Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4a44ffdd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4a44ffdd
编写于
7月 21, 2020
作者:
W
wangchaochaohu
提交者:
GitHub
7月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine the eye Op for API 2.0 test=develop (#25295)
上级
273ee7d3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
137 addition
and
81 deletion
+137
-81
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+56
-29
python/paddle/fluid/tests/unittests/test_eye_op.py
python/paddle/fluid/tests/unittests/test_eye_op.py
+55
-9
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+26
-43
未找到文件。
python/paddle/fluid/layers/tensor.py
浏览文件 @
4a44ffdd
...
...
@@ -1551,7 +1551,11 @@ def diag(diagonal):
return
out
def
eye
(
num_rows
,
num_columns
=
None
,
batch_shape
=
None
,
dtype
=
'float32'
):
def
eye
(
num_rows
,
num_columns
=
None
,
batch_shape
=
None
,
dtype
=
'float32'
,
name
=
None
):
"""
:alias_main: paddle.eye
:alias: paddle.eye,paddle.tensor.eye,paddle.tensor.creation.eye
...
...
@@ -1559,19 +1563,25 @@ def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
**eye**
This function constructs a
n identity tensor, or a batch of tensor.
This function constructs a
or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere.
Args:
num_rows(int): the number of rows in each batch tensor.
num_columns(int): the number of columns in each batch tensor.
If None, default: num_rows.
batch_shape(list(int)): If provided, the returned tensor will have a leading
batch size of this shape.
dtype(string): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64.
num_columns(int, optional): the number of columns in each batch tensor.
If None, default: num_rows.
batch_shape(list(int), optional): If provided, the returned tensor will have a leading
batch size of this shape, default is None.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64, default is 'float32'.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
Raises:
TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64.
TypeError: The `num_columns` must be non-negative int.
Examples:
.. code-block:: python
...
...
@@ -1592,38 +1602,55 @@ def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
"""
helper
=
LayerHelper
(
"eye"
,
**
locals
())
if
not
isinstance
(
num_rows
,
int
)
or
num_rows
<
0
:
raise
TypeError
(
"num_rows should be a non-negative int"
)
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
num_columns
is
not
None
:
if
not
isinstance
(
num_columns
,
int
)
or
num_columns
<
0
:
raise
TypeError
(
"num_columns should be a non-negative int"
)
else
:
num_columns
=
num_rows
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
helper
.
append_op
(
type
=
'eye'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'num_rows'
:
num_rows
,
'num_columns'
:
num_columns
,
'dtype'
:
c_dtype
},
stop_gradient
=
True
)
out
.
stop_gradient
=
True
if
in_dygraph_mode
():
out
=
core
.
ops
.
eye
(
'dtype'
,
dtype
,
'num_rows'
,
num_rows
,
'num_columns'
,
num_columns
)
else
:
helper
=
LayerHelper
(
"eye"
,
**
locals
())
check_dtype
(
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'eye'
)
if
not
isinstance
(
num_rows
,
int
)
or
num_rows
<
0
:
raise
TypeError
(
"num_rows should be a non-negative int"
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'eye'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'num_rows'
:
num_rows
,
'num_columns'
:
num_columns
,
'dtype'
:
dtype
},
stop_gradient
=
True
)
if
batch_shape
is
not
None
:
re_shape
=
[
1
]
*
len
(
batch_shape
)
re_shape
=
re_shape
+
[
num_rows
,
num_columns
]
expand_times
=
batch_shape
+
[
1
,
1
]
if
in_dygraph_mode
():
out
=
core
.
ops
.
reshape
(
out
,
'shape'
,
re_shape
)
return
core
.
ops
.
expand
(
out
,
'expand_times'
,
expand_times
)
if
not
isinstance
(
batch_shape
,
list
):
raise
TypeError
(
"batch_shape should be a list"
)
from
.nn
import
stack
for
batch_val
in
reversed
(
batch_shape
):
for
batch_val
in
(
batch_shape
):
if
batch_val
<=
0
:
raise
TypeError
(
"batch_shape should be a positive int list"
)
else
:
stack_vars
=
[
out
for
_
in
numpy
.
arange
(
batch_val
)]
out
=
stack
(
stack_vars
,
axis
=
0
)
from
.nn
import
reshape
,
expand
out
=
reshape
(
x
=
out
,
shape
=
re_shape
)
out
=
expand
(
x
=
out
,
expand_times
=
expand_times
)
out
.
stop_gradient
=
True
return
out
...
...
python/paddle/fluid/tests/unittests/test_eye_op.py
浏览文件 @
4a44ffdd
...
...
@@ -74,32 +74,73 @@ class TestEyeOp2(OpTest):
class
API_TestTensorEye
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
with
paddle
.
program_guard
(
paddle
.
Program
()):
data
=
paddle
.
eye
(
10
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
paddle
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
expected_result
=
np
.
eye
(
10
,
dtype
=
"float32"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
with
paddle
.
program_guard
(
paddle
.
Program
()):
data
=
paddle
.
eye
(
10
,
num_columns
=
7
,
dtype
=
"float64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
expected_result
=
np
.
eye
(
10
,
7
,
dtype
=
"float64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
with
paddle
.
program_guard
(
paddle
.
Program
()):
data
=
paddle
.
eye
(
10
,
dtype
=
"int64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
expected_result
=
np
.
eye
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
paddle
.
imperative
.
guard
():
out
=
paddle
.
eye
(
10
,
dtype
=
"int64"
)
expected_result
=
np
.
eye
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
out
.
numpy
()
==
expected_result
).
all
(),
True
)
with
paddle
.
imperative
.
guard
():
batch_shape
=
[
2
]
out
=
fluid
.
layers
.
eye
(
10
,
10
,
dtype
=
"int64"
,
batch_shape
=
batch_shape
)
result
=
np
.
eye
(
10
,
dtype
=
"int64"
)
expected_result
=
[]
for
index
in
reversed
(
batch_shape
):
tmp_result
=
[]
for
i
in
range
(
index
):
tmp_result
.
append
(
result
)
result
=
tmp_result
expected_result
=
np
.
stack
(
result
,
axis
=
0
)
self
.
assertEqual
(
out
.
numpy
().
shape
==
np
.
array
(
expected_result
).
shape
,
True
)
self
.
assertEqual
((
out
.
numpy
()
==
expected_result
).
all
(),
True
)
with
paddle
.
imperative
.
guard
():
batch_shape
=
[
3
,
2
]
out
=
fluid
.
layers
.
eye
(
10
,
10
,
dtype
=
"int64"
,
batch_shape
=
batch_shape
)
result
=
np
.
eye
(
10
,
dtype
=
"int64"
)
expected_result
=
[]
for
index
in
reversed
(
batch_shape
):
tmp_result
=
[]
for
i
in
range
(
index
):
tmp_result
.
append
(
result
)
result
=
tmp_result
expected_result
=
np
.
stack
(
result
,
axis
=
0
)
self
.
assertEqual
(
out
.
numpy
().
shape
==
np
.
array
(
expected_result
).
shape
,
True
)
self
.
assertEqual
((
out
.
numpy
()
==
expected_result
).
all
(),
True
)
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
with
paddle
.
program_guard
(
paddle
.
Program
()):
def
test_num_rows_type_check
():
paddle
.
eye
(
-
1
,
dtype
=
"int64"
)
...
...
@@ -111,6 +152,11 @@ class API_TestTensorEye(unittest.TestCase):
self
.
assertRaises
(
TypeError
,
test_num_columns_type_check
)
def
test_num_columns_type_check
():
paddle
.
eye
(
10
,
num_columns
=
10
,
dtype
=
"int8"
)
self
.
assertRaises
(
TypeError
,
test_num_columns_type_check
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/creation.py
浏览文件 @
4a44ffdd
...
...
@@ -26,10 +26,10 @@ import paddle
# TODO: define functions to get create a tensor
from
..fluid.layers
import
crop_tensor
#DEFINE_ALIAS
from
..fluid.layers
import
diag
#DEFINE_ALIAS
from
..fluid.layers
import
eye
#DEFINE_ALIAS
from
..fluid.layers
import
fill_constant
#DEFINE_ALIAS
from
..fluid.layers
import
create_tensor
#DEFINE_ALIAS
from
..fluid.layers
import
linspace
#DEFINE_ALIAS
import
paddle
__all__
=
[
'create_tensor'
,
...
...
@@ -295,67 +295,50 @@ def zeros_like(x, dtype=None, name=None):
return
full_like
(
x
=
x
,
fill_value
=
0
,
dtype
=
dtype
,
name
=
name
)
def
eye
(
num_rows
,
num_columns
=
None
,
out
=
None
,
dtype
=
'float32'
,
stop_gradient
=
True
,
name
=
None
):
def
eye
(
num_rows
,
num_columns
=
None
,
dtype
=
None
,
name
=
None
):
"""
**eye**
This function constructs an identity tensor.
This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
Args:
num_rows(int): the number of rows in each batch tensor.
num_columns(int, optional): the number of columns in each batch tensor.
If None, default: num_rows.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
dtype(string, optional): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64.
stop_gradient(bool, optional): Whether stop calculating gradients. Default:True.
If None, default: num_rows.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64. Default: if None, the data type
is float32.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
Raises:
TypeError: The `dtype` must be one of float16, float32, float64, int32 int64 and None.
TypeError: The `num_columns` must be non-negative int.
Examples:
.. code-block:: python
import paddle
paddle.enable_imperative() # Now we are in imperative mode
data = paddle.eye(3, dtype='int32')
# [[1
, 0,
0]
# [0
, 1,
0]
# [0
, 0,
1]]
# [[1
0
0]
# [0
1
0]
# [0
0
1]]
data = paddle.eye(2, 3, dtype='int32')
# [[1
, 0,
0]
# [0
, 1,
0]]
# [[1
0
0]
# [0
1
0]]
"""
helper
=
LayerHelper
(
"eye"
,
**
locals
())
if
not
isinstance
(
num_rows
,
int
)
or
num_rows
<
0
:
raise
TypeError
(
"num_rows should be a non-negative int"
)
if
num_columns
is
not
None
:
if
not
isinstance
(
num_columns
,
int
)
or
num_columns
<
0
:
raise
TypeError
(
"num_columns should be a non-negative int"
)
else
:
if
dtype
is
None
:
dtype
=
'float32'
if
num_columns
is
None
:
num_columns
=
num_rows
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
helper
.
append_op
(
type
=
'eye'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'num_rows'
:
num_rows
,
'num_columns'
:
num_columns
,
'dtype'
:
c_dtype
},
stop_gradient
=
True
)
out
.
stop_gradient
=
stop_gradient
return
out
return
paddle
.
fluid
.
layers
.
eye
(
num_rows
=
num_rows
,
num_columns
=
num_columns
,
batch_shape
=
None
,
dtype
=
dtype
,
name
=
name
)
def
full
(
shape
,
fill_value
,
dtype
=
None
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录