creation.py 83.4 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25
from paddle.common_ops_import import fill_constant
26

27 28
from ..fluid.data_feeder import (
    check_dtype,
29 30
    check_type,
    check_variable_and_dtype,
31 32 33
    convert_dtype,
)
from ..fluid.framework import (
34
    Variable,
35
    _in_eager_without_dygraph_check,
36
    device_guard,
37
)
38
from ..fluid.layers import utils
39
from ..fluid.param_attr import ParamAttr
40 41 42 43 44 45 46 47
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
48

49 50
__all__ = []

W
wangchaochaohu 已提交
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
142 143 144 145
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
146 147 148 149 150
    )

    return var


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
181
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
219
        (type(None), paddle.nn.initializer.Initializer),
220 221 222 223 224 225 226 227 228 229 230
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


273 274
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
275
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
276 277

    Args:
278 279
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
280
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
281 282 283
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
284 285
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
286
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
287 288 289 290

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
291
        the value with input :attr:`start`.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
312
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
313 314
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
315
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
316 317
    if not isinstance(num, Variable):
        with device_guard("cpu"):
318
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
319
    if in_dygraph_mode():
320 321 322 323 324 325 326
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
327
    else:
328 329 330 331 332 333 334 335 336 337 338 339 340 341
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
342

343 344 345 346 347 348 349 350 351 352 353
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
354
        check_dtype(
355
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
356
        )
357 358 359 360 361 362 363 364 365 366 367 368
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
369
            )
370

371
        out = helper.create_variable_for_type_inference(dtype=dtype)
372

373 374 375 376 377 378 379 380 381 382 383 384 385
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
386 387


388 389 390 391
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
392

393 394
    Notes:
        This API does not compute the gradient.
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
410
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
411 412 413 414 415

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
416
        just has the value with exponential of :attr:`start` with base :attr:`base`.
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
449
    if in_dygraph_mode():
C
Chen Weihang 已提交
450 451 452 453 454 455 456
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
457
        )
458 459
    else:
        helper = LayerHelper("logspace", **locals())
460

461 462 463 464 465 466 467 468 469 470 471 472 473
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
474

475 476 477 478 479 480 481 482 483
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
484

485 486
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
487

488 489 490 491 492 493 494 495 496
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
497

498
        check_dtype(
499
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
500
        )
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
521
            )
522

523
        out = helper.create_variable_for_type_inference(dtype=dtype)
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
539 540


541
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
542

543 544 545
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

546
    if not isinstance(data, np.ndarray):
547

548
        def _handle_dtype(data, dtype):
549 550 551 552 553
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

554 555 556 557
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
558
            if data.dtype == np.object_:
559 560 561 562
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
563 564 565 566 567 568
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
569
            data = data._copy_to(place, False)
570
            data = _handle_dtype(data, dtype)
571
            data.stop_gradient = stop_gradient
572
            return data
573
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
574
            # should't expose it to users, just for internal use.
575 576
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
577 578 579 580
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
581 582 583 584
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
585
            return data
586 587
        else:
            raise TypeError(
588 589 590 591
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
592 593
        if not dtype:
            if data.dtype in [
594 595 596 597 598
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
599 600 601
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
602 603 604 605 606
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
607 608 609 610 611
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
612 613

    if dtype and convert_dtype(dtype) != data.dtype:
614
        data = data.astype(convert_dtype(dtype))
615

J
Jiabin Yang 已提交
616
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
617 618 619 620 621 622 623 624
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
625
    else:
626 627 628 629 630 631 632
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
633 634


635 636 637 638 639
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
640 641
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
642 643 644 645 646 647 648

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

649 650 651 652 653
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
654 655 656 657 658
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

659 660
        if dtype:
            target_dtype = dtype
661
        elif hasattr(data, 'dtype') and data.dtype != 'object':
662 663 664 665 666 667
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

668 669 670 671 672
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
673
            if not all(
674 675
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


697 698
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
699
    Constructs a ``paddle.Tensor`` from ``data`` ,
700 701 702 703 704
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

705 706 707 708 709 710 711 712 713 714 715 716
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

717 718 719
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
720
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
721
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
722
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
723
            except for python float number which gets dtype from ``get_default_type`` .
724 725 726
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
727 728 729 730 731 732 733 734 735 736
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
752
        #        [1])
753 754 755 756 757 758 759 760 761 762 763 764 765 766

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
767 768 769 770
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

771
    if paddle.fluid.framework._non_static_mode():
772 773 774 775
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
776
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
777 778 779
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
780
            return _to_tensor_static(data, dtype, stop_gradient)
781 782


783
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
784
    """
S
swtkiwi 已提交
785

786 787
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
788

P
Pei Yang 已提交
789
    Args:
790 791
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
792
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
793
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
794
            data type is the same as input.
795
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
796

P
Pei Yang 已提交
797
    Returns:
798
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
799

P
Pei Yang 已提交
800 801
    Examples:
        .. code-block:: python
802

P
Pei Yang 已提交
803
          import paddle
804

805
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
806
          output = paddle.full_like(input, 2.0)
807 808
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
809 810
    """
    if dtype is None:
811
        dtype = x.dtype
812
    else:
813 814
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
815
    if in_dygraph_mode():
816
        return _C_ops.full_like(x, fill_value, dtype, x.place)
817 818 819 820 821 822 823 824 825 826 827 828 829
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
830
                'uint16',
831 832
            ],
            'full_like',
833
        )
834 835 836 837 838 839 840 841 842 843 844
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
845
                'uint16',
846 847 848 849
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
850

851 852 853 854 855 856 857 858
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
859 860


861
def ones(shape, dtype=None, name=None):
862
    """
B
BrilliantYuKaimin 已提交
863
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
864 865

    Args:
866 867 868
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
869 870 871
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
872

873
    Returns:
B
BrilliantYuKaimin 已提交
874
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
875 876 877 878

    Examples:
        .. code-block:: python

879
            import paddle
880

881
            # shape is a list/tuple
882
            data1 = paddle.ones(shape=[3, 2])
883 884 885 886 887
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
888 889 890 891 892 893 894 895 896 897 898 899
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
900
    """
901
    if dtype is None:
W
Weilong Wu 已提交
902
        dtype = core.VarDesc.VarType.FP32
903
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
904 905


906
def ones_like(x, dtype=None, name=None):
907
    """
C
Chen Long 已提交
908
    Returns a Tensor filled with the value 1, with the same shape and
909
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
910 911

    Args:
912 913
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
914
        dtype(str|np.dtype, optional): The data type of the
915 916 917
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
918
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
919

920
    Returns:
921 922 923
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

924 925 926
    Examples:
        .. code-block:: python

927
            import paddle
928

929
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
930 931
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
932

933 934
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
935 936


937
def zeros(shape, dtype=None, name=None):
938
    """
C
Chen Long 已提交
939
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
940 941

    Args:
942 943 944
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
945
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
946 947 948
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
949 950

    Returns:
951
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
952 953 954 955

    Examples:
        .. code-block:: python

956
            import paddle
957

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
977
    """
978 979 980
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
981 982


983
def zeros_like(x, dtype=None, name=None):
984
    """
985
    Returns a Tensor filled with the value 0, with the same shape and
986
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
987 988

    Args:
989 990
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
991
        dtype(str|np.dtype, optional): The data type of the
992 993 994
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
995
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
996 997

    Returns:
998 999
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1000

1001

1002 1003 1004
    Examples:
        .. code-block:: python

1005
            import paddle
1006

Z
zhupengyang 已提交
1007
            x = paddle.to_tensor([1, 2, 3])
1008 1009
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1010

1011 1012
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1013 1014


1015
def eye(num_rows, num_columns=None, dtype=None, name=None):
1016
    """
1017

1018
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1019

1020
    Args:
1021 1022
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1023
            If None, default: num_rows.
W
wangchaochaohu 已提交
1024
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1025 1026
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1027
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1028

1029
    Returns:
1030
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1031

1032 1033
    Examples:
        .. code-block:: python
1034

1035
          import paddle
1036

1037
          data = paddle.eye(3, dtype='int32')
1038 1039 1040
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1041
          data = paddle.eye(2, 3, dtype='int32')
1042 1043
          # [[1 0 0]
          #  [0 1 0]]
1044 1045
    """

1046
    def _check_attr(attr, message):
1047
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1048 1049 1050 1051 1052 1053
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

1054
    if dtype is None:
1055 1056
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1057 1058
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1059
        _check_attr(num_columns, "num_columns")
1060 1061 1062
    else:
        num_columns = num_rows

1063 1064 1065 1066
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1067 1068
    else:
        helper = LayerHelper("eye", **locals())
1069 1070 1071 1072 1073 1074
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1075
        out = helper.create_variable_for_type_inference(dtype=dtype)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1087 1088 1089

    out.stop_gradient = True
    return out
1090 1091


1092
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1093
    """
S
swtkiwi 已提交
1094

1095
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1096

W
wangchaochaohu 已提交
1097
    Args:
1098 1099 1100 1101 1102
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1103
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1104
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1105 1106
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1107

1108
    Returns:
1109
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1110

W
wangchaochaohu 已提交
1111 1112 1113
    Examples:
        .. code-block:: python

1114
            import paddle
W
wangchaochaohu 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1142 1143 1144 1145 1146
    """

    if dtype is None:
        dtype = 'float32'

1147
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1148 1149


1150
def arange(start=0, end=None, step=1, dtype=None, name=None):
1151
    """
1152
    Returns a 1-D Tensor with spaced values within a given interval.
1153

1154 1155
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1156

1157 1158
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1159 1160

    Parameters:
1161 1162
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1163 1164
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1165
        end(float|int|Tensor, optional): End of interval. The interval does not
1166 1167 1168 1169
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1170 1171
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1172 1173
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1174
        dtype(str|np.dtype, optional): The data type of the
1175 1176
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1177
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1178

1179
    Returns:
1180
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1181 1182
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1183

Z
zhupengyang 已提交
1184
    Examples:
1185 1186
        .. code-block:: python

Z
zhupengyang 已提交
1187
            import paddle
1188

Z
zhupengyang 已提交
1189 1190
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1191

Z
zhupengyang 已提交
1192 1193
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1194

Z
zhupengyang 已提交
1195 1196 1197
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1198

1199
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1200 1201
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1202

1203 1204 1205 1206 1207 1208
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1232
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1233 1234 1235 1236 1237 1238 1239 1240
    else:
        check_dtype(
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64'],
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
1241 1242 1243 1244 1245 1246 1247
        out_shape = None
        if (
            not isinstance(start, Variable)
            and not isinstance(end, Variable)
            and not isinstance(step, Variable)
        ):
            out_shape = [int(math.ceil((end - start) / step))]
1248 1249 1250 1251 1252 1253
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1254
        out.stop_gradient = True
1255 1256
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1257 1258
        return out

W
WuHaobo 已提交
1259 1260

def _tril_triu_op(helper):
1261
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1262
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1263
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1264 1265

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1266
    check_variable_and_dtype(
1267 1268 1269 1270 1271
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1272
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1273
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1274
    diagonal = helper.kwargs.get('diagonal', 0)
1275
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1276 1277 1278 1279 1280 1281
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1282 1283 1284
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1285 1286 1287 1288 1289 1290 1291 1292

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1293 1294
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1295 1296 1297 1298

    return out


Y
yaoxuefeng 已提交
1299
def tril(x, diagonal=0, name=None):
1300
    r"""
1301
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1302 1303
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1304 1305 1306
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1307
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1308
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1309 1310 1311 1312 1313 1314 1315
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1316
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1317 1318

    Returns:
Y
yaoxuefeng 已提交
1319
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1320
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1321 1322 1323 1324

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1325
            import paddle
W
WuHaobo 已提交
1326

1327 1328 1329 1330 1331
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1332

1333 1334 1335 1336 1337
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1338 1339

            # example 2, positive diagonal value
1340 1341 1342 1343 1344
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1345 1346

            # example 3, negative diagonal value
1347 1348 1349 1350 1351
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1352
    """
F
From00 已提交
1353
    if in_dygraph_mode():
Z
zyfncg 已提交
1354
        return _C_ops.tril(x, diagonal)
1355 1356
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1357 1358


Y
yaoxuefeng 已提交
1359
def triu(x, diagonal=0, name=None):
1360
    r"""
1361
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1362
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1363 1364 1365 1366
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1367
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1368 1369 1370 1371 1372 1373 1374 1375
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1376
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1377 1378

    Returns:
Y
yaoxuefeng 已提交
1379
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1380
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1381 1382 1383 1384

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1385
            import paddle
W
WuHaobo 已提交
1386

1387 1388 1389 1390 1391
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1392 1393

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1394
            triu1 = paddle.tensor.triu(x)
1395 1396 1397 1398
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1399 1400

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1401
            triu2 = paddle.tensor.triu(x, diagonal=2)
1402 1403 1404 1405
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1406 1407

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1408
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1409 1410 1411 1412
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1413 1414

    """
F
From00 已提交
1415
    if in_dygraph_mode():
Z
zyfncg 已提交
1416
        return _C_ops.triu(x, diagonal)
1417 1418
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1419 1420


1421
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1422
    """
1423

1424
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1425

S
suytingwan 已提交
1426
    Args:
1427
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1428
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1429
        **kwargs (optional): Currently, only accept name in **kwargs
1430
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1431
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1432

S
suytingwan 已提交
1433
    Returns:
Y
yaoxuefeng 已提交
1434
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1435 1436 1437 1438 1439 1440

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1441 1442 1443 1444
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1445

Y
yaoxuefeng 已提交
1446 1447
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1448 1449 1450 1451 1452 1453

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1454 1455
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1456
    if in_dygraph_mode():
1457
        return _C_ops.meshgrid(list(args))
1458 1459 1460
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1461

1462 1463 1464 1465
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1466

1467 1468 1469 1470 1471 1472 1473
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1474

1475 1476 1477 1478 1479 1480 1481
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1482
        )
S
suytingwan 已提交
1483

1484
        return out
1485 1486


L
Li Min 已提交
1487 1488
def diagflat(x, offset=0, name=None):
    """
1489
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1503
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1504
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1505
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1506 1507 1508 1509 1510 1511

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1512
            :name: code-example-1
L
Li Min 已提交
1513

1514 1515 1516 1517
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1518 1519 1520 1521 1522
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1523 1524

            y = paddle.diagflat(x, offset=1)
1525 1526 1527 1528 1529 1530
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1531 1532

            y = paddle.diagflat(x, offset=-1)
1533 1534 1535 1536 1537 1538
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1539 1540

        .. code-block:: python
1541
            :name: code-example-2
L
Li Min 已提交
1542

1543
            import paddle
L
Li Min 已提交
1544

1545 1546
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1547 1548 1549 1550 1551 1552
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1553 1554

            y = paddle.diagflat(x, offset=1)
1555 1556 1557 1558 1559 1560 1561
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1562 1563

            y = paddle.diagflat(x, offset=-1)
1564 1565 1566 1567 1568 1569 1570
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1571
    """
1572
    if in_dygraph_mode():
1573
        if len(x.shape) <= 1:
1574
            return _C_ops.diag(x, offset, 0)
1575
        else:
1576
            y = _C_ops.flatten(x, 0, -1)
1577 1578 1579 1580 1581
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1582 1583 1584 1585
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1586 1587
        )
        check_type(offset, 'offset', (int), 'diagflat')
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1600
            )
L
Li Min 已提交
1601
        else:
1602 1603 1604 1605 1606
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1607
            )
1608
            out1.stop_gradient = True
L
Li Min 已提交
1609

1610 1611 1612 1613 1614 1615 1616 1617
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1618 1619


1620 1621
def diag(x, offset=0, padding_value=0, name=None):
    """
1622
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1635
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1636 1637
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1638
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1639

1640 1641 1642 1643 1644
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1645
            :name: code-example-1
1646

1647
            import paddle
1648

1649 1650 1651
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1652 1653 1654 1655 1656
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1657 1658

            y = paddle.diag(x, offset=1)
1659 1660 1661 1662 1663 1664
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1665 1666

            y = paddle.diag(x, padding_value=6)
1667 1668 1669 1670 1671
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1672 1673

        .. code-block:: python
1674
            :name: code-example-2
1675

1676
            import paddle
1677

1678 1679 1680
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1681 1682 1683
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1684

1685
            y = paddle.diag(x, offset=1)
1686 1687 1688
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1689

1690
            y = paddle.diag(x, offset=-1)
1691 1692 1693
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1694
    """
J
Jiabin Yang 已提交
1695
    if in_dygraph_mode():
1696
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1697
    else:
1698 1699 1700 1701
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1702
            ['float16', 'float32', 'float64', 'int32', 'int64'],
1703 1704 1705 1706 1707 1708 1709 1710
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1711
                )
1712
            )
1713

1714
        helper = LayerHelper("diag_v2", **locals())
1715

1716
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1717

1718 1719 1720 1721 1722 1723
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1724

1725 1726
        out.stop_gradient = True
        return out
1727 1728 1729 1730


def empty(shape, dtype=None, name=None):
    """
1731
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1732

1733
    Args:
1734 1735 1736
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1737 1738 1739 1740
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1741
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1742

1743 1744 1745 1746 1747 1748
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1749
            import paddle
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1770 1771 1772 1773 1774 1775 1776
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1777 1778
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1779 1780 1781
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1782 1783
        out.stop_gradient = True
        return out
1784 1785 1786
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1787

1788 1789 1790 1791 1792
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty',
1793
        )
1794
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1795

1796 1797
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1798

1799 1800 1801 1802
        attrs = {}
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1815 1816 1817 1818


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1819
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1820
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1821

1822 1823 1824
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1825
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1826
            data type is the same as input.
1827
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1849
    if in_dygraph_mode():
1850 1851 1852 1853 1854
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1855 1856
        out.stop_gradient = True
        return out
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
1887
        )
1888 1889 1890
        out.stop_gradient = True
        return out

1891 1892 1893

def assign(x, output=None):
    """
1894

1895
    Copy value of the :attr:`x` to the :attr:`output`.
1896

1897
    Parameters:
1898 1899
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1900
            data limitation.
1901
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1902

1903
    Returns:
1904
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1905

1906 1907
    Examples:
        .. code-block:: python
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1919
    """
1920 1921
    input = x
    helper = LayerHelper('assign', **locals())
1922 1923 1924 1925 1926 1927
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1939
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1940
        if in_dygraph_mode():
1941
            if output is None:
1942
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1943
            else:
1944
                _C_ops.assign_out_(input, output)
1945
        else:
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1962 1963
            if output is None:
                output = helper.create_variable_for_type_inference(
1964 1965 1966 1967 1968
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1969
    elif isinstance(input, np.ndarray):
1970
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1971
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1972
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1973 1974 1975 1976
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1977
                    if isinstance(x, (Variable, core.eager.Tensor))
1978 1979
                ]
            ):
1980 1981 1982 1983 1984
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1985
                if not isinstance(x, (Variable, core.eager.Tensor)):
1986 1987 1988 1989 1990 1991 1992 1993 1994
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
1995
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1996
            raise TypeError(
1997
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1998
            )
1999

2000 2001 2002 2003 2004 2005 2006
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2007 2008
                "it to float32"
            )
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2026 2027
                "received %s." % convert_dtype(dtype)
            )
2028
        if input.size > 1024 * 1024:
2029 2030 2031 2032
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2033 2034 2035
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2036 2037 2038 2039 2040 2041 2042
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2043
        else:
2044 2045
            if output is None:
                output = helper.create_variable_for_type_inference(
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2057 2058

    return output
2059 2060


2061 2062
def clone(x, name=None):
    """
2063 2064
    Returns a copy of input Tensor. It will always have a Tensor copy.

2065 2066 2067 2068
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2069
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2070

2071
    Returns:
2072
        Tensor, A Tensor copied from ``input``.
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2091
# NOTE(zhiqiu): not public
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2105
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2106 2107 2108 2109 2110

    Examples:
        .. code-block:: python

          import paddle
2111

2112 2113 2114 2115 2116 2117 2118
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
2156 2157 2158 2159 2160 2161
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2162
    return output
F
Feiyu Chan 已提交
2163 2164 2165 2166 2167 2168 2169 2170


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2171
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2172 2173 2174 2175

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2176 2177 2178 2179
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2180 2181 2182 2183 2184 2185 2186 2187

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2188 2189 2190 2191
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2192
    """
2193
    if in_dygraph_mode():
2194
        return _C_ops.complex(real, imag)
2195 2196 2197 2198 2199 2200 2201
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2215 2216 2217 2218


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2219 2220
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2221 2222
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2223

2224 2225 2226 2227 2228
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2229 2230 2231 2232
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2243

2244 2245 2246
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2247
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2248 2249 2250 2251 2252
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2253
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2266 2267
        if col is None:
            col = row
2268 2269 2270
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2271
        return out
2272 2273 2274
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2275

2276 2277 2278 2279 2280 2281 2282 2283
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2284 2285 2286 2287 2288

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2289 2290 2291 2292 2293 2294
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2295
    return out
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2345 2346
        if col is None:
            col = row
2347 2348 2349
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2350
        return out
2351 2352 2353
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2354

2355 2356 2357 2358 2359 2360 2361 2362
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2363 2364 2365 2366 2367

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2368 2369 2370 2371 2372 2373
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2374
    return out