinstance(x, (Variable, core.eager.Tensor))
2097 2098
                ]
            ):
2099 2100 2101 2102 2103
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2104
                if not isinstance(x, (Variable, core.eager.Tensor)):
2105 2106 2107 2108 2109 2110 2111 2112 2113
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2114
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2115
            raise TypeError(
2116
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2117
            )
2118

2119 2120 2121 2122 2123 2124 2125
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2126 2127
                "it to float32"
            )
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2145 2146
                "received %s." % convert_dtype(dtype)
            )
2147
        if input.size > 1024 * 1024:
2148 2149 2150 2151
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2152 2153 2154
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2155 2156 2157 2158 2159 2160 2161
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2162
        else:
2163 2164
            if output is None:
                output = helper.create_variable_for_type_inference(
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2176 2177

    return output
2178 2179


2180 2181
def clone(x, name=None):
    """
2182 2183
    Returns a copy of input Tensor. It will always have a Tensor copy.

2184 2185 2186 2187
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2188
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2189

2190
    Returns:
2191
        Tensor, A Tensor copied from ``input``.
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2210
# NOTE(zhiqiu): not public
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2224
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2225 2226 2227 2228 2229

    Examples:
        .. code-block:: python

          import paddle
2230

2231 2232 2233 2234 2235 2236
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

W
wanghuancoder 已提交
2237
    if isinstance(input, (Variable, core.eager.Tensor)):
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
2249
                'int8',
2250 2251 2252 2253 2254
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3

    attrs = {'dst_place_type': dst_place_type}
2274 2275 2276 2277 2278 2279
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2280
    return output
F
Feiyu Chan 已提交
2281 2282 2283 2284 2285 2286 2287 2288


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2289
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2290 2291 2292 2293

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2294 2295 2296 2297
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2298 2299 2300 2301 2302 2303 2304 2305

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2306 2307 2308 2309
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2310
    """
2311
    if in_dygraph_mode():
2312
        return _C_ops.complex(real, imag)
2313 2314 2315 2316 2317 2318 2319
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2333 2334 2335 2336


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2337 2338
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2339 2340
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2341

2342 2343 2344 2345 2346
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2347 2348 2349 2350
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2361

2362 2363 2364
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2365
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2366 2367 2368 2369 2370
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2371
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2384 2385
        if col is None:
            col = row
2386 2387 2388
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2389
        return out
2390 2391 2392
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2393

2394 2395 2396 2397 2398 2399 2400 2401
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2402 2403 2404 2405 2406

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2407 2408 2409 2410 2411 2412
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2413
    return out
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2463 2464
        if col is None:
            col = row
2465 2466 2467
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2468
        return out
2469 2470 2471
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2472

2473 2474 2475 2476 2477 2478 2479 2480
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2481 2482 2483 2484 2485

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2486 2487 2488 2489 2490 2491
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2492
    return out
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))