creation.py 88.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31 32
    convert_dtype,
)
from ..fluid.framework import (
33
    Variable,
34
    _in_eager_without_dygraph_check,
35
    device_guard,
36
)
37
from ..fluid.param_attr import ParamAttr
38 39 40 41 42 43 44 45
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
46

47 48
__all__ = []

W
wangchaochaohu 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
140 141 142 143
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
144 145 146 147 148
    )

    return var


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
179
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
203
            'uint16',
204 205 206 207 208 209 210 211 212 213 214 215 216 217
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
218
        (type(None), paddle.nn.initializer.Initializer),
219 220 221 222 223 224 225 226 227 228 229
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


272 273
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
274
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
275 276

    Args:
277 278
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
279
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
280 281 282
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
283 284
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
285
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
286 287 288 289

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
290
        the value with input :attr:`start`.
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
311
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
312 313
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
314
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
315 316
    if not isinstance(num, Variable):
        with device_guard("cpu"):
317
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
318
    if in_dygraph_mode():
319 320 321 322 323 324 325
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
326
    else:
327 328 329 330 331 332 333 334 335
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
336
                ['float32', 'float64', 'int32', 'int64', 'float16', 'bfloat16'],
337 338 339 340
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
341

342 343 344 345
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
346
                ['float32', 'float64', 'int32', 'int64', 'float16', 'bfloat16'],
347 348 349 350 351 352
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
353
        check_dtype(
354 355 356 357
            dtype,
            'dtype',
            ['int32', 'int64', 'float32', 'float64', 'float16', 'bfloat16'],
            'linspace',
358
        )
359 360 361 362 363 364 365 366 367 368 369 370
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
371
            )
372

373
        out = helper.create_variable_for_type_inference(dtype=dtype)
374

375 376 377 378 379 380 381 382 383 384 385 386 387
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
388 389


390 391 392 393
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
394

395 396
    Notes:
        This API does not compute the gradient.
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
412
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
413 414 415 416 417

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
418
        just has the value with exponential of :attr:`start` with base :attr:`base`.
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
451
    if in_dygraph_mode():
C
Chen Weihang 已提交
452 453 454 455 456 457 458
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
459
        )
460 461
    else:
        helper = LayerHelper("logspace", **locals())
462

463 464 465 466 467 468 469 470 471 472 473 474 475
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
476

477 478 479 480 481 482 483 484 485
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
486

487 488
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
489

490 491 492 493 494 495 496 497 498
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
499

500
        check_dtype(
501
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
502
        )
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
523
            )
524

525
        out = helper.create_variable_for_type_inference(dtype=dtype)
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
541 542


543
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
544

545 546 547
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

548
    if not isinstance(data, np.ndarray):
549

550
        def _handle_dtype(data, dtype):
551 552 553 554 555
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

556 557 558 559
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
560
            if data.dtype == np.object_:
561 562 563 564
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
565 566 567 568 569 570
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
571
            data = data._copy_to(place, False)
572
            data = _handle_dtype(data, dtype)
573
            data.stop_gradient = stop_gradient
574
            return data
575
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
576
            # should't expose it to users, just for internal use.
W
wanghuancoder 已提交
577
            # convert core.Tensor/core.LoDTensor to Tensor first
578
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
579 580 581 582
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
583 584 585 586
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
587
            return data
588 589
        else:
            raise TypeError(
590 591 592 593
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
594 595
        if not dtype:
            if data.dtype in [
596 597 598 599 600
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
601 602 603
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
604 605 606 607 608
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
609 610 611 612 613
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
614 615

    if dtype and convert_dtype(dtype) != data.dtype:
616
        data = data.astype(convert_dtype(dtype))
617

J
Jiabin Yang 已提交
618
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
619 620 621 622 623 624 625 626
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
627
    else:
628 629 630 631 632 633 634
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
635 636


637 638 639 640 641
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
642 643
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
644 645 646 647 648 649 650

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

651 652 653 654 655
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
656 657 658 659 660
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

661 662
        if dtype:
            target_dtype = dtype
663
        elif hasattr(data, 'dtype') and data.dtype != 'object':
664 665 666 667 668 669
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

670 671 672 673 674
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
675
            if not all(
676 677
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


699 700
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
701
    Constructs a ``paddle.Tensor`` from ``data`` ,
702 703 704 705 706
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

707 708 709 710 711 712 713 714 715 716 717 718
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

719 720 721
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
722
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
723
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
724
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
725
            except for python float number which gets dtype from ``get_default_type`` .
726 727 728
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
729 730 731 732 733 734 735 736 737 738
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
754
        #        [1])
755 756 757 758 759 760 761 762 763 764 765 766 767 768

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
769 770 771 772
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

773
    if paddle.fluid.framework._non_static_mode():
774 775 776 777
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
778
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
779 780 781
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
782
            return _to_tensor_static(data, dtype, stop_gradient)
783 784


785
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
786
    """
S
swtkiwi 已提交
787

788 789
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
790

P
Pei Yang 已提交
791
    Args:
792 793
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
794
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
795
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
796
            data type is the same as input.
797
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
798

P
Pei Yang 已提交
799
    Returns:
800
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
801

P
Pei Yang 已提交
802 803
    Examples:
        .. code-block:: python
804

P
Pei Yang 已提交
805
          import paddle
806

807
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
808
          output = paddle.full_like(input, 2.0)
809 810
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
811 812
    """
    if dtype is None:
813
        dtype = x.dtype
814
    else:
815 816
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
817
    if in_dygraph_mode():
818
        return _C_ops.full_like(x, fill_value, dtype, x.place)
819 820 821 822 823 824 825 826 827 828 829 830 831
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
832
                'uint16',
833 834
            ],
            'full_like',
835
        )
836 837 838 839 840 841 842 843 844 845 846
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
847
                'uint16',
848 849 850 851
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
852

853 854 855 856 857 858 859 860
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
861 862


863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
888
            if dtype in ['int8', 'uint8', 'int16', 'int32', 'int64']:
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
911
                'int8',
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


948
def ones(shape, dtype=None, name=None):
949
    """
B
BrilliantYuKaimin 已提交
950
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
951 952

    Args:
953 954 955
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
956 957 958
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
959

960
    Returns:
B
BrilliantYuKaimin 已提交
961
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
962 963 964 965

    Examples:
        .. code-block:: python

966
            import paddle
967

968
            # shape is a list/tuple
969
            data1 = paddle.ones(shape=[3, 2])
970 971 972 973 974
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
975 976 977 978 979 980 981 982 983 984 985 986
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
987
    """
988
    if dtype is None:
W
Weilong Wu 已提交
989
        dtype = core.VarDesc.VarType.FP32
990
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
991 992


993
def ones_like(x, dtype=None, name=None):
994
    """
C
Chen Long 已提交
995
    Returns a Tensor filled with the value 1, with the same shape and
996
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
997 998

    Args:
999 1000
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1001
        dtype(str|np.dtype, optional): The data type of the
1002 1003 1004
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1005
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1006

1007
    Returns:
1008 1009 1010
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1011 1012 1013
    Examples:
        .. code-block:: python

1014
            import paddle
1015

1016
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1017 1018
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1019

1020 1021
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1022 1023


1024
def zeros(shape, dtype=None, name=None):
1025
    """
C
Chen Long 已提交
1026
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1027 1028

    Args:
1029 1030 1031
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1032
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1033 1034 1035
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1036 1037

    Returns:
1038
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1039 1040 1041 1042

    Examples:
        .. code-block:: python

1043
            import paddle
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1064
    """
1065 1066 1067
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1068 1069


1070
def zeros_like(x, dtype=None, name=None):
1071
    """
1072
    Returns a Tensor filled with the value 0, with the same shape and
1073
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1074 1075

    Args:
1076 1077
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1078
        dtype(str|np.dtype, optional): The data type of the
1079 1080 1081
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1082
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1083 1084

    Returns:
1085 1086
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1087

1088

1089 1090 1091
    Examples:
        .. code-block:: python

1092
            import paddle
1093

Z
zhupengyang 已提交
1094
            x = paddle.to_tensor([1, 2, 3])
1095 1096
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1097

1098 1099
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1100 1101


1102
def eye(num_rows, num_columns=None, dtype=None, name=None):
1103
    """
1104

1105
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1106

1107
    Args:
1108 1109
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1110
            If None, default: num_rows.
W
wangchaochaohu 已提交
1111
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1112 1113
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1114
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1115

1116
    Returns:
1117
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1118

1119 1120
    Examples:
        .. code-block:: python
1121

1122
          import paddle
1123

1124
          data = paddle.eye(3, dtype='int32')
1125 1126 1127
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1128
          data = paddle.eye(2, 3, dtype='int32')
1129 1130
          # [[1 0 0]
          #  [0 1 0]]
1131 1132
    """

1133
    def _check_attr(attr, message):
1134
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1135 1136
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
1137
            raise TypeError(f"{message} should be a non-negative int.")
1138 1139 1140

    _check_attr(num_rows, "num_rows")

1141
    if dtype is None:
1142 1143
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1144 1145
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1146
        _check_attr(num_columns, "num_columns")
1147 1148 1149
    else:
        num_columns = num_rows

1150 1151 1152 1153
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1154 1155
    else:
        helper = LayerHelper("eye", **locals())
1156 1157 1158 1159 1160 1161
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1162
        out = helper.create_variable_for_type_inference(dtype=dtype)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1174 1175 1176

    out.stop_gradient = True
    return out
1177 1178


1179
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1180
    """
S
swtkiwi 已提交
1181

1182
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1183

W
wangchaochaohu 已提交
1184
    Args:
1185 1186 1187 1188 1189
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1190
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1191
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1192 1193
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1194

1195
    Returns:
1196
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1197

W
wangchaochaohu 已提交
1198 1199 1200
    Examples:
        .. code-block:: python

1201
            import paddle
W
wangchaochaohu 已提交
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1229 1230 1231 1232 1233
    """

    if dtype is None:
        dtype = 'float32'

1234
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1235 1236


1237
def arange(start=0, end=None, step=1, dtype=None, name=None):
1238
    """
1239
    Returns a 1-D Tensor with spaced values within a given interval.
1240

1241 1242
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1243

1244 1245
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1246 1247

    Parameters:
1248 1249
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1250 1251
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1252
        end(float|int|Tensor, optional): End of interval. The interval does not
1253 1254 1255 1256
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1257 1258
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1259 1260
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1261
        dtype(str|np.dtype, optional): The data type of the
1262 1263
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1264
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1265

1266
    Returns:
1267
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1268 1269
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1270

Z
zhupengyang 已提交
1271
    Examples:
1272 1273
        .. code-block:: python

Z
zhupengyang 已提交
1274
            import paddle
1275

Z
zhupengyang 已提交
1276 1277
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1278

Z
zhupengyang 已提交
1279 1280
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1281

Z
zhupengyang 已提交
1282 1283 1284
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1285

1286
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1287 1288
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1289

1290 1291 1292 1293 1294 1295
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1296

1297 1298 1299 1300 1301 1302 1303 1304
    out_shape = None
    if not in_dygraph_mode() and (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
        out_shape = [int(math.ceil((end - start) / step))]

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1327
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1328 1329 1330 1331
    else:
        check_dtype(
            dtype,
            'dtype',
1332
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1333 1334 1335 1336 1337 1338 1339 1340 1341
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1342
        out.stop_gradient = True
1343 1344
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1345 1346
        return out

W
WuHaobo 已提交
1347 1348

def _tril_triu_op(helper):
1349
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1350
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1351
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1352

1353
    assert x is not None, f'x cannot be None in {op_type}'
1354
    check_variable_and_dtype(
1355 1356 1357 1358 1359
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1360
    if len(x.shape) < 2:
1361
        raise ValueError(f"x shape in {op_type} must be at least 2-D")
W
WuHaobo 已提交
1362
    diagonal = helper.kwargs.get('diagonal', 0)
1363
    if not isinstance(diagonal, (int,)):
1364
        raise TypeError(f"diagonal in {op_type} must be a python Int")
W
WuHaobo 已提交
1365 1366 1367 1368 1369
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1370 1371 1372
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1373 1374 1375 1376 1377 1378 1379 1380

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1381 1382
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1383 1384 1385 1386

    return out


Y
yaoxuefeng 已提交
1387
def tril(x, diagonal=0, name=None):
1388
    r"""
1389
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1390 1391
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1392 1393 1394
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1395
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1396
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1397 1398 1399 1400 1401 1402 1403
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1404
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1405 1406

    Returns:
Y
yaoxuefeng 已提交
1407
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1408
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1409 1410 1411 1412

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1413
            import paddle
W
WuHaobo 已提交
1414

1415 1416 1417 1418 1419
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1420

1421 1422 1423 1424 1425
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1426 1427

            # example 2, positive diagonal value
1428 1429 1430 1431 1432
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1433 1434

            # example 3, negative diagonal value
1435 1436 1437 1438 1439
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1440
    """
F
From00 已提交
1441
    if in_dygraph_mode():
Z
zyfncg 已提交
1442
        return _C_ops.tril(x, diagonal)
1443 1444
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1445 1446


Y
yaoxuefeng 已提交
1447
def triu(x, diagonal=0, name=None):
1448
    r"""
1449
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1450
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1451 1452 1453 1454
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1455
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1456 1457 1458 1459 1460 1461 1462 1463
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1464
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1465 1466

    Returns:
Y
yaoxuefeng 已提交
1467
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1468
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1469 1470 1471 1472

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1473
            import paddle
W
WuHaobo 已提交
1474

1475 1476 1477 1478 1479
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1480 1481

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1482
            triu1 = paddle.tensor.triu(x)
1483 1484 1485 1486
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1487 1488

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1489
            triu2 = paddle.tensor.triu(x, diagonal=2)
1490 1491 1492 1493
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1494 1495

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1496
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1497 1498 1499 1500
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1501 1502

    """
F
From00 已提交
1503
    if in_dygraph_mode():
Z
zyfncg 已提交
1504
        return _C_ops.triu(x, diagonal)
1505 1506
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1507 1508


1509
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1510
    """
1511

1512
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1513

S
suytingwan 已提交
1514
    Args:
1515
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1516
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1517
        **kwargs (optional): Currently, only accept name in **kwargs
1518
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1519
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1520

S
suytingwan 已提交
1521
    Returns:
Y
yaoxuefeng 已提交
1522
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1523 1524 1525 1526 1527 1528

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1529 1530 1531 1532
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1533

Y
yaoxuefeng 已提交
1534 1535
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1536 1537 1538 1539 1540 1541

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1542 1543
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1544
    if in_dygraph_mode():
1545
        return _C_ops.meshgrid(list(args))
1546 1547 1548
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1549

1550 1551 1552 1553
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1554

1555 1556 1557 1558 1559 1560 1561
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1562

1563 1564 1565 1566 1567 1568 1569
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1570
        )
S
suytingwan 已提交
1571

1572
        return out
1573 1574


L
Li Min 已提交
1575 1576
def diagflat(x, offset=0, name=None):
    """
1577
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1591
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1592
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1593
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1594 1595 1596 1597 1598 1599

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1600
            :name: code-example-1
L
Li Min 已提交
1601

1602 1603 1604 1605
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1606 1607 1608 1609 1610
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1611 1612

            y = paddle.diagflat(x, offset=1)
1613 1614 1615 1616 1617 1618
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1619 1620

            y = paddle.diagflat(x, offset=-1)
1621 1622 1623 1624 1625 1626
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1627 1628

        .. code-block:: python
1629
            :name: code-example-2
L
Li Min 已提交
1630

1631
            import paddle
L
Li Min 已提交
1632

1633 1634
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1635 1636 1637 1638 1639 1640
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1641 1642

            y = paddle.diagflat(x, offset=1)
1643 1644 1645 1646 1647 1648 1649
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1650 1651

            y = paddle.diagflat(x, offset=-1)
1652 1653 1654 1655 1656 1657 1658
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1659
    """
1660
    if in_dygraph_mode():
1661
        if len(x.shape) <= 1:
1662
            return _C_ops.diag(x, offset, 0)
1663
        else:
1664
            y = _C_ops.flatten(x, 0, -1)
1665 1666 1667 1668 1669
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1670 1671 1672 1673
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1674 1675
        )
        check_type(offset, 'offset', (int), 'diagflat')
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1688
            )
L
Li Min 已提交
1689
        else:
1690 1691 1692 1693 1694
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1695
            )
1696
            out1.stop_gradient = True
L
Li Min 已提交
1697

1698 1699 1700 1701 1702 1703 1704 1705
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1706 1707


1708 1709
def diag(x, offset=0, padding_value=0, name=None):
    """
1710
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1723
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1724 1725
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1726
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1727

1728 1729 1730 1731 1732
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1733
            :name: code-example-1
1734

1735
            import paddle
1736

1737 1738 1739
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1740 1741 1742 1743 1744
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1745 1746

            y = paddle.diag(x, offset=1)
1747 1748 1749 1750 1751 1752
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1753 1754

            y = paddle.diag(x, padding_value=6)
1755 1756 1757 1758 1759
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1760 1761

        .. code-block:: python
1762
            :name: code-example-2
1763

1764
            import paddle
1765

1766 1767 1768
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1769 1770 1771
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1772

1773
            y = paddle.diag(x, offset=1)
1774 1775 1776
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1777

1778
            y = paddle.diag(x, offset=-1)
1779 1780 1781
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1782
    """
J
Jiabin Yang 已提交
1783
    if in_dygraph_mode():
1784
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1785
    else:
1786 1787 1788 1789
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1790
            ['float16', 'float32', 'float64', 'int32', 'int64'],
1791 1792 1793 1794 1795 1796 1797 1798
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1799
                )
1800
            )
1801

1802
        helper = LayerHelper("diag_v2", **locals())
1803

1804
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1805

1806 1807 1808 1809 1810 1811
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1812

1813 1814
        out.stop_gradient = True
        return out
1815 1816 1817 1818


def empty(shape, dtype=None, name=None):
    """
1819
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1820

1821
    Args:
1822 1823 1824
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1825
        dtype(np.dtype|str, optional): Data type of the output Tensor
1826
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1827 1828
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1829
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1830

1831 1832 1833 1834 1835 1836
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1837
            import paddle
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1858 1859 1860 1861 1862 1863 1864
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1865
    if in_dygraph_mode():
1866
        shape = paddle.utils.convert_shape_to_list(shape)
1867 1868 1869
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1870 1871
        out.stop_gradient = True
        return out
1872 1873 1874
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1875

1876 1877 1878
        check_dtype(
            dtype,
            'dtype',
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1889
            'empty',
1890
        )
1891
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1892

1893 1894
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1895

1896
        attrs = {}
1897
        paddle.utils.get_shape_tensor_inputs(
1898 1899
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1912 1913 1914 1915


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1916
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1917
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1918

1919 1920 1921
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1922
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1923
            data type is the same as input.
1924
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1946
    if in_dygraph_mode():
1947 1948 1949 1950 1951
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1952 1953
        out.stop_gradient = True
        return out
1954 1955 1956 1957 1958
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
1959 1960 1961 1962 1963 1964 1965 1966 1967
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1968 1969 1970 1971 1972
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
1973 1974 1975 1976 1977 1978 1979 1980 1981
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1982 1983 1984
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1985

1986 1987 1988 1989
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1990
        paddle.utils.get_shape_tensor_inputs(
1991 1992 1993 1994 1995 1996 1997 1998 1999
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
2000
        )
2001 2002 2003
        out.stop_gradient = True
        return out

2004 2005 2006

def assign(x, output=None):
    """
2007

2008
    Copy value of the :attr:`x` to the :attr:`output`.
2009

2010
    Parameters:
2011 2012
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
2013
            data limitation.
2014
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
2015

2016
    Returns:
2017
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
2018

2019 2020
    Examples:
        .. code-block:: python
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2032
    """
2033 2034
    input = x
    helper = LayerHelper('assign', **locals())
2035 2036 2037 2038 2039 2040
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2041 2042 2043 2044 2045 2046
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
W
wanghuancoder 已提交
2047 2048
    # NOTE(Aurelius84): Why we judge core.Tensor?
    # In case of @to_static, a Tensor can be as input of `assign`,
2049
    # but _non_static_mode()==False under @to_static, which means
W
wanghuancoder 已提交
2050
    # isinstance(Tensor, Variable) == False. It will cause return None
2051
    # after this api.
W
wanghuancoder 已提交
2052
    if isinstance(input, (Variable, core.eager.Tensor)):
Z
zyfncg 已提交
2053
        if in_dygraph_mode():
2054
            if output is None:
2055
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2056
            else:
2057
                _C_ops.assign_out_(input, output)
2058
        else:
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
2070
                    'int8',
2071 2072 2073 2074 2075
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2076 2077
            if output is None:
                output = helper.create_variable_for_type_inference(
2078 2079 2080 2081 2082
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2083
    elif isinstance(input, np.ndarray):
2084
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2085
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2086
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2087 2088 2089 2090
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2091
                    if isinstance(x, (Variable, core.eager.Tensor))
2092 2093
                ]
            ):
2094 2095 2096 2097 2098
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2099
                if not isinstance(x, (Variable, core.eager.Tensor)):
2100 2101 2102 2103 2104 2105 2106 2107 2108
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2109
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2110
            raise TypeError(
2111
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2112
            )
2113

2114 2115 2116 2117 2118 2119 2120
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2121 2122
                "it to float32"
            )
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2140 2141
                "received %s." % convert_dtype(dtype)
            )
2142
        if input.size > 1024 * 1024:
2143 2144 2145 2146
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2147 2148 2149
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2150 2151 2152 2153 2154 2155 2156
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2157
        else:
2158 2159
            if output is None:
                output = helper.create_variable_for_type_inference(
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2171 2172

    return output
2173 2174


2175 2176
def clone(x, name=None):
    """
2177 2178
    Returns a copy of input Tensor. It will always have a Tensor copy.

2179 2180 2181 2182
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2183
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2184

2185
    Returns:
2186
        Tensor, A Tensor copied from ``input``.
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2205
# NOTE(zhiqiu): not public
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2219
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2220 2221 2222 2223 2224

    Examples:
        .. code-block:: python

          import paddle
2225

2226 2227 2228 2229 2230 2231
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

W
wanghuancoder 已提交
2232
    if isinstance(input, (Variable, core.eager.Tensor)):
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
2244
                'int8',
2245 2246 2247 2248 2249
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3

    attrs = {'dst_place_type': dst_place_type}
2269 2270 2271 2272 2273 2274
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2275
    return output
F
Feiyu Chan 已提交
2276 2277 2278 2279 2280 2281 2282 2283


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2284
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2285 2286 2287 2288

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2289 2290 2291 2292
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2293 2294 2295 2296 2297 2298 2299 2300

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2301 2302 2303 2304
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2305
    """
2306
    if in_dygraph_mode():
2307
        return _C_ops.complex(real, imag)
2308 2309 2310 2311 2312 2313 2314
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2315

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2328 2329 2330 2331


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2332 2333
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2334 2335
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2336

2337 2338 2339 2340 2341
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2342 2343 2344 2345
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2356

2357 2358 2359
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2360
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2361 2362 2363 2364 2365
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2366
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2379 2380
        if col is None:
            col = row
2381 2382 2383
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2384
        return out
2385 2386 2387
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2388

2389 2390 2391 2392 2393 2394 2395 2396
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2397 2398 2399 2400 2401

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2402 2403 2404 2405 2406 2407
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2408
    return out
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2458 2459
        if col is None:
            col = row
2460 2461 2462
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2463
        return out
2464 2465 2466
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2467

2468 2469 2470 2471 2472 2473 2474 2475
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2476 2477 2478 2479 2480

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2481 2482 2483 2484 2485 2486
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2487
    return out
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))