creation.py 83.3 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25
from paddle.common_ops_import import fill_constant
26

27 28
from ..fluid.data_feeder import (
    check_dtype,
29 30
    check_type,
    check_variable_and_dtype,
31 32 33
    convert_dtype,
)
from ..fluid.framework import (
34
    Variable,
35
    _in_eager_without_dygraph_check,
36
    device_guard,
37
)
38
from ..fluid.layers import utils
39
from ..fluid.param_attr import ParamAttr
40 41 42 43 44 45 46 47
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
48

49 50
__all__ = []

W
wangchaochaohu 已提交
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
142 143 144 145
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
146 147 148 149 150
    )

    return var


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
181
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
219
        (type(None), paddle.nn.initializer.Initializer),
220 221 222 223 224 225 226 227 228 229 230
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


273 274
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
275
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
276 277

    Args:
278 279
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
280
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
281 282 283
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
284 285
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
286
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
287 288 289 290

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
291
        the value with input :attr:`start`.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
312
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
313 314
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
315
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
316 317
    if not isinstance(num, Variable):
        with device_guard("cpu"):
318
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
319
    if in_dygraph_mode():
320 321 322 323 324 325 326
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
327
    else:
328 329 330 331 332 333 334 335 336 337 338 339 340 341
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
342

343 344 345 346 347 348 349 350 351 352 353
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
354
        check_dtype(
355
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
356
        )
357 358 359 360 361 362 363 364 365 366 367 368
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
369
            )
370

371
        out = helper.create_variable_for_type_inference(dtype=dtype)
372

373 374 375 376 377 378 379 380 381 382 383 384 385
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
386 387


388 389 390 391
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
392

393 394
    Notes:
        This API does not compute the gradient.
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
410
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
411 412 413 414 415

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
416
        just has the value with exponential of :attr:`start` with base :attr:`base`.
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
449
    if in_dygraph_mode():
C
Chen Weihang 已提交
450 451 452 453 454 455 456
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
457
        )
458 459
    else:
        helper = LayerHelper("logspace", **locals())
460

461 462 463 464 465 466 467 468 469 470 471 472 473
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
474

475 476 477 478 479 480 481 482 483
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
484

485 486
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
487

488 489 490 491 492 493 494 495 496
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
497

498
        check_dtype(
499
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
500
        )
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
521
            )
522

523
        out = helper.create_variable_for_type_inference(dtype=dtype)
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
539 540


541
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
542

543 544 545
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

546
    if not isinstance(data, np.ndarray):
547

548
        def _handle_dtype(data, dtype):
549 550 551 552 553
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

554 555 556 557
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
558
            if data.dtype == np.object_:
559 560 561 562
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
563 564 565 566 567 568
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
569
            data = data._copy_to(place, False)
570
            data = _handle_dtype(data, dtype)
571
            data.stop_gradient = stop_gradient
572
            return data
573
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
574
            # should't expose it to users, just for internal use.
575 576
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
577 578 579 580
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
581 582 583 584
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
585
            return data
586 587
        else:
            raise TypeError(
588 589 590 591
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
592 593
        if not dtype:
            if data.dtype in [
594 595 596 597 598
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
599 600 601
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
602 603 604 605 606
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
607 608 609 610 611
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
612 613

    if dtype and convert_dtype(dtype) != data.dtype:
614
        data = data.astype(convert_dtype(dtype))
615

J
Jiabin Yang 已提交
616
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
617 618 619 620 621 622 623 624
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
625
    else:
626 627 628 629 630 631 632
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
633 634


635 636 637 638 639
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
640 641
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
642 643 644 645 646 647 648

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

649 650 651 652 653
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
654 655 656 657 658
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

659 660
        if dtype:
            target_dtype = dtype
661
        elif hasattr(data, 'dtype') and data.dtype != 'object':
662 663 664 665 666 667
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

668 669 670 671 672
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
673
            if not all(
674 675
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


697 698
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
699
    Constructs a ``paddle.Tensor`` from ``data`` ,
700 701 702 703 704
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

705 706 707 708 709 710 711 712 713 714 715 716
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
                                        (1D-Tensor)
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

717 718 719
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
720
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
721
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
722
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
723
            except for python float number which gets dtype from ``get_default_type`` .
724 725 726
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
727 728 729 730 731 732 733 734 735 736
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
752
        #        [1])
753 754 755 756 757 758 759 760 761 762 763 764 765 766

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
767 768 769 770
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

771
    if paddle.fluid.framework._non_static_mode():
772 773 774 775
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
776
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
777 778 779
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
780
            return _to_tensor_static(data, dtype, stop_gradient)
781 782


783
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
784
    """
S
swtkiwi 已提交
785

786 787
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
788

P
Pei Yang 已提交
789
    Args:
790 791
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
792
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
793
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
794
            data type is the same as input.
795
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
796

P
Pei Yang 已提交
797
    Returns:
798
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
799

P
Pei Yang 已提交
800 801
    Examples:
        .. code-block:: python
802

P
Pei Yang 已提交
803
          import paddle
804

805
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
806
          output = paddle.full_like(input, 2.0)
807 808
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
809 810
    """
    if dtype is None:
811
        dtype = x.dtype
812
    else:
813 814
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
815
    if in_dygraph_mode():
816
        return _C_ops.full_like(x, fill_value, dtype, x.place)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
            'full_like',
832
        )
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
848

849 850 851 852 853 854 855 856
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
857 858


859
def ones(shape, dtype=None, name=None):
860
    """
B
BrilliantYuKaimin 已提交
861
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
862 863

    Args:
864 865 866
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
867 868 869
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
870

871
    Returns:
B
BrilliantYuKaimin 已提交
872
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
873 874 875 876

    Examples:
        .. code-block:: python

877
            import paddle
878

879
            # shape is a list/tuple
880
            data1 = paddle.ones(shape=[3, 2])
881 882 883 884 885
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
886 887 888 889 890 891 892 893 894 895 896 897
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
898
    """
899
    if dtype is None:
W
Weilong Wu 已提交
900
        dtype = core.VarDesc.VarType.FP32
901
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
902 903


904
def ones_like(x, dtype=None, name=None):
905
    """
C
Chen Long 已提交
906
    Returns a Tensor filled with the value 1, with the same shape and
907
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
908 909

    Args:
910 911
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
912
        dtype(str|np.dtype, optional): The data type of the
913 914 915
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
916
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
917

918
    Returns:
919 920 921
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

922 923 924
    Examples:
        .. code-block:: python

925
            import paddle
926

927
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
928 929
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
930

931 932
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
933 934


935
def zeros(shape, dtype=None, name=None):
936
    """
C
Chen Long 已提交
937
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
938 939

    Args:
940 941 942
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
943
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
944 945 946
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
947 948

    Returns:
949
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
950 951 952 953

    Examples:
        .. code-block:: python

954
            import paddle
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
975
    """
976 977 978
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
979 980


981
def zeros_like(x, dtype=None, name=None):
982
    """
983
    Returns a Tensor filled with the value 0, with the same shape and
984
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
985 986

    Args:
987 988
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
989
        dtype(str|np.dtype, optional): The data type of the
990 991 992
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
993
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
994 995

    Returns:
996 997
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
998

999

1000 1001 1002
    Examples:
        .. code-block:: python

1003
            import paddle
1004

Z
zhupengyang 已提交
1005
            x = paddle.to_tensor([1, 2, 3])
1006 1007
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1008

1009 1010
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1011 1012


1013
def eye(num_rows, num_columns=None, dtype=None, name=None):
1014
    """
1015

1016
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1017

1018
    Args:
1019 1020
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1021
            If None, default: num_rows.
W
wangchaochaohu 已提交
1022
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1023 1024
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1025
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1026

1027
    Returns:
1028
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1029

1030 1031
    Examples:
        .. code-block:: python
1032

1033
          import paddle
1034

1035
          data = paddle.eye(3, dtype='int32')
1036 1037 1038
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1039
          data = paddle.eye(2, 3, dtype='int32')
1040 1041
          # [[1 0 0]
          #  [0 1 0]]
1042 1043
    """

1044
    def _check_attr(attr, message):
1045
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1046 1047 1048 1049 1050 1051
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

1052
    if dtype is None:
1053 1054
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1055 1056
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1057
        _check_attr(num_columns, "num_columns")
1058 1059 1060
    else:
        num_columns = num_rows

1061 1062 1063 1064
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1065 1066
    else:
        helper = LayerHelper("eye", **locals())
1067 1068 1069 1070 1071 1072
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1073
        out = helper.create_variable_for_type_inference(dtype=dtype)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1085 1086 1087

    out.stop_gradient = True
    return out
1088 1089


1090
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1091
    """
S
swtkiwi 已提交
1092

1093
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1094

W
wangchaochaohu 已提交
1095
    Args:
1096 1097 1098 1099 1100
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1101
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1102
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1103 1104
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1105

1106
    Returns:
1107
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1108

W
wangchaochaohu 已提交
1109 1110 1111
    Examples:
        .. code-block:: python

1112
            import paddle
W
wangchaochaohu 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1140 1141 1142 1143 1144
    """

    if dtype is None:
        dtype = 'float32'

1145
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1146 1147


1148
def arange(start=0, end=None, step=1, dtype=None, name=None):
1149
    """
1150
    Returns a 1-D Tensor with spaced values within a given interval.
1151

1152 1153
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1154

1155 1156
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1157 1158

    Parameters:
1159 1160
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1161 1162
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1163
        end(float|int|Tensor, optional): End of interval. The interval does not
1164 1165 1166 1167
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1168 1169
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1170 1171
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1172
        dtype(str|np.dtype, optional): The data type of the
1173 1174
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1175
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1176

1177
    Returns:
1178
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1179 1180
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1181

Z
zhupengyang 已提交
1182
    Examples:
1183 1184
        .. code-block:: python

Z
zhupengyang 已提交
1185
            import paddle
1186

Z
zhupengyang 已提交
1187 1188
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1189

Z
zhupengyang 已提交
1190 1191
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1192

Z
zhupengyang 已提交
1193 1194 1195
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1196

1197
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1198 1199
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1200

1201 1202 1203 1204 1205 1206
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1230
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1231 1232 1233 1234 1235 1236 1237 1238
    else:
        check_dtype(
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64'],
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
1239 1240 1241 1242 1243 1244 1245
        out_shape = None
        if (
            not isinstance(start, Variable)
            and not isinstance(end, Variable)
            and not isinstance(step, Variable)
        ):
            out_shape = [int(math.ceil((end - start) / step))]
1246 1247 1248 1249 1250 1251
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1252
        out.stop_gradient = True
1253 1254
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1255 1256
        return out

W
WuHaobo 已提交
1257 1258

def _tril_triu_op(helper):
1259
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1260
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1261
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1262 1263

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1264
    check_variable_and_dtype(
1265 1266 1267 1268 1269
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1270
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1271
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1272
    diagonal = helper.kwargs.get('diagonal', 0)
1273
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1274 1275 1276 1277 1278 1279
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1280 1281 1282
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1283 1284 1285 1286 1287 1288 1289 1290

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1291 1292
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1293 1294 1295 1296

    return out


Y
yaoxuefeng 已提交
1297
def tril(x, diagonal=0, name=None):
1298
    r"""
1299
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1300 1301
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1302 1303 1304
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1305
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1306
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1307 1308 1309 1310 1311 1312 1313
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1314
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1315 1316

    Returns:
Y
yaoxuefeng 已提交
1317
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1318
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1319 1320 1321 1322

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1323
            import paddle
W
WuHaobo 已提交
1324

1325 1326 1327 1328 1329
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1330

1331 1332 1333 1334 1335
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1336 1337

            # example 2, positive diagonal value
1338 1339 1340 1341 1342
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1343 1344

            # example 3, negative diagonal value
1345 1346 1347 1348 1349
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1350
    """
F
From00 已提交
1351
    if in_dygraph_mode():
Z
zyfncg 已提交
1352
        return _C_ops.tril(x, diagonal)
1353 1354
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1355 1356


Y
yaoxuefeng 已提交
1357
def triu(x, diagonal=0, name=None):
1358
    r"""
1359
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1360
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1361 1362 1363 1364
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1365
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1366 1367 1368 1369 1370 1371 1372 1373
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1374
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1375 1376

    Returns:
Y
yaoxuefeng 已提交
1377
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1378
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1379 1380 1381 1382

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1383
            import paddle
W
WuHaobo 已提交
1384

1385 1386 1387 1388 1389
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1390 1391

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1392
            triu1 = paddle.tensor.triu(x)
1393 1394 1395 1396
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1397 1398

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1399
            triu2 = paddle.tensor.triu(x, diagonal=2)
1400 1401 1402 1403
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1404 1405

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1406
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1407 1408 1409 1410
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1411 1412

    """
F
From00 已提交
1413
    if in_dygraph_mode():
Z
zyfncg 已提交
1414
        return _C_ops.triu(x, diagonal)
1415 1416
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1417 1418


1419
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1420
    """
1421

1422
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1423

S
suytingwan 已提交
1424
    Args:
1425
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1426
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1427
        **kwargs (optional): Currently, only accept name in **kwargs
1428
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1429
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1430

S
suytingwan 已提交
1431
    Returns:
Y
yaoxuefeng 已提交
1432
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1433 1434 1435 1436 1437 1438

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1439 1440 1441 1442
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1443

Y
yaoxuefeng 已提交
1444 1445
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1446 1447 1448 1449 1450 1451

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1452 1453
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1454
    if in_dygraph_mode():
1455
        return _C_ops.meshgrid(list(args))
1456 1457 1458
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1459

1460 1461 1462 1463
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1464

1465 1466 1467 1468 1469 1470 1471
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1472

1473 1474 1475 1476 1477 1478 1479
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1480
        )
S
suytingwan 已提交
1481

1482
        return out
1483 1484


L
Li Min 已提交
1485 1486
def diagflat(x, offset=0, name=None):
    """
1487
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1501
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1502
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1503
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1504 1505 1506 1507 1508 1509

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1510
            :name: code-example-1
L
Li Min 已提交
1511

1512 1513 1514 1515
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1516 1517 1518 1519 1520
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1521 1522

            y = paddle.diagflat(x, offset=1)
1523 1524 1525 1526 1527 1528
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1529 1530

            y = paddle.diagflat(x, offset=-1)
1531 1532 1533 1534 1535 1536
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1537 1538

        .. code-block:: python
1539
            :name: code-example-2
L
Li Min 已提交
1540

1541
            import paddle
L
Li Min 已提交
1542

1543 1544
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1545 1546 1547 1548 1549 1550
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1551 1552

            y = paddle.diagflat(x, offset=1)
1553 1554 1555 1556 1557 1558 1559
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1560 1561

            y = paddle.diagflat(x, offset=-1)
1562 1563 1564 1565 1566 1567 1568
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1569
    """
1570
    if in_dygraph_mode():
1571
        if len(x.shape) <= 1:
1572
            return _C_ops.diag(x, offset, 0)
1573
        else:
1574
            y = _C_ops.flatten(x, 0, -1)
1575 1576 1577 1578 1579
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1580 1581 1582 1583
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1584 1585
        )
        check_type(offset, 'offset', (int), 'diagflat')
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1598
            )
L
Li Min 已提交
1599
        else:
1600 1601 1602 1603 1604
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1605
            )
1606
            out1.stop_gradient = True
L
Li Min 已提交
1607

1608 1609 1610 1611 1612 1613 1614 1615
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1616 1617


1618 1619
def diag(x, offset=0, padding_value=0, name=None):
    """
1620
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1633
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1634 1635
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1636
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1637

1638 1639 1640 1641 1642
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1643
            :name: code-example-1
1644

1645
            import paddle
1646

1647 1648 1649
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1650 1651 1652 1653 1654
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1655 1656

            y = paddle.diag(x, offset=1)
1657 1658 1659 1660 1661 1662
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1663 1664

            y = paddle.diag(x, padding_value=6)
1665 1666 1667 1668 1669
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1670 1671

        .. code-block:: python
1672
            :name: code-example-2
1673

1674
            import paddle
1675

1676 1677 1678
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1679 1680 1681
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1682

1683
            y = paddle.diag(x, offset=1)
1684 1685 1686
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1687

1688
            y = paddle.diag(x, offset=-1)
1689 1690 1691
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1692
    """
J
Jiabin Yang 已提交
1693
    if in_dygraph_mode():
1694
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1695
    else:
1696 1697 1698 1699
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1700
            ['float16', 'float32', 'float64', 'int32', 'int64'],
1701 1702 1703 1704 1705 1706 1707 1708
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1709
                )
1710
            )
1711

1712
        helper = LayerHelper("diag_v2", **locals())
1713

1714
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1715

1716 1717 1718 1719 1720 1721
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1722

1723 1724
        out.stop_gradient = True
        return out
1725 1726 1727 1728


def empty(shape, dtype=None, name=None):
    """
1729
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1730

1731
    Args:
1732 1733 1734
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1735 1736 1737 1738
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1739
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1740

1741 1742 1743 1744 1745 1746
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1747
            import paddle
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1768 1769 1770 1771 1772 1773 1774
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1775 1776
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1777 1778 1779
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1780 1781
        out.stop_gradient = True
        return out
1782 1783 1784
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1785

1786 1787 1788 1789 1790
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty',
1791
        )
1792
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1793

1794 1795
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1796

1797 1798 1799 1800
        attrs = {}
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1813 1814 1815 1816


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1817
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1818
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1819

1820 1821 1822
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1823
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1824
            data type is the same as input.
1825
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1847
    if in_dygraph_mode():
1848 1849 1850 1851 1852
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1853 1854
        out.stop_gradient = True
        return out
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
1885
        )
1886 1887 1888
        out.stop_gradient = True
        return out

1889 1890 1891

def assign(x, output=None):
    """
1892

1893
    Copy value of the :attr:`x` to the :attr:`output`.
1894

1895
    Parameters:
1896 1897
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1898
            data limitation.
1899
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1900

1901
    Returns:
1902
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1903

1904 1905
    Examples:
        .. code-block:: python
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1917
    """
1918 1919
    input = x
    helper = LayerHelper('assign', **locals())
1920 1921 1922 1923 1924 1925
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1937
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1938
        if in_dygraph_mode():
1939
            if output is None:
1940
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1941
            else:
1942
                _C_ops.assign_out_(input, output)
1943
        else:
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1960 1961
            if output is None:
                output = helper.create_variable_for_type_inference(
1962 1963 1964 1965 1966
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1967
    elif isinstance(input, np.ndarray):
1968
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1969
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1970
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1971 1972 1973 1974
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1975
                    if isinstance(x, (Variable, core.eager.Tensor))
1976 1977
                ]
            ):
1978 1979 1980 1981 1982
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1983
                if not isinstance(x, (Variable, core.eager.Tensor)):
1984 1985 1986 1987 1988 1989 1990 1991 1992
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
1993
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1994
            raise TypeError(
1995
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1996
            )
1997

1998 1999 2000 2001 2002 2003 2004
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2005 2006
                "it to float32"
            )
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2024 2025
                "received %s." % convert_dtype(dtype)
            )
2026
        if input.size > 1024 * 1024:
2027 2028 2029 2030
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2031 2032 2033
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2034 2035 2036 2037 2038 2039 2040
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2041
        else:
2042 2043
            if output is None:
                output = helper.create_variable_for_type_inference(
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2055 2056

    return output
2057 2058


2059 2060
def clone(x, name=None):
    """
2061 2062
    Returns a copy of input Tensor. It will always have a Tensor copy.

2063 2064 2065 2066
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2067
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2068

2069
    Returns:
2070
        Tensor, A Tensor copied from ``input``.
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2089
# NOTE(zhiqiu): not public
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2103
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2104 2105 2106 2107 2108

    Examples:
        .. code-block:: python

          import paddle
2109

2110 2111 2112 2113 2114 2115 2116
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
2154 2155 2156 2157 2158 2159
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2160
    return output
F
Feiyu Chan 已提交
2161 2162 2163 2164 2165 2166 2167 2168


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2169
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2170 2171 2172 2173

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2174 2175 2176 2177
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2178 2179 2180 2181 2182 2183 2184 2185

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2186 2187 2188 2189
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2190
    """
2191
    if in_dygraph_mode():
2192
        return _C_ops.complex(real, imag)
2193 2194 2195 2196 2197 2198 2199
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2213 2214 2215 2216


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2217 2218
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2219 2220
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2221

2222 2223 2224 2225 2226
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2227 2228 2229 2230
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2241

2242 2243 2244
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2245
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2246 2247 2248 2249 2250
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2251
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2264 2265
        if col is None:
            col = row
2266 2267 2268
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2269
        return out
2270 2271 2272
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2273

2274 2275 2276 2277 2278 2279 2280 2281
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2282 2283 2284 2285 2286

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2287 2288 2289 2290 2291 2292
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2293
    return out
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2343 2344
        if col is None:
            col = row
2345 2346 2347
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2348
        return out
2349 2350 2351
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2352

2353 2354 2355 2356 2357 2358 2359 2360
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2361 2362 2363 2364 2365

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2366 2367 2368 2369 2370 2371
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2372
    return out