creation.py 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17 18
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
19

20
from ..fluid.layers import tensor
Z
zhiboniu 已提交
21 22 23 24
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
P
Pei Yang 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
27
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
F
Feiyu Chan 已提交
28
from paddle.tensor.attribute import _complex_to_real_dtype, _real_to_complex_dtype
29
# TODO: define functions to get create a tensor  
30
from ..fluid.layers import linspace  # noqa: F401
31
import paddle
W
wanghuancoder 已提交
32
from paddle import _C_ops
J
Jiabin Yang 已提交
33
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _in_eager_without_dygraph_check
34

35 36
__all__ = []

W
wangchaochaohu 已提交
37

38 39
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
40
    r"""
C
chentianyu03 已提交
41 42
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
43

44 45
    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.
46 47

    Args:
C
chentianyu03 已提交
48 49
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
50
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
C
chentianyu03 已提交
51 52
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
53
            except for python float number which gets dtype from ``get_default_type`` .
54 55 56
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
57 58 59
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
C
chentianyu03 已提交
60
        Tensor: A Tensor constructed from ``data`` .
61 62

    Raises:
C
chentianyu03 已提交
63
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor
64 65
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
66
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 
67 68 69 70 71 72 73 74 75 76 77

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
78
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
79
        #        [1])
80

81 82 83
        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
84
        #        [1])
85

86 87 88
        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        
89

90 91
        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
92 93
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
94

C
chentianyu03 已提交
95
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
96
        # <class 'paddle.Tensor'>
97 98

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
99
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
C
chentianyu03 已提交
100 101
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
102
    """
103
    place = _get_paddle_place(place)
104 105
    if place is None:
        place = _current_expected_place()
106
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
107 108
                                core.CUDAPlace, core.NPUPlace, core.XPUPlace,
                                core.CustomPlace)):
109
        raise ValueError(
110
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace, paddle.XPUPlace, paddle.CustomPlace"
111 112 113
        )

    if not isinstance(data, np.ndarray):
114

115
        def _handle_dtype(data, dtype):
116 117 118 119 120
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

121 122 123 124 125 126 127 128 129
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
130
        elif isinstance(data, (paddle.Tensor, core.eager.Tensor)):
131
            data = data._copy_to(place, False)
132
            data = _handle_dtype(data, dtype)
133
            data.stop_gradient = stop_gradient
134
            return data
135
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
136
            # should't expose it to users, just for internal use.
137 138
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
139
            data = paddle.Tensor(data)
140 141 142 143
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
144
            return data
145 146
        else:
            raise TypeError(
C
chentianyu03 已提交
147
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor".
148
                format(type(data)))
149 150 151 152 153 154 155 156 157 158 159 160 161 162
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
163 164

    if dtype and convert_dtype(dtype) != data.dtype:
165
        data = data.astype(convert_dtype(dtype))
166

J
Jiabin Yang 已提交
167 168 169 170 171 172 173 174
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient)
175 176 177 178 179 180 181
    else:
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient)
182 183


184
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
185
    """
S
swtkiwi 已提交
186

187 188
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
189

P
Pei Yang 已提交
190
    Args:
191 192
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
193
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
194 195
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
196 197
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
198
    Returns:
199
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
200
    
P
Pei Yang 已提交
201 202
    Examples:
        .. code-block:: python
203

P
Pei Yang 已提交
204 205
          import paddle
          import numpy as np
206 207
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
208
          output = paddle.full_like(input, 2.0)
209 210
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
211 212 213
    """

    if dtype is None:
214
        dtype = x.dtype
215
    else:
216 217 218
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

Z
zhiboniu 已提交
219
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
220
        return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
221

222
    helper = LayerHelper("full_like", **locals())
223
    check_variable_and_dtype(
224 225
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
226
        'full_like')
227 228 229 230
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
231
    out = helper.create_variable_for_type_inference(dtype=dtype)
232

P
Pei Yang 已提交
233 234
    helper.append_op(
        type='fill_any_like',
235
        inputs={'X': [x]},
236
        attrs={'value': fill_value,
237
               "dtype": dtype},
P
Pei Yang 已提交
238
        outputs={'Out': [out]})
239
    out.stop_gradient = True
P
Pei Yang 已提交
240 241 242
    return out


243
def ones(shape, dtype=None, name=None):
244
    """
S
swtkiwi 已提交
245

246 247 248
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
249
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
250
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
251 252 253
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
254
    Returns:
255
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
256 257 258 259

    Examples:
        .. code-block:: python

260 261
          import paddle 
          
262
          # default dtype for ones OP
263 264 265 266 267 268 269 270 271
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
272
          # shape is a Tensor
273
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
274 275 276
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
277
    """
278 279 280
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
281 282


283
def ones_like(x, dtype=None, name=None):
284
    """
285 286
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
287 288

    Args:
289 290
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
291
        dtype(str|np.dtype, optional): The data type of the
292 293 294 295 296 297 298
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

299
    Returns:
300 301 302 303 304
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
305
        float64, int32 or int64.
306 307 308 309

    Examples:
        .. code-block:: python

310
            import paddle
311

312
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
313 314
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
315

316 317
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
318 319


320
def zeros(shape, dtype=None, name=None):
321 322 323 324
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
325
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
326
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
327 328 329
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
330 331

    Returns:
332
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
333 334 335 336 337

    Examples:
        .. code-block:: python

          import paddle
338
          
339 340 341 342 343 344 345 346 347
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
348
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
349
          data3 = paddle.zeros(shape=shape, dtype='int32') 
350 351
          # [[0 0]
          #  [0 0]]
352
    """
353 354 355
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
356 357


358
def zeros_like(x, dtype=None, name=None):
359
    """
360 361
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
362 363

    Args:
364 365
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
366
        dtype(str|np.dtype, optional): The data type of the
367 368 369
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
370 371 372
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
373 374

    Returns:
375 376
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
377

378
    Raise:
379
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
380
        float64, int32 or int64.
381

382 383 384
    Examples:
        .. code-block:: python

385
            import paddle
386

Z
zhupengyang 已提交
387
            x = paddle.to_tensor([1, 2, 3])
388 389
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
390

391 392
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
393 394


395
def eye(num_rows, num_columns=None, dtype=None, name=None):
396
    """
397
    
398
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
399

400
    Args:
401 402
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
403
            If None, default: num_rows.
W
wangchaochaohu 已提交
404
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
405 406
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
407 408
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
409

410
    Returns:
411
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
412

413 414
    Examples:
        .. code-block:: python
415
          
416
          import paddle
417

418
          data = paddle.eye(3, dtype='int32')
419 420 421
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
422
          data = paddle.eye(2, 3, dtype='int32')
423 424
          # [[1 0 0]
          #  [0 1 0]]
425 426
    """

427 428 429
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
430
        num_columns = num_rows
431 432 433 434 435
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
436 437


438
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
439
    """
S
swtkiwi 已提交
440

441
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
442 443
    
    Args:
444
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
445 446
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
447 448 449
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
450
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
451
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
452
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
453 454 455
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
456
    Returns:
457
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
458

W
wangchaochaohu 已提交
459 460 461
    Examples:
        .. code-block:: python

462
          import paddle
W
wangchaochaohu 已提交
463

464 465 466
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
467

468
          # attr shape is a list which contains Tensor.
469
          positive_2 = paddle.full([1], 2, "int32")
470 471
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
472

473
          # attr shape is a Tensor.
474
          shape = paddle.full([2], 2, "int32")
475 476 477
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
478
          
479
          # attr fill_value is a Tensor.
480
          val = paddle.full([1], 2.0, "float32")
481 482 483
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
484 485 486 487 488
    """

    if dtype is None:
        dtype = 'float32'

489
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
490 491


492
def arange(start=0, end=None, step=1, dtype=None, name=None):
493
    """
494
    This OP returns a 1-D Tensor with spaced values within a given interval.
495

496 497
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
498

499 500
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
501 502

    Parameters:
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
521

522 523
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
524 525
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
526

527
    Raises:
528
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
529

Z
zhupengyang 已提交
530
    Examples:
531 532
        .. code-block:: python

Z
zhupengyang 已提交
533
            import paddle
534

Z
zhupengyang 已提交
535 536
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
537

Z
zhupengyang 已提交
538 539
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
540

Z
zhupengyang 已提交
541 542 543
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
544

Z
zhupengyang 已提交
545 546 547
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
548 549 550 551 552 553 554
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
555

556
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
557 558 559 560 561 562


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
563
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
564 565

    assert x is not None, 'x cannot be None in {}'.format(op_type)
566 567
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
568
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
569
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
593
def tril(x, diagonal=0, name=None):
594
    r"""
W
WuHaobo 已提交
595
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
596
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
597 598 599 600
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
601
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
602
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
603 604 605 606 607 608 609 610 611 612 613
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
614
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
615
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
616 617 618

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
619
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
620 621 622 623 624

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
625
            import paddle
W
WuHaobo 已提交
626 627 628 629 630 631

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

Y
yaoxuefeng 已提交
632

633
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
634 635
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
636 637 638 639 640
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
641
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
642 643 644 645 646
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
647
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
648 649 650 651
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

652
    """
Z
zhiboniu 已提交
653
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
654
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
655
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
656 657 658 659

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
660
def triu(x, diagonal=0, name=None):
661
    r"""
W
WuHaobo 已提交
662
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
663
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
664 665 666 667
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
668
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
669 670 671 672 673 674 675 676 677 678 679 680
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
681
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
682
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
683 684 685

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
686
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
687 688 689 690 691

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
692
            import paddle
W
WuHaobo 已提交
693 694 695 696 697

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
698

W
WuHaobo 已提交
699 700

            # example 1, default diagonal
701
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
702
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
703 704 705 706 707
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
708
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
709 710 711 712 713
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
714
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
715 716 717 718 719
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
Z
zhiboniu 已提交
720
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
721
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
722
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
723 724

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
725 726


727
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
728
    """
729
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
730 731 732
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
733
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
734
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
735 736
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
737 738 739
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
740
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
741 742 743 744 745 746

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
747 748 749 750
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
751

Y
yaoxuefeng 已提交
752 753
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
754 755 756 757 758 759

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

760 761
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Z
zhiboniu 已提交
762
    if paddle.in_dynamic_mode():
763
        num = len(args)
W
wanghuancoder 已提交
764
        out = _C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
765 766
        return out

767
    name = kwargs.get("name", None)
S
suytingwan 已提交
768 769
    helper = LayerHelper('meshgrid', **locals())

770 771
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
772

773
    for id, input_ in enumerate(args):
S
suytingwan 已提交
774 775 776 777
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

778
    num = len(args)
S
suytingwan 已提交
779
    out = [
780
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
781 782
        for i in range(num)
    ]
783 784
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
785 786

    return out
787 788


L
Li Min 已提交
789 790
def diagflat(x, offset=0, name=None):
    """
791
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0]
          #  [1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]]
        
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([[1, 2], [3, 4]])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]
          #  [0 0 0 4]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0 0]
          #  [0 0 2 0 0]
          #  [0 0 0 3 0]
          #  [0 0 0 0 4]
          #  [0 0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0 0]
          #  [1 0 0 0 0]
          #  [0 2 0 0 0]
          #  [0 0 3 0 0]
          #  [0 0 0 4 0]]
    """
    padding_value = 0
Z
zhiboniu 已提交
867
    if paddle.in_dynamic_mode():
L
Li Min 已提交
868
        if len(x.shape) == 1:
W
wanghuancoder 已提交
869 870
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
871
        else:
W
wanghuancoder 已提交
872 873 874 875
            y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0,
                                                   "stop_axis", -1)
            return _C_ops.diag_v2(y, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset,
                   'padding_value': padding_value})
    else:
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1,
                     'XShape': out1_shape},
            attrs={'start_axis': 0,
                   'stop_axis': -1})
        out1.stop_gradient = True

        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset,
                   'padding_value': padding_value})
    out2.stop_gradient = True
    return out2


914 915
def diag(x, offset=0, padding_value=0, name=None):
    """
916
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
J
Jiabin Yang 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    if in_dygraph_mode():
        return _C_ops.final_state_diag(x, offset, padding_value)
    else:
        if _in_legacy_dygraph():
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
                    "The dimension of input x must be either 1 or 2, but received {}".
                    format(len(x.shape)))
997

J
Jiabin Yang 已提交
998
            helper = LayerHelper("diag_v2", **locals())
999

J
Jiabin Yang 已提交
1000
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1001

J
Jiabin Yang 已提交
1002 1003 1004 1005 1006 1007
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset,
                       'padding_value': padding_value})
1008

J
Jiabin Yang 已提交
1009 1010
            out.stop_gradient = True
            return out
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1065
    if paddle.in_dynamic_mode():
1066
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
1067 1068
        out = _C_ops.empty('shape', shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1133
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1134 1135
        out = _C_ops.empty('shape', x.shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1163 1164 1165 1166


def assign(x, output=None):
    """
1167

1168 1169 1170
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
1171 1172 1173 1174
        x (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
1195
    check_type(x, 'x', (Variable, np.ndarray, list, tuple, float, int, bool),
1196
               'assign')
1197
    return tensor.assign(x, output)
1198 1199


1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
def clone(x, name=None):
    """
    Returns a copy of input Tensor. It will always have a Tensor copy. 
    
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns: A Tensor copied from ``input`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
#NOTE(zhiqiu): not public 
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs)
    return output
F
Feiyu Chan 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
Z
zhiboniu 已提交
1317
    if paddle.in_dynamic_mode():
F
Feiyu Chan 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        return paddle._C_ops.complex(real, imag)

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out