creation.py 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
L
Li Fuchen 已提交
16
from ..fluid.framework import Variable
P
Pei Yang 已提交
17 18 19 20 21 22
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
23
from paddle.common_ops_import import *
24
import paddle
W
wangchaochaohu 已提交
25

26
# TODO: define functions to get create a tensor  
27 28 29
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
30
from ..fluid.layers import create_tensor  #DEFINE_ALIAS
31
from ..fluid.layers import linspace  #DEFINE_ALIAS
32
import paddle
33

W
wangchaochaohu 已提交
34
__all__ = [
35
    'create_tensor',
36 37 38 39 40 41 42
    #       'create_lod_tensor',
    #       'create_random_int_lodtensor',
    'crop_tensor',
    'diag',
    'eye',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
59
    """
60 61
	:alias_main: paddle.full_like
	:alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like
S
swtkiwi 已提交
62

P
Pei Yang 已提交
63 64 65
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.
66

P
Pei Yang 已提交
67
    Args:
68
        x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
69
        fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
70 71 72
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
73 74
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
75
    Returns:
76 77
        out(Variable): The Tensor variable storing the output.
    
78 79 80
    Raises:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32, int64 and None.
    
P
Pei Yang 已提交
81 82
    Examples:
        .. code-block:: python
83

P
Pei Yang 已提交
84 85
          import paddle
          import numpy as np
86 87 88
          
          paddle.enable_imperative()  # Now we are in imperative mode 
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
89
          output = paddle.full_like(input, 2.0)
90 91
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
92 93 94
    """

    if dtype is None:
95
        dtype = x.dtype
96
    else:
97 98 99 100 101
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
102

103 104 105
    helper = LayerHelper("full_like", **locals())
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
106
                'full_like')
107
    out = helper.create_variable_for_type_inference(dtype=dtype)
108

P
Pei Yang 已提交
109 110
    helper.append_op(
        type='fill_any_like',
111
        inputs={'X': [x]},
112
        attrs={'value': fill_value,
113
               "dtype": dtype},
P
Pei Yang 已提交
114
        outputs={'Out': [out]})
115
    out.stop_gradient = True
P
Pei Yang 已提交
116 117 118
    return out


119
def ones(shape, dtype=None, name=None):
120
    """
121 122
	:alias_main: paddle.ones
	:alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones
S
swtkiwi 已提交
123

124 125 126
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
127 128 129 130 131
        shape(tuple|list|Variable): Shape of output tensor, the data type of shape is int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
132 133 134
    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.

135 136
    Raises:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32, int64 and None
137
            and the data type of out Tensor must be the same as the dtype. 
138 139
        TypeError: The `shape` must be one of list, tuple and Variable.
    
140 141 142
    Examples:
        .. code-block:: python

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
          import paddle 
          paddle.enable_imperative()
          
          #default dtype for ones OP
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
          #shape is a Variable
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
161
    """
162 163 164
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
165 166 167 168


def ones_like(input, dtype=None, device=None, name=None):
    """
169 170
	:alias_main: paddle.ones_like
	:alias: paddle.ones_like,paddle.tensor.ones_like,paddle.tensor.creation.ones_like
S
swtkiwi 已提交
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    This function creates a ones tensor which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be 
            float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. 
            The default value is None, the dtype is the same as input.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is None.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  
    Returns:
        out(Variable): The tensor variable storing the output.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid

194
          x = fluid.data(name='x', dtype='float32', shape=[3])
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
          data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
          data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]

    """

    helper = LayerHelper("zeros_like", **locals())

    attrs = {"value": 1.0}
    var_dtype = None
    if dtype is not None:
        check_dtype(
            dtype, 'create data type',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'zeros_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = input.dtype

    out = helper.create_variable_for_type_inference(dtype=var_dtype)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            helper.append_op(
                type='fill_any_like',
                inputs={'X': [input]},
                attrs=attrs,
                outputs={'Out': [out]})
            return out
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs=attrs,
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


237
def zeros(shape, dtype=None, name=None):
238
    """
239 240
	:alias_main: paddle.zeros
	:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
S
swtkiwi 已提交
241

242 243 244
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
245
        shape(tuple|list|Variable): Shape of output tensor. The data type of shape is int32 or int64.
246 247 248 249
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
250 251 252 253 254 255 256 257

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.

    Examples:
        .. code-block:: python

          import paddle
258 259
          
          paddle.enable_imperative()  # Now we are in imperative mode
260
          data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
261
          data = paddle.zeros(shape=[2, 2], dtype='int32', name='zeros') # [[0, 0], [0, 0]]
262
    """
263 264 265
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
266 267


268
def zeros_like(x, dtype=None, name=None):
269
    """
270
	:alias_main: paddle.zeros_like
271
	:alias: paddle.zeros_like, paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
272

273 274 275 276
    This function creates a zeros tensor which has identical shape and dtype 
    with `input`.

    Args:
277 278 279 280 281 282 283 284
        x(Variable): The input tensor which specifies shape and dtype. The
            dtype of input can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can
            be set bool, float16, float32, float64, int32, int64. The default
            value is None, the dtype is the same as input.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
285 286 287 288

    Returns:
        out(Variable): The tensor variable storing the output.

289 290 291
    Raise:
        TypeError: If dtype is not bool, float16, float32, float64, int32 or int64.

292 293 294
    Examples:
        .. code-block:: python

295 296
        import paddle
        import numpy as np
297

298
        paddle.enable_imperative()
299

300 301 302
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
        out1 = paddle.zeros_like(x) # [1.0, 1.0, 1.0]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
303

304 305
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
306 307


308
def eye(num_rows, num_columns=None, dtype=None, name=None):
309
    """
310
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
311

312 313 314
    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int, optional): the number of columns in each batch tensor.
315 316 317 318
            If None, default: num_rows.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
319 320
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
321

322 323
    Returns:
        Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
324 325 326 327
    
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The `num_columns` must be non-negative int.
328

329 330 331
    Examples:
        .. code-block:: python
          import paddle
332 333

          paddle.enable_imperative()  # Now we are in imperative mode
334
          data = paddle.eye(3, dtype='int32')
335 336 337
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
338
          data = paddle.eye(2, 3, dtype='int32')
339 340
          # [[1 0 0]
          #  [0 1 0]]
341 342
    """

343 344 345
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
346
        num_columns = num_rows
347 348 349 350 351
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
352 353


354
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
355
    """
356 357
	:alias_main: paddle.full
	:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
S
swtkiwi 已提交
358

359
    This Op return a Tensor with the `fill_value` which size is same as `shape`
W
wangchaochaohu 已提交
360 361 362 363 364 365
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
366 367
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
368 369 370 371 372 373
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
374 375 376 377 378
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
379
        TypeError: The `shape` must be one of Variable, list and tuple.
380
    
W
wangchaochaohu 已提交
381 382 383
    Examples:
        .. code-block:: python

384
          import paddle
W
wangchaochaohu 已提交
385

386
          paddle.enable_imperative()  # Now we are in imperative mode
387 388 389
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
390 391

          # attr shape is a list which contains Variable Tensor.
392
          positive_2 = paddle.fill_constant([1], "int32", 2)
393 394
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
395 396

          # attr shape is an Variable Tensor.
397 398 399 400
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
401
          
402 403 404 405 406
          # attr fill_value is an Variable Tensor.
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
407 408 409 410 411
    """

    if dtype is None:
        dtype = 'float32'

412
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
413 414


415
def arange(start=0, end=None, step=1, dtype=None, name=None):
416
    """
417 418
	:alias_main: paddle.arange
	:alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange
S
swtkiwi 已提交
419

420 421
    Return evenly spaced values within a given interval.

422 423 424 425 426
    Values are generated into the half-open interval [start, stop) with the step.
    (the interval including start but excluding stop).

    If dtype is float32 or float64, we advise adding a small epsilon to end to
    avoid floating point rounding errors when comparing against end.
427 428

    Parameters:
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        start(float|int|Variable): Start of interval. The interval includes
            this value. If end is None, the half-open interval is [0, start).
            If start is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default
            is 0.
        end(float|int|Variable, optional): End of interval. The interval does
            not include this value. When end is Variable, it is a 1-D Tensor
            with shape [1], and it's data type should be one of int32, int64,
            float32, float64. If end is None, the half-open interval is [0, start).
            Default is None.
        step(float|int|Variable, optional): Spacing between values. For any
            out, this is the istance between two adjacent values, out[i+1] - out[i].
            When end is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output tensor, can be float32, float64, int32, int64. If dtype
            is `None` , the data type of out tensor is `int64` . Defaule is None
        name(str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
            Default is None.

    Returns: a 1-D Tensor which is evenly spaced values within a given interval.
        Its data type is set by dtype.
452 453 454
    
    Return type: Variable

455 456 457
    Raises:
        TypeError: If dtype is not float32, float64, int32 or int64.

458 459 460 461
    examples:

        .. code-block:: python

462 463
        import paddle
        import numpy as np
464

465
        paddle.enable_imperative()
466

467 468
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
469

470 471
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
472

473 474 475
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
476

477 478 479 480 481 482 483 484 485 486
        start_var = paddle.imperative.to_variable(np.array([3]))
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
487

488
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
528 529
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
530

W
WuHaobo 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.tensor as tensor
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = tensor.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
            tril = tensor.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
            tril = tensor.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

595 596 597 598
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
599 600 601 602 603 604

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
605 606
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
607

W
WuHaobo 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            import paddle.tensor as tensor

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            triu = tensor.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
            triu = tensor.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
            triu = tensor.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
673 674 675
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
676 677

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
678 679


680
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
681
    """
682 683
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
684

685
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
686 687 688
    vector, and creates N-dimensional grids.
    
    Args:
689
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
690
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
691 692
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
712
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
727 728
          
          paddle.enable_imperative()
S
suytingwan 已提交
729 730 731

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
732 733 734
          tensor_3 = paddle.imperative.to_variable(input_3)
          tensor_4 = paddle.imperative.to_variable(input_4)
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
735 736 737 738 739 740

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

741 742
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
743
    if in_dygraph_mode():
744 745
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
746 747
        return out

748
    name = kwargs.get("name", None)
S
suytingwan 已提交
749 750
    helper = LayerHelper('meshgrid', **locals())

751 752
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
753

754
    for id, input_ in enumerate(args):
S
suytingwan 已提交
755 756 757 758
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

759
    num = len(args)
S
suytingwan 已提交
760
    out = [
761
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
762 763
        for i in range(num)
    ]
764 765
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
766 767

    return out