creation.py 87.8 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31 32
    convert_dtype,
)
from ..fluid.framework import (
33
    Variable,
34
    _in_eager_without_dygraph_check,
35
    device_guard,
36
)
37
from ..fluid.param_attr import ParamAttr
38 39 40 41 42 43 44 45
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
46

47 48
__all__ = []

W
wangchaochaohu 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
140 141 142 143
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
144 145 146 147 148
    )

    return var


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
179
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
217
        (type(None), paddle.nn.initializer.Initializer),
218 219 220 221 222 223 224 225 226 227 228
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


271 272
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
273
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
274 275

    Args:
276 277
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
278
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
279 280 281
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
282 283
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
284
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
285 286 287 288

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
289
        the value with input :attr:`start`.
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
310
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
311 312
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
313
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
314 315
    if not isinstance(num, Variable):
        with device_guard("cpu"):
316
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
317
    if in_dygraph_mode():
318 319 320 321 322 323 324
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
325
    else:
326 327 328 329 330 331 332 333 334 335 336 337 338 339
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
340

341 342 343 344 345 346 347 348 349 350 351
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
352
        check_dtype(
353
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
354
        )
355 356 357 358 359 360 361 362 363 364 365 366
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
367
            )
368

369
        out = helper.create_variable_for_type_inference(dtype=dtype)
370

371 372 373 374 375 376 377 378 379 380 381 382 383
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
384 385


386 387 388 389
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
390

391 392
    Notes:
        This API does not compute the gradient.
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
408
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
409 410 411 412 413

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
414
        just has the value with exponential of :attr:`start` with base :attr:`base`.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
447
    if in_dygraph_mode():
C
Chen Weihang 已提交
448 449 450 451 452 453 454
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
455
        )
456 457
    else:
        helper = LayerHelper("logspace", **locals())
458

459 460 461 462 463 464 465 466 467 468 469 470 471
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
472

473 474 475 476 477 478 479 480 481
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
482

483 484
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
485

486 487 488 489 490 491 492 493 494
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
495

496
        check_dtype(
497
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
498
        )
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
519
            )
520

521
        out = helper.create_variable_for_type_inference(dtype=dtype)
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
537 538


539
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
540

541 542 543
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

544
    if not isinstance(data, np.ndarray):
545

546
        def _handle_dtype(data, dtype):
547 548 549 550 551
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

552 553 554 555
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
556
            if data.dtype == np.object_:
557 558 559 560
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
561 562 563 564 565 566
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
567
            data = data._copy_to(place, False)
568
            data = _handle_dtype(data, dtype)
569
            data.stop_gradient = stop_gradient
570
            return data
571
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
572
            # should't expose it to users, just for internal use.
573 574
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
575 576 577 578
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
579 580 581 582
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
583
            return data
584 585
        else:
            raise TypeError(
586 587 588 589
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
590 591
        if not dtype:
            if data.dtype in [
592 593 594 595 596
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
597 598 599
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
600 601 602 603 604
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
605 606 607 608 609
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
610 611

    if dtype and convert_dtype(dtype) != data.dtype:
612
        data = data.astype(convert_dtype(dtype))
613

J
Jiabin Yang 已提交
614
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
615 616 617 618 619 620 621 622
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
623
    else:
624 625 626 627 628 629 630
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
631 632


633 634 635 636 637
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
638 639
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
640 641 642 643 644 645 646

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

647 648 649 650 651
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
652 653 654 655 656
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

657 658
        if dtype:
            target_dtype = dtype
659
        elif hasattr(data, 'dtype') and data.dtype != 'object':
660 661 662 663 664 665
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

666 667 668 669 670
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
671
            if not all(
672 673
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


695 696
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
697
    Constructs a ``paddle.Tensor`` from ``data`` ,
698 699 700 701 702
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

703 704 705 706 707 708 709 710 711 712 713 714
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

715 716 717
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
718
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
719
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
720
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
721
            except for python float number which gets dtype from ``get_default_type`` .
722 723 724
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
725 726 727 728 729 730 731 732 733 734
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
750
        #        [1])
751 752 753 754 755 756 757 758 759 760 761 762 763 764

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
765 766 767 768
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

769
    if paddle.fluid.framework._non_static_mode():
770 771 772 773
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
774
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
775 776 777
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
778
            return _to_tensor_static(data, dtype, stop_gradient)
779 780


781
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
782
    """
S
swtkiwi 已提交
783

784 785
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
786

P
Pei Yang 已提交
787
    Args:
788 789
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
790
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
791
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
792
            data type is the same as input.
793
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
794

P
Pei Yang 已提交
795
    Returns:
796
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
797

P
Pei Yang 已提交
798 799
    Examples:
        .. code-block:: python
800

P
Pei Yang 已提交
801
          import paddle
802

803
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
804
          output = paddle.full_like(input, 2.0)
805 806
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
807 808
    """
    if dtype is None:
809
        dtype = x.dtype
810
    else:
811 812
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
813
    if in_dygraph_mode():
814
        return _C_ops.full_like(x, fill_value, dtype, x.place)
815 816 817 818 819 820 821 822 823 824 825 826 827
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
828
                'uint16',
829 830
            ],
            'full_like',
831
        )
832 833 834 835 836 837 838 839 840 841 842
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
843
                'uint16',
844 845 846 847
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
848

849 850 851 852 853 854 855 856
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
857 858


859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


943
def ones(shape, dtype=None, name=None):
944
    """
B
BrilliantYuKaimin 已提交
945
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
946 947

    Args:
948 949 950
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
951 952 953
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
954

955
    Returns:
B
BrilliantYuKaimin 已提交
956
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
957 958 959 960

    Examples:
        .. code-block:: python

961
            import paddle
962

963
            # shape is a list/tuple
964
            data1 = paddle.ones(shape=[3, 2])
965 966 967 968 969
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
970 971 972 973 974 975 976 977 978 979 980 981
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
982
    """
983
    if dtype is None:
W
Weilong Wu 已提交
984
        dtype = core.VarDesc.VarType.FP32
985
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
986 987


988
def ones_like(x, dtype=None, name=None):
989
    """
C
Chen Long 已提交
990
    Returns a Tensor filled with the value 1, with the same shape and
991
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
992 993

    Args:
994 995
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
996
        dtype(str|np.dtype, optional): The data type of the
997 998 999
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1000
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1001

1002
    Returns:
1003 1004 1005
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1006 1007 1008
    Examples:
        .. code-block:: python

1009
            import paddle
1010

1011
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1012 1013
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1014

1015 1016
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1017 1018


1019
def zeros(shape, dtype=None, name=None):
1020
    """
C
Chen Long 已提交
1021
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1022 1023

    Args:
1024 1025 1026
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1027
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1028 1029 1030
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1031 1032

    Returns:
1033
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1034 1035 1036 1037

    Examples:
        .. code-block:: python

1038
            import paddle
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1059
    """
1060 1061 1062
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1063 1064


1065
def zeros_like(x, dtype=None, name=None):
1066
    """
1067
    Returns a Tensor filled with the value 0, with the same shape and
1068
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1069 1070

    Args:
1071 1072
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1073
        dtype(str|np.dtype, optional): The data type of the
1074 1075 1076
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1077
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1078 1079

    Returns:
1080 1081
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1082

1083

1084 1085 1086
    Examples:
        .. code-block:: python

1087
            import paddle
1088

Z
zhupengyang 已提交
1089
            x = paddle.to_tensor([1, 2, 3])
1090 1091
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1092

1093 1094
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1095 1096


1097
def eye(num_rows, num_columns=None, dtype=None, name=None):
1098
    """
1099

1100
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1101

1102
    Args:
1103 1104
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1105
            If None, default: num_rows.
W
wangchaochaohu 已提交
1106
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1107 1108
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1109
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1110

1111
    Returns:
1112
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1113

1114 1115
    Examples:
        .. code-block:: python
1116

1117
          import paddle
1118

1119
          data = paddle.eye(3, dtype='int32')
1120 1121 1122
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1123
          data = paddle.eye(2, 3, dtype='int32')
1124 1125
          # [[1 0 0]
          #  [0 1 0]]
1126 1127
    """

1128
    def _check_attr(attr, message):
1129
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1130 1131 1132 1133 1134 1135
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

1136
    if dtype is None:
1137 1138
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1139 1140
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1141
        _check_attr(num_columns, "num_columns")
1142 1143 1144
    else:
        num_columns = num_rows

1145 1146 1147 1148
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1149 1150
    else:
        helper = LayerHelper("eye", **locals())
1151 1152 1153 1154 1155 1156
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1157
        out = helper.create_variable_for_type_inference(dtype=dtype)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1169 1170 1171

    out.stop_gradient = True
    return out
1172 1173


1174
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1175
    """
S
swtkiwi 已提交
1176

1177
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1178

W
wangchaochaohu 已提交
1179
    Args:
1180 1181 1182 1183 1184
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1185
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1186
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1187 1188
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1189

1190
    Returns:
1191
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1192

W
wangchaochaohu 已提交
1193 1194 1195
    Examples:
        .. code-block:: python

1196
            import paddle
W
wangchaochaohu 已提交
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1224 1225 1226 1227 1228
    """

    if dtype is None:
        dtype = 'float32'

1229
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1230 1231


1232
def arange(start=0, end=None, step=1, dtype=None, name=None):
1233
    """
1234
    Returns a 1-D Tensor with spaced values within a given interval.
1235

1236 1237
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1238

1239 1240
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1241 1242

    Parameters:
1243 1244
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1245 1246
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1247
        end(float|int|Tensor, optional): End of interval. The interval does not
1248 1249 1250 1251
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1252 1253
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1254 1255
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1256
        dtype(str|np.dtype, optional): The data type of the
1257 1258
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1259
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1260

1261
    Returns:
1262
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1263 1264
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1265

Z
zhupengyang 已提交
1266
    Examples:
1267 1268
        .. code-block:: python

Z
zhupengyang 已提交
1269
            import paddle
1270

Z
zhupengyang 已提交
1271 1272
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1273

Z
zhupengyang 已提交
1274 1275
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1276

Z
zhupengyang 已提交
1277 1278 1279
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1280

1281
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1282 1283
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1284

1285 1286 1287 1288 1289 1290
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1314
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1315 1316 1317 1318
    else:
        check_dtype(
            dtype,
            'dtype',
1319
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1320 1321 1322
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
1323 1324 1325 1326 1327 1328 1329
        out_shape = None
        if (
            not isinstance(start, Variable)
            and not isinstance(end, Variable)
            and not isinstance(step, Variable)
        ):
            out_shape = [int(math.ceil((end - start) / step))]
1330 1331 1332 1333 1334 1335
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1336
        out.stop_gradient = True
1337 1338
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1339 1340
        return out

W
WuHaobo 已提交
1341 1342

def _tril_triu_op(helper):
1343
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1344
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1345
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1346 1347

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1348
    check_variable_and_dtype(
1349 1350 1351 1352 1353
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1354
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1355
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1356
    diagonal = helper.kwargs.get('diagonal', 0)
1357
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1358 1359 1360 1361 1362 1363
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1364 1365 1366
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1367 1368 1369 1370 1371 1372 1373 1374

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1375 1376
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1377 1378 1379 1380

    return out


Y
yaoxuefeng 已提交
1381
def tril(x, diagonal=0, name=None):
1382
    r"""
1383
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1384 1385
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1386 1387 1388
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1389
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1390
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1391 1392 1393 1394 1395 1396 1397
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1398
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1399 1400

    Returns:
Y
yaoxuefeng 已提交
1401
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1402
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1403 1404 1405 1406

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1407
            import paddle
W
WuHaobo 已提交
1408

1409 1410 1411 1412 1413
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1414

1415 1416 1417 1418 1419
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1420 1421

            # example 2, positive diagonal value
1422 1423 1424 1425 1426
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1427 1428

            # example 3, negative diagonal value
1429 1430 1431 1432 1433
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1434
    """
F
From00 已提交
1435
    if in_dygraph_mode():
Z
zyfncg 已提交
1436
        return _C_ops.tril(x, diagonal)
1437 1438
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1439 1440


Y
yaoxuefeng 已提交
1441
def triu(x, diagonal=0, name=None):
1442
    r"""
1443
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1444
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1445 1446 1447 1448
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1449
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1450 1451 1452 1453 1454 1455 1456 1457
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1458
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1459 1460

    Returns:
Y
yaoxuefeng 已提交
1461
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1462
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1463 1464 1465 1466

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1467
            import paddle
W
WuHaobo 已提交
1468

1469 1470 1471 1472 1473
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1474 1475

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1476
            triu1 = paddle.tensor.triu(x)
1477 1478 1479 1480
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1481 1482

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1483
            triu2 = paddle.tensor.triu(x, diagonal=2)
1484 1485 1486 1487
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1488 1489

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1490
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1491 1492 1493 1494
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1495 1496

    """
F
From00 已提交
1497
    if in_dygraph_mode():
Z
zyfncg 已提交
1498
        return _C_ops.triu(x, diagonal)
1499 1500
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1501 1502


1503
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1504
    """
1505

1506
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1507

S
suytingwan 已提交
1508
    Args:
1509
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1510
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1511
        **kwargs (optional): Currently, only accept name in **kwargs
1512
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1513
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1514

S
suytingwan 已提交
1515
    Returns:
Y
yaoxuefeng 已提交
1516
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1517 1518 1519 1520 1521 1522

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1523 1524 1525 1526
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1527

Y
yaoxuefeng 已提交
1528 1529
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1530 1531 1532 1533 1534 1535

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1536 1537
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1538
    if in_dygraph_mode():
1539
        return _C_ops.meshgrid(list(args))
1540 1541 1542
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1543

1544 1545 1546 1547
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1548

1549 1550 1551 1552 1553 1554 1555
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1556

1557 1558 1559 1560 1561 1562 1563
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1564
        )
S
suytingwan 已提交
1565

1566
        return out
1567 1568


L
Li Min 已提交
1569 1570
def diagflat(x, offset=0, name=None):
    """
1571
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1585
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1586
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1587
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1588 1589 1590 1591 1592 1593

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1594
            :name: code-example-1
L
Li Min 已提交
1595

1596 1597 1598 1599
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1600 1601 1602 1603 1604
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1605 1606

            y = paddle.diagflat(x, offset=1)
1607 1608 1609 1610 1611 1612
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1613 1614

            y = paddle.diagflat(x, offset=-1)
1615 1616 1617 1618 1619 1620
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1621 1622

        .. code-block:: python
1623
            :name: code-example-2
L
Li Min 已提交
1624

1625
            import paddle
L
Li Min 已提交
1626

1627 1628
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1629 1630 1631 1632 1633 1634
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1635 1636

            y = paddle.diagflat(x, offset=1)
1637 1638 1639 1640 1641 1642 1643
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1644 1645

            y = paddle.diagflat(x, offset=-1)
1646 1647 1648 1649 1650 1651 1652
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1653
    """
1654
    if in_dygraph_mode():
1655
        if len(x.shape) <= 1:
1656
            return _C_ops.diag(x, offset, 0)
1657
        else:
1658
            y = _C_ops.flatten(x, 0, -1)
1659 1660 1661 1662 1663
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1664 1665 1666 1667
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1668 1669
        )
        check_type(offset, 'offset', (int), 'diagflat')
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1682
            )
L
Li Min 已提交
1683
        else:
1684 1685 1686 1687 1688
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1689
            )
1690
            out1.stop_gradient = True
L
Li Min 已提交
1691

1692 1693 1694 1695 1696 1697 1698 1699
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1700 1701


1702 1703
def diag(x, offset=0, padding_value=0, name=None):
    """
1704
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1717
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1718 1719
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1720
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1721

1722 1723 1724 1725 1726
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1727
            :name: code-example-1
1728

1729
            import paddle
1730

1731 1732 1733
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1734 1735 1736 1737 1738
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1739 1740

            y = paddle.diag(x, offset=1)
1741 1742 1743 1744 1745 1746
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1747 1748

            y = paddle.diag(x, padding_value=6)
1749 1750 1751 1752 1753
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1754 1755

        .. code-block:: python
1756
            :name: code-example-2
1757

1758
            import paddle
1759

1760 1761 1762
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1763 1764 1765
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1766

1767
            y = paddle.diag(x, offset=1)
1768 1769 1770
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1771

1772
            y = paddle.diag(x, offset=-1)
1773 1774 1775
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1776
    """
J
Jiabin Yang 已提交
1777
    if in_dygraph_mode():
1778
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1779
    else:
1780 1781 1782 1783
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1784
            ['float16', 'float32', 'float64', 'int32', 'int64'],
1785 1786 1787 1788 1789 1790 1791 1792
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1793
                )
1794
            )
1795

1796
        helper = LayerHelper("diag_v2", **locals())
1797

1798
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1799

1800 1801 1802 1803 1804 1805
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1806

1807 1808
        out.stop_gradient = True
        return out
1809 1810 1811 1812


def empty(shape, dtype=None, name=None):
    """
1813
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1814

1815
    Args:
1816 1817 1818
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1819
        dtype(np.dtype|str, optional): Data type of the output Tensor
1820
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1821 1822
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1823
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1824

1825 1826 1827 1828 1829 1830
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1831
            import paddle
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1852 1853 1854 1855 1856 1857 1858
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1859
    if in_dygraph_mode():
1860
        shape = paddle.utils.convert_shape_to_list(shape)
1861 1862 1863
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1864 1865
        out.stop_gradient = True
        return out
1866 1867 1868
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1869

1870 1871 1872
        check_dtype(
            dtype,
            'dtype',
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1883
            'empty',
1884
        )
1885
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1886

1887 1888
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1889

1890
        attrs = {}
1891
        paddle.utils.get_shape_tensor_inputs(
1892 1893
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1906 1907 1908 1909


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1910
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1911
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1912

1913 1914 1915
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1916
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1917
            data type is the same as input.
1918
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1940
    if in_dygraph_mode():
1941 1942 1943 1944 1945
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1946 1947
        out.stop_gradient = True
        return out
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1963

1964 1965 1966 1967
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1968
        paddle.utils.get_shape_tensor_inputs(
1969 1970 1971 1972 1973 1974 1975 1976 1977
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
1978
        )
1979 1980 1981
        out.stop_gradient = True
        return out

1982 1983 1984

def assign(x, output=None):
    """
1985

1986
    Copy value of the :attr:`x` to the :attr:`output`.
1987

1988
    Parameters:
1989 1990
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1991
            data limitation.
1992
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1993

1994
    Returns:
1995
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1996

1997 1998
    Examples:
        .. code-block:: python
1999

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2010
    """
2011 2012
    input = x
    helper = LayerHelper('assign', **locals())
2013 2014 2015 2016 2017 2018
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
2030
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
2031
        if in_dygraph_mode():
2032
            if output is None:
2033
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2034
            else:
2035
                _C_ops.assign_out_(input, output)
2036
        else:
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2053 2054
            if output is None:
                output = helper.create_variable_for_type_inference(
2055 2056 2057 2058 2059
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2060
    elif isinstance(input, np.ndarray):
2061
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2062
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2063
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2064 2065 2066 2067
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2068
                    if isinstance(x, (Variable, core.eager.Tensor))
2069 2070
                ]
            ):
2071 2072 2073 2074 2075
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2076
                if not isinstance(x, (Variable, core.eager.Tensor)):
2077 2078 2079 2080 2081 2082 2083 2084 2085
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2086
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2087
            raise TypeError(
2088
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2089
            )
2090

2091 2092 2093 2094 2095 2096 2097
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2098 2099
                "it to float32"
            )
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2117 2118
                "received %s." % convert_dtype(dtype)
            )
2119
        if input.size > 1024 * 1024:
2120 2121 2122 2123
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2124 2125 2126
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2127 2128 2129 2130 2131 2132 2133
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2134
        else:
2135 2136
            if output is None:
                output = helper.create_variable_for_type_inference(
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2148 2149

    return output
2150 2151


2152 2153
def clone(x, name=None):
    """
2154 2155
    Returns a copy of input Tensor. It will always have a Tensor copy.

2156 2157 2158 2159
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2160
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2161

2162
    Returns:
2163
        Tensor, A Tensor copied from ``input``.
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2182
# NOTE(zhiqiu): not public
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2196
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2197 2198 2199 2200 2201

    Examples:
        .. code-block:: python

          import paddle
2202

2203 2204 2205 2206 2207 2208 2209
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
2247 2248 2249 2250 2251 2252
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2253
    return output
F
Feiyu Chan 已提交
2254 2255 2256 2257 2258 2259 2260 2261


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2262
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2263 2264 2265 2266

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2267 2268 2269 2270
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2271 2272 2273 2274 2275 2276 2277 2278

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2279 2280 2281 2282
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2283
    """
2284
    if in_dygraph_mode():
2285
        return _C_ops.complex(real, imag)
2286 2287 2288 2289 2290 2291 2292
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2306 2307 2308 2309


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2310 2311
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2312 2313
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2314

2315 2316 2317 2318 2319
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2320 2321 2322 2323
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2334

2335 2336 2337
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2338
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2339 2340 2341 2342 2343
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2344
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2357 2358
        if col is None:
            col = row
2359 2360 2361
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2362
        return out
2363 2364 2365
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2366

2367 2368 2369 2370 2371 2372 2373 2374
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2375 2376 2377 2378 2379

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2380 2381 2382 2383 2384 2385
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2386
    return out
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2436 2437
        if col is None:
            col = row
2438 2439 2440
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2441
        return out
2442 2443 2444
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2445

2446 2447 2448 2449 2450 2451 2452 2453
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2454 2455 2456 2457 2458

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2459 2460 2461 2462 2463 2464
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2465
    return out
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))