Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bdc2c2db
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bdc2c2db
编写于
7月 12, 2020
作者:
W
wangchaochaohu
提交者:
GitHub
7月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
full Op:remove device, out and stop_gradient parameter for API 2.0 test=develop (#25257)
上级
548cdbc5
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
174 addition
and
212 deletion
+174
-212
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+18
-15
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
+7
-102
python/paddle/fluid/tests/unittests/test_full_op.py
python/paddle/fluid/tests/unittests/test_full_op.py
+6
-37
python/paddle/fluid/tests/unittests/test_ones_op.py
python/paddle/fluid/tests/unittests/test_ones_op.py
+83
-0
python/paddle/fluid/tests/unittests/test_zeros_op.py
python/paddle/fluid/tests/unittests/test_zeros_op.py
+43
-0
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+17
-58
未找到文件。
python/paddle/fluid/layers/tensor.py
浏览文件 @
bdc2c2db
...
...
@@ -620,7 +620,7 @@ def assign(input, output=None):
return
output
def
fill_constant
(
shape
,
dtype
,
value
,
force_cpu
=
False
,
out
=
None
):
def
fill_constant
(
shape
,
dtype
,
value
,
force_cpu
=
False
,
out
=
None
,
name
=
None
):
"""
:alias_main: paddle.fill_constant
:alias: paddle.fill_constant,paddle.tensor.fill_constant,paddle.tensor.creation.fill_constant
...
...
@@ -638,12 +638,14 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
If ``shape`` is an Variable, it should be an 1-D Tensor .
dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
be float16, float32, float64, int32, int64.
value(
float16|float32|float64|int32|int64
|Variable): The constant value used to initialize
value(
bool|float|int
|Variable): The constant value used to initialize
the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
force_cpu(bool): data should be on CPU if it's true, default value is False.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor which is created according to shape and dtype.
...
...
@@ -666,19 +668,16 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]
# attr shape is an Variable Tensor.
shape = fluid.layers.fill_constant([
1,
2], "int32", 2) # shape=[2,2]
shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
# attr value is an Variable Tensor.
val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
"""
inputs
=
{}
attrs
=
{
'force_cpu'
:
force_cpu
}
if
isinstance
(
value
,
Variable
):
inputs
[
'ValueTensor'
]
=
value
else
:
attrs
[
'value'
]
=
float
(
value
)
if
not
isinstance
(
value
,
Variable
):
if
convert_dtype
(
dtype
)
in
[
'int64'
,
'int32'
]:
attrs
[
'str_value'
]
=
str
(
int
(
value
))
else
:
...
...
@@ -702,13 +701,19 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
out
.
stop_gradient
=
True
return
out
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
inputs
=
{}
if
isinstance
(
value
,
Variable
):
inputs
[
'ValueTensor'
]
=
value
check_dtype
(
dtype
,
'dtype'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'fill_constant'
)
check_type
(
shape
,
'shape'
,
(
Variable
,
list
,
tuple
),
'fill_constant'
)
if
isinstance
(
shape
,
Variable
):
check_
variable_and_dtype
(
shape
,
'shape'
,
[
'int32'
,
'int64'
],
'fill_constant'
)
check_
dtype
(
shape
.
dtype
,
'shape'
,
[
'int32'
,
'int64'
],
'fill_constant'
)
if
out
is
not
None
:
check_variable_and_dtype
(
out
,
'out'
,
[
convert_dtype
(
dtype
)],
'fill_constant'
)
...
...
@@ -1048,7 +1053,7 @@ def ones(shape, dtype, force_cpu=False):
return
fill_constant
(
value
=
1.0
,
**
locals
())
def
zeros
(
shape
,
dtype
,
force_cpu
=
False
):
def
zeros
(
shape
,
dtype
,
force_cpu
=
False
,
name
=
None
):
"""
The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
Its :attr:`stop_gradient` will be set to True to stop gradient computation.
...
...
@@ -1060,6 +1065,8 @@ def zeros(shape, dtype, force_cpu=False):
force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
Default: False.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
...
...
@@ -1070,10 +1077,6 @@ def zeros(shape, dtype, force_cpu=False):
import paddle.fluid as fluid
data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
"""
check_type
(
shape
,
'shape'
,
(
list
,
tuple
),
'zeros'
)
check_dtype
(
dtype
,
'create data type'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'zeros'
)
return
fill_constant
(
value
=
0.0
,
**
locals
())
...
...
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
浏览文件 @
bdc2c2db
...
...
@@ -22,8 +22,8 @@ import paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
numpy
as
np
from
paddle.fluid
import
compiler
,
Program
,
program_guard
# Situation 1: Attr(shape) is a list(without tensor)
...
...
@@ -85,16 +85,14 @@ class TestFillConstantOp4(OpTest):
class
TestFillConstantOp5
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
[
1
],
dtype
=
"float32"
)
out
=
paddle
.
zeros
(
shape
=
[
1
],
out
=
data
,
dtype
=
"float32"
)
with
program_guard
(
Program
()):
out_np
=
np
.
zeros
(
shape
=
(
1
),
dtype
=
'float32'
)
out
=
paddle
.
zeros
(
shape
=
[
1
],
dtype
=
"float32"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
=
exe
.
run
(
feed
=
{
"X"
:
np
.
array
(
[
0.1
],
dtype
=
"float32"
)},
fetch_list
=
[
data
,
out
])
self
.
assertEqual
(
result
[
0
],
result
[
1
])
with
fluid
.
program_guard
(
fluid
.
Program
()):
result
=
exe
.
run
(
fetch_list
=
[
out
])
self
.
assertEqual
((
result
==
out_np
).
all
(),
True
)
with
program_guard
(
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
[
1
],
dtype
=
"float32"
)
out
=
paddle
.
ones
(
shape
=
[
1
],
out
=
data
,
dtype
=
"float32"
)
place
=
fluid
.
CPUPlace
()
...
...
@@ -389,98 +387,5 @@ class TestFillConstantOpError(unittest.TestCase):
self
.
assertRaises
(
TypeError
,
test_shape_tensor_list_dtype
)
class
ApiZerosTest
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
zeros
=
paddle
.
zeros
(
shape
=
[
10
],
dtype
=
"float64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
zeros
])
expected_result
=
np
.
zeros
(
10
,
dtype
=
"float64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
zeros
=
paddle
.
zeros
(
shape
=
[
10
],
dtype
=
"int64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
zeros
])
expected_result
=
np
.
zeros
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
zeros
=
paddle
.
zeros
(
shape
=
[
10
],
dtype
=
"int64"
,
device
=
"cpu"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
zeros
])
expected_result
=
np
.
zeros
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
class
ApiOnesTest
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
[
10
],
dtype
=
"float64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
ones
])
expected_result
=
np
.
ones
(
10
,
dtype
=
"float64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
[
10
],
dtype
=
"int64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
ones
])
expected_result
=
np
.
ones
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
[
10
],
dtype
=
"int64"
,
device
=
"cpu"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
ones
])
expected_result
=
np
.
ones
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
class
ApiOnesZerosError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_error1
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
10
,
dtype
=
"int64"
,
device
=
"opu"
)
self
.
assertRaises
(
ValueError
,
test_error1
)
def
test_error2
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
10
,
dtype
=
"int64"
,
device
=
"opu"
)
self
.
assertRaises
(
ValueError
,
test_error2
)
def
test_error3
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
ones
(
shape
=
10
,
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
test_error3
)
def
test_error4
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
ones
(
shape
=
[
10
],
dtype
=
"int8"
)
self
.
assertRaises
(
TypeError
,
test_error4
)
def
test_error5
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
zeros
(
shape
=
10
,
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
test_error5
)
def
test_error6
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
zeros
(
shape
=
[
10
],
dtype
=
"int8"
)
self
.
assertRaises
(
TypeError
,
test_error6
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_full_op.py
浏览文件 @
bdc2c2db
...
...
@@ -37,33 +37,19 @@ class TestFullAPI(unittest.TestCase):
shape_tensor_int64
=
fluid
.
data
(
name
=
"shape_tensor_int64"
,
shape
=
[
2
],
dtype
=
"int64"
)
out_1
=
paddle
.
full
(
shape
=
[
1
,
2
],
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'gpu'
)
out_1
=
paddle
.
full
(
shape
=
[
1
,
2
],
dtype
=
"float32"
,
fill_value
=
1.1
)
out_2
=
paddle
.
full
(
shape
=
[
1
,
positive_2_int32
],
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'cpu'
)
shape
=
[
1
,
positive_2_int32
],
dtype
=
"float32"
,
fill_value
=
1.1
)
out_3
=
paddle
.
full
(
shape
=
[
1
,
positive_2_int64
],
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'gpu'
)
shape
=
[
1
,
positive_2_int64
],
dtype
=
"float32"
,
fill_value
=
1.1
)
out_4
=
paddle
.
full
(
shape
=
shape_tensor_int32
,
dtype
=
"float32"
,
fill_value
=
1.2
,
out
=
out_3
)
shape
=
shape_tensor_int32
,
dtype
=
"float32"
,
fill_value
=
1.2
)
out_5
=
paddle
.
full
(
shape
=
shape_tensor_int64
,
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'gpu'
,
stop_gradient
=
False
)
shape
=
shape_tensor_int64
,
dtype
=
"float32"
,
fill_value
=
1.1
)
out_6
=
paddle
.
full
(
shape
=
shape_tensor_int64
,
dtype
=
np
.
float32
,
fill_value
=
1.1
)
...
...
@@ -83,7 +69,7 @@ class TestFullAPI(unittest.TestCase):
assert
np
.
array_equal
(
res_1
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_2
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_3
,
np
.
full
([
1
,
2
],
1.
2
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_3
,
np
.
full
([
1
,
2
],
1.
1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_4
,
np
.
full
([
1
,
2
],
1.2
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_5
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_6
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
...
...
@@ -94,28 +80,11 @@ class TestFullOpError(unittest.TestCase):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
#for ci coverage
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
1
],
dtype
=
"int16"
)
x2
=
np
.
random
.
randn
(
1
,
2
).
astype
(
'int32'
)
self
.
assertRaises
(
ValueError
,
paddle
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'uint4'
)
self
.
assertRaises
(
TypeError
,
paddle
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'int32'
,
out
=
x2
)
self
.
assertRaises
(
TypeError
,
paddle
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'int16'
,
out
=
x1
)
# The argument dtype of full must be one of bool, float16,
#float32, float64, int32 or int64
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
1
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
paddle
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'uint8'
)
...
...
python/paddle/fluid/tests/unittests/test_ones_op.py
0 → 100644
浏览文件 @
bdc2c2db
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
numpy
as
np
class
ApiOnesTest
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
[
10
],
dtype
=
"float64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
ones
])
expected_result
=
np
.
ones
(
10
,
dtype
=
"float64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
[
10
],
dtype
=
"int64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
ones
])
expected_result
=
np
.
ones
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
[
10
],
dtype
=
"int64"
,
device
=
"cpu"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
ones
])
expected_result
=
np
.
ones
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
class
ApiOnesZerosError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_error1
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
10
,
dtype
=
"int64"
,
device
=
"opu"
)
self
.
assertRaises
(
ValueError
,
test_error1
)
def
test_error2
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
paddle
.
ones
(
shape
=
10
,
dtype
=
"int64"
,
device
=
"opu"
)
self
.
assertRaises
(
ValueError
,
test_error2
)
def
test_error3
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
ones
(
shape
=
10
,
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
test_error3
)
def
test_error4
():
with
fluid
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
ones
(
shape
=
[
10
],
dtype
=
"int8"
)
self
.
assertRaises
(
TypeError
,
test_error4
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_zeros_op.py
浏览文件 @
bdc2c2db
...
...
@@ -18,6 +18,7 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
...
...
@@ -33,5 +34,47 @@ class TestZerosOpError(unittest.TestCase):
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
zeros
,
shape
,
dtype
)
class
ApiZerosTest
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
paddle
.
program_guard
(
fluid
.
Program
()):
zeros
=
paddle
.
zeros
(
shape
=
[
10
],
dtype
=
"float64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
zeros
])
expected_result
=
np
.
zeros
(
10
,
dtype
=
"float64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
paddle
.
program_guard
(
fluid
.
Program
()):
zeros
=
paddle
.
zeros
(
shape
=
[
10
],
dtype
=
"int64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
zeros
])
expected_result
=
np
.
zeros
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
paddle
.
program_guard
(
fluid
.
Program
()):
zeros
=
paddle
.
zeros
(
shape
=
[
10
],
dtype
=
"int64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
zeros
])
expected_result
=
np
.
zeros
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
class
ApiZerosError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_error1
():
with
paddle
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
zeros
(
shape
=
10
,
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
test_error1
)
def
test_error2
():
with
paddle
.
program_guard
(
fluid
.
Program
()):
ones
=
fluid
.
layers
.
zeros
(
shape
=
[
10
],
dtype
=
"int8"
)
self
.
assertRaises
(
TypeError
,
test_error2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/creation.py
浏览文件 @
bdc2c2db
...
...
@@ -223,7 +223,7 @@ def ones_like(input, dtype=None, device=None, name=None):
return
out
def
zeros
(
shape
,
dtype
,
out
=
None
,
devic
e
=
None
):
def
zeros
(
shape
,
dtype
=
None
,
nam
e
=
None
):
"""
:alias_main: paddle.zeros
:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
...
...
@@ -232,14 +232,10 @@ def zeros(shape, dtype, out=None, device=None):
Args:
shape(tuple|list): Shape of output tensor.
dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
bool, float16, float32, float64, int32 and int64.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
device(str, optional): Which device to run the operator. The :attr:`device` must be
None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in
the paddle program. Default value is False.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
...
...
@@ -248,21 +244,14 @@ def zeros(shape, dtype, out=None, device=None):
.. code-block:: python
import paddle
paddle.enable_imperative() # Now we are in imperative mode
data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
data = paddle.zeros(shape=[2, 2], dtype='
float32', device='cpu') # [[0., 0.], [0., 0.
]]
data = paddle.zeros(shape=[2, 2], dtype='
int32', name='zeros') # [[0, 0], [0, 0
]]
"""
check_dtype
(
dtype
,
'create data type'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'zeros'
)
if
device
is
not
None
:
if
device
not
in
[
'cpu'
,
'gpu'
]:
raise
ValueError
(
"The value of 'device' in zeros_op must be cpu or gpu, but received %s."
%
(
device
))
with
fluid
.
device_guard
(
device
):
return
fill_constant
(
value
=
0.0
,
shape
=
shape
,
dtype
=
dtype
,
out
=
out
)
return
fill_constant
(
value
=
0.0
,
shape
=
shape
,
dtype
=
dtype
,
out
=
out
)
if
dtype
is
None
:
dtype
=
'float32'
return
fill_constant
(
value
=
0.0
,
shape
=
shape
,
dtype
=
dtype
,
name
=
name
)
def
zeros_like
(
input
,
dtype
=
None
,
device
=
None
,
name
=
None
):
...
...
@@ -398,13 +387,7 @@ def eye(num_rows,
return
out
def
full
(
shape
,
fill_value
,
out
=
None
,
dtype
=
None
,
device
=
None
,
stop_gradient
=
True
,
name
=
None
):
def
full
(
shape
,
fill_value
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.full
:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
...
...
@@ -418,17 +401,9 @@ def full(shape,
If ``shape`` is an Variable, it should be an 1-D Tensor .
fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
type of created tensor is `float32`
device(str, optional): On which device to run this Op. The :attr:`device` must be
None, 'cpu' or 'gpu'. If :attr:`device` is None, the device that the user set in
the paddle program will be chosen. Default value is None.
stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
default value is True.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
...
...
@@ -437,28 +412,26 @@ def full(shape,
Raises:
TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
TypeError: The `out` must be a Variable.
TypeError: The `shape` must be one of Variable, list tuple.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_imperative() # Now we are in imperative mode
data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
data2 = paddle.full(shape=[2,1], fill_value=5, dtype='int64', device='gpu') # data2=[[5],[5]]
# attr shape is a list which contains Variable Tensor.
positive_2 =
fluid.layers
.fill_constant([1], "int32", 2)
positive_2 =
paddle
.fill_constant([1], "int32", 2)
data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]
# attr shape is an Variable Tensor.
shape =
fluid.layers.fill_constant([1,
2], "int32", 2) # shape=[2,2]
shape =
paddle.fill_constant([
2], "int32", 2) # shape=[2,2]
data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
# attr value is an Variable Tensor.
val =
fluid.layers
.fill_constant([1], "float32", 2.0) # val=[2.0]
val =
paddle
.fill_constant([1], "float32", 2.0) # val=[2.0]
data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
"""
...
...
@@ -467,21 +440,7 @@ def full(shape,
if
dtype
is
None
:
dtype
=
'float32'
check_dtype
(
dtype
,
'create data type'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'full'
)
check_type
(
shape
,
'shape'
,
(
Variable
,
list
,
tuple
),
'full'
)
if
out
is
not
None
:
check_type
(
out
,
'out'
,
(
Variable
),
'full'
)
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
out
.
stop_gradient
=
stop_gradient
with
device_guard
(
device
):
out
=
fill_constant
(
shape
=
shape
,
dtype
=
dtype
,
value
=
fill_value
,
out
=
out
)
return
out
return
fill_constant
(
shape
=
shape
,
dtype
=
dtype
,
value
=
fill_value
,
name
=
name
)
def
arange
(
start
,
end
,
step
=
1
,
dtype
=
None
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录