creation.py 70.9 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18 19
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
20 21 22 23
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
24 25
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
26
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
27
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
28
# TODO: define functions to get create a tensor
29
import paddle
W
wanghuancoder 已提交
30
from paddle import _C_ops
31 32
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
33

34 35
__all__ = []

W
wangchaochaohu 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
57
    Return fixed number of evenly spaced values within a given interval.
58 59 60 61 62 63 64 65 66 67

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
68
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
94
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
95 96
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
97
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
98 99
    if not isinstance(num, Variable):
        with device_guard("cpu"):
100
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    if _non_static_mode():
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
125 126 127 128
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
129 130 131 132 133 134 135
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

136 137 138 139 140 141 142 143
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
144 145 146 147 148
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
171
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
        return _C_ops.logspace(tensor_start, tensor_stop, tensor_num,
                               tensor_base, 'dtype', dtype)

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
        check_dtype(base.dtype, 'base',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(base, 'base', (int, float), 'logspace')

    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'logspace')
    if ((stop_dtype == "float64" or start_dtype == "float64"
                                 or base_dtype == "float64")
                                 and out_dtype in ["float32", "int32"]) or \
       ((stop_dtype == "int64" or start_dtype == "int64"
                               or base_dtype == "int64")
                               and out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of logspace."
            .format(start_dtype, stop_dtype, base_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

256 257 258 259 260 261 262 263 264
    helper.append_op(type='logspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num,
                         'Base': tensor_base
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
265 266 267 268 269
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


270 271
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
272
    r"""
C
chentianyu03 已提交
273 274
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
275

276 277
    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.
278 279

    Args:
C
chentianyu03 已提交
280 281
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
282
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
C
chentianyu03 已提交
283 284
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
285
            except for python float number which gets dtype from ``get_default_type`` .
286 287 288
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
289 290 291
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
C
chentianyu03 已提交
292
        Tensor: A Tensor constructed from ``data`` .
293 294 295 296 297 298 299 300 301 302 303

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
304
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
305
        #        [1])
306

307 308 309
        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
310
        #        [1])
311

312 313 314
        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        
315

316 317
        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
318 319
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
320

C
chentianyu03 已提交
321
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
322
        # <class 'paddle.Tensor'>
323 324

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
325
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
C
chentianyu03 已提交
326 327
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
328
    """
329
    place = _get_paddle_place(place)
330 331
    if place is None:
        place = _current_expected_place()
332 333 334 335
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace,
         core.NPUPlace, core.XPUPlace, core.MLUPlace, core.CustomPlace)):
336
        raise ValueError(
F
fwenguang 已提交
337
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace, paddle.XPUPlace, paddle.MLUPlace, paddle.CustomPlace"
338 339 340
        )

    if not isinstance(data, np.ndarray):
341

342
        def _handle_dtype(data, dtype):
343 344 345 346 347
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

348 349 350 351
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
352
            if data.dtype == np.object_:
353 354 355 356
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
357 358 359 360 361 362
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
363
            data = data._copy_to(place, False)
364
            data = _handle_dtype(data, dtype)
365
            data.stop_gradient = stop_gradient
366
            return data
367
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
368
            # should't expose it to users, just for internal use.
369 370
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
371 372 373 374
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
375 376 377 378
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
379
            return data
380 381
        else:
            raise TypeError(
382 383
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor"
                .format(type(data)))
384 385 386 387 388 389 390 391 392 393 394 395 396 397
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
398 399

    if dtype and convert_dtype(dtype) != data.dtype:
400
        data = data.astype(convert_dtype(dtype))
401

J
Jiabin Yang 已提交
402
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
403 404 405 406 407 408
        return core.eager.Tensor(value=data,
                                 place=place,
                                 persistable=False,
                                 zero_copy=False,
                                 name=None,
                                 stop_gradient=stop_gradient)
409
    else:
410 411 412 413 414
        return paddle.Tensor(value=data,
                             place=place,
                             persistable=False,
                             zero_copy=False,
                             stop_gradient=stop_gradient)
415 416


417
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
418
    """
S
swtkiwi 已提交
419

420 421
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
422

P
Pei Yang 已提交
423
    Args:
424 425
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
426
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
427 428
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
429
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
430
    
P
Pei Yang 已提交
431
    Returns:
432
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
433
    
P
Pei Yang 已提交
434 435
    Examples:
        .. code-block:: python
436

P
Pei Yang 已提交
437
          import paddle
438 439
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
440
          output = paddle.full_like(input, 2.0)
441 442
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
443 444 445
    """

    if dtype is None:
446
        dtype = x.dtype
447
    else:
448 449 450
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

451 452 453 454
    if in_dygraph_mode():
        return _C_ops.final_state_full_like(x, fill_value, dtype, x.place)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
455
        return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
456

457
    helper = LayerHelper("full_like", **locals())
458
    check_variable_and_dtype(
459 460
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
461
        'full_like')
462 463 464 465
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
466
    out = helper.create_variable_for_type_inference(dtype=dtype)
467

468 469 470 471 472 473 474
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={
                         'value': fill_value,
                         "dtype": dtype
                     },
                     outputs={'Out': [out]})
475
    out.stop_gradient = True
P
Pei Yang 已提交
476 477 478
    return out


479
def ones(shape, dtype=None, name=None):
480
    """
B
BrilliantYuKaimin 已提交
481
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
482 483

    Args:
B
BrilliantYuKaimin 已提交
484 485 486 487
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
488
    
489
    Returns:
B
BrilliantYuKaimin 已提交
490
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
491 492 493 494

    Examples:
        .. code-block:: python

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            import paddle 

            # default dtype for ones OP
            data1 = paddle.ones(shape=[3, 2]) 
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            data2 = paddle.ones(shape=[2, 2], dtype='int32') 
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
            data3 = paddle.ones(shape=shape, dtype='int32') 
            # [[1 1]
            #  [1 1]]
512
    """
513 514 515
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
516 517


518
def ones_like(x, dtype=None, name=None):
519
    """
C
Chen Long 已提交
520
    Returns a Tensor filled with the value 1, with the same shape and
521
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
522 523

    Args:
524 525
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
526
        dtype(str|np.dtype, optional): The data type of the
527 528 529
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
530
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
531

532
    Returns:
533 534 535
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

536 537 538
    Examples:
        .. code-block:: python

539
            import paddle
540

541
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
542 543
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
544

545 546
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
547 548


549
def zeros(shape, dtype=None, name=None):
550
    """
C
Chen Long 已提交
551
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
552 553

    Args:
554
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
555
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
556 557 558
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
559 560

    Returns:
561
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
562 563 564 565 566

    Examples:
        .. code-block:: python

          import paddle
567
          
568 569 570 571 572 573 574 575 576
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
577
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
578
          data3 = paddle.zeros(shape=shape, dtype='int32') 
579 580
          # [[0 0]
          #  [0 0]]
581
    """
582 583 584
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
585 586


587
def zeros_like(x, dtype=None, name=None):
588
    """
589
    Returns a Tensor filled with the value 0, with the same shape and
590
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
591 592

    Args:
593 594
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
595
        dtype(str|np.dtype, optional): The data type of the
596 597 598
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
599
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
600 601

    Returns:
602 603
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
604

605

606 607 608
    Examples:
        .. code-block:: python

609
            import paddle
610

Z
zhupengyang 已提交
611
            x = paddle.to_tensor([1, 2, 3])
612 613
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
614

615 616
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
617 618


619
def eye(num_rows, num_columns=None, dtype=None, name=None):
620
    """
621
    
622
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
623

624
    Args:
625 626
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
627
            If None, default: num_rows.
W
wangchaochaohu 已提交
628
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
629 630
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
631
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
632

633
    Returns:
634
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
635

636 637
    Examples:
        .. code-block:: python
638
          
639
          import paddle
640

641
          data = paddle.eye(3, dtype='int32')
642 643 644
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
645
          data = paddle.eye(2, 3, dtype='int32')
646 647
          # [[1 0 0]
          #  [0 1 0]]
648 649
    """

650 651 652
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
653
        num_columns = num_rows
654 655 656 657 658 659 660 661 662 663

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows

    if _non_static_mode():
664 665 666 667 668 669
        if in_dygraph_mode():
            out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                         _current_expected_place())
        elif _in_legacy_dygraph():
            out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                             'num_columns', num_columns)
670 671 672 673 674 675 676 677

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
678 679 680 681 682 683 684 685 686
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
687 688 689

    out.stop_gradient = True
    return out
690 691


692
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
693
    """
S
swtkiwi 已提交
694

695
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
696 697
    
    Args:
698
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
699 700
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
701
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
702 703
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
704
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
705
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
706 707
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
wangchaochaohu 已提交
708
    
709
    Returns:
710
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
711

W
wangchaochaohu 已提交
712 713 714
    Examples:
        .. code-block:: python

715
            import paddle
W
wangchaochaohu 已提交
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
            # [[True True] 
            #  [True True]]
            
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
            # [[2.0] 
            #  [2.0]]
W
wangchaochaohu 已提交
737 738 739 740 741
    """

    if dtype is None:
        dtype = 'float32'

742
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
743 744


745
def arange(start=0, end=None, step=1, dtype=None, name=None):
746
    """
747
    Returns a 1-D Tensor with spaced values within a given interval.
748

749 750
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
751

752 753
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
754 755

    Parameters:
756 757 758 759 760 761 762 763 764 765 766 767
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
768
        dtype(str|np.dtype, optional): The data type of the
769 770
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
771
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
772

773 774
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
775 776
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
777

Z
zhupengyang 已提交
778
    Examples:
779 780
        .. code-block:: python

Z
zhupengyang 已提交
781
            import paddle
782

Z
zhupengyang 已提交
783 784
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
785

Z
zhupengyang 已提交
786 787
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
788

Z
zhupengyang 已提交
789 790 791
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
792

Z
zhupengyang 已提交
793 794 795
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
796 797 798 799 800 801 802
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
803

804 805 806 807 808
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

    if _in_legacy_dygraph():
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
843 844 845 846 847 848 849
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
850
    out.stop_gradient = True
851 852
    if out_shape is not None:
        out.desc.set_shape(out_shape)
853
    return out
W
WuHaobo 已提交
854 855 856 857 858 859


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
860
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
861 862

    assert x is not None, 'x cannot be None in {}'.format(op_type)
863 864
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
865
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
866
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
867 868 869 870 871 872 873 874
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
875 876 877
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
W
WuHaobo 已提交
878 879 880 881 882 883 884 885

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
886 887
        outputs={"Out": out},
    )
W
WuHaobo 已提交
888 889 890 891

    return out


Y
yaoxuefeng 已提交
892
def tril(x, diagonal=0, name=None):
893
    r"""
894
    Returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
895
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
896 897 898 899
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
900
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
901
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
902 903 904 905 906 907 908
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
909
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
910 911

    Returns:
Y
yaoxuefeng 已提交
912
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
913
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
914 915 916 917

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
918
            import paddle
W
WuHaobo 已提交
919

920 921 922 923 924
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
925

926 927 928 929 930
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
931 932

            # example 2, positive diagonal value
933 934 935 936 937
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
938 939

            # example 3, negative diagonal value
940 941 942 943 944
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
945
    """
F
From00 已提交
946 947 948 949
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, True)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
950
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
951
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
952 953 954 955

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
956
def triu(x, diagonal=0, name=None):
957
    r"""
958
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
959
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
960 961 962 963
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
964
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
965 966 967 968 969 970 971 972
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
973
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
974 975

    Returns:
Y
yaoxuefeng 已提交
976
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
977
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
978 979 980 981 982

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
983
            import paddle
W
WuHaobo 已提交
984 985 986 987 988

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
989

W
WuHaobo 已提交
990 991

            # example 1, default diagonal
992
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
993
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
994 995 996 997 998
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
999
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
1000 1001 1002 1003 1004
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1005
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
1006 1007 1008 1009 1010
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
F
From00 已提交
1011 1012 1013 1014
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, False)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1015
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1016
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1017 1018

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1019 1020


1021
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1022
    """
C
Chen Long 已提交
1023
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
S
suytingwan 已提交
1024 1025
    
    Args:
Y
yaoxuefeng 已提交
1026
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
1027
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
C
Chen Long 已提交
1028
        **kwargs (optional): Currently, only accept name in **kwargs 
1029
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1030 1031 1032
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
1033
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1034 1035 1036 1037 1038 1039

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1040 1041 1042 1043
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1044

Y
yaoxuefeng 已提交
1045 1046
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1047 1048 1049 1050 1051 1052

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1053 1054
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1055
    if _in_legacy_dygraph():
1056
        num = len(args)
W
wanghuancoder 已提交
1057
        out = _C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1058
        return out
Y
YuanRisheng 已提交
1059 1060
    if in_dygraph_mode():
        return _C_ops.final_state_meshgrid(list(args))
S
suytingwan 已提交
1061

1062
    name = kwargs.get("name", None)
S
suytingwan 已提交
1063 1064
    helper = LayerHelper('meshgrid', **locals())

1065 1066
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1067

1068
    for id, input_ in enumerate(args):
S
suytingwan 已提交
1069 1070 1071 1072
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

1073
    num = len(args)
S
suytingwan 已提交
1074
    out = [
1075
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1076 1077
        for i in range(num)
    ]
1078 1079 1080
    helper.append_op(type='meshgrid',
                     inputs={'X': list(args)},
                     outputs={'Out': out})
S
suytingwan 已提交
1081 1082

    return out
1083 1084


L
Li Min 已提交
1085 1086
def diagflat(x, offset=0, name=None):
    """
1087
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1103
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1104 1105 1106 1107 1108 1109

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1110
            :name: code-example-1
L
Li Min 已提交
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0]
            #  [1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]]
L
Li Min 已提交
1134 1135

        .. code-block:: python
1136
            :name: code-example-2
L
Li Min 已提交
1137

1138
            import paddle
L
Li Min 已提交
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]
            #  [0 0 0 4]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0 0]
            #  [0 0 2 0 0]
            #  [0 0 0 3 0]
            #  [0 0 0 0 4]
            #  [0 0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0 0]
            #  [1 0 0 0 0]
            #  [0 2 0 0 0]
            #  [0 0 3 0 0]
            #  [0 0 0 4 0]]
L
Li Min 已提交
1163 1164
    """
    padding_value = 0
Z
zhiboniu 已提交
1165
    if paddle.in_dynamic_mode():
L
Li Min 已提交
1166
        if len(x.shape) == 1:
W
wanghuancoder 已提交
1167 1168
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1169
        else:
W
wanghuancoder 已提交
1170 1171 1172 1173
            y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0,
                                                   "stop_axis", -1)
            return _C_ops.diag_v2(y, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1186 1187 1188 1189 1190 1191 1192
        helper.append_op(type='diag_v2',
                         inputs={'X': x},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1193
    else:
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        helper.append_op(type='flatten_contiguous_range',
                         inputs={'X': x},
                         outputs={
                             'Out': out1,
                             'XShape': out1_shape
                         },
                         attrs={
                             'start_axis': 0,
                             'stop_axis': -1
                         })
L
Li Min 已提交
1204 1205
        out1.stop_gradient = True

1206 1207 1208 1209 1210 1211 1212
        helper.append_op(type='diag_v2',
                         inputs={'X': out1},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1213 1214 1215 1216
    out2.stop_gradient = True
    return out2


1217 1218
def diag(x, offset=0, padding_value=0, name=None):
    """
1219
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1235 1236
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
1237 1238 1239 1240 1241
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1242
            :name: code-example-1
1243

1244
            import paddle
1245

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diag(x, padding_value=6)
            print(y.numpy())
            # [[1 6 6]
            #  [6 2 6]
            #  [6 6 3]]
1266 1267

        .. code-block:: python
1268
            :name: code-example-2
1269

1270
            import paddle
1271

1272 1273 1274 1275 1276
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
            print(y.numpy())
            # [1 5]
1277

1278 1279 1280
            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [2 6]
1281

1282 1283 1284
            y = paddle.diag(x, offset=-1)
            print(y.numpy())
            # [4]
1285
    """
J
Jiabin Yang 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    if in_dygraph_mode():
        return _C_ops.final_state_diag(x, offset, padding_value)
    else:
        if _in_legacy_dygraph():
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1300 1301
                    "The dimension of input x must be either 1 or 2, but received {}"
                    .format(len(x.shape)))
1302

J
Jiabin Yang 已提交
1303
            helper = LayerHelper("diag_v2", **locals())
1304

J
Jiabin Yang 已提交
1305
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1306

1307 1308 1309 1310 1311 1312 1313
            helper.append_op(type='diag_v2',
                             inputs={'X': x},
                             outputs={'Out': out},
                             attrs={
                                 'offset': offset,
                                 'padding_value': padding_value
                             })
1314

J
Jiabin Yang 已提交
1315 1316
            out.stop_gradient = True
            return out
1317 1318 1319 1320


def empty(shape, dtype=None, name=None):
    """
1321
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1332
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1333 1334 1335 1336 1337 1338 1339
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1340
            import paddle
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1366 1367 1368 1369 1370 1371 1372
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1373
    if paddle.in_dynamic_mode():
1374
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
1375 1376
        out = _C_ops.empty('shape', shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1392 1393 1394 1395
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty')
1396 1397 1398

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1399 1400 1401 1402 1403
    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1404 1405
    out.stop_gradient = True
    return out
1406 1407 1408 1409


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1410
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1411 1412 1413 1414 1415 1416 1417
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
1418
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1440
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1441 1442
        out = _C_ops.empty('shape', x.shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty_like')

    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1469 1470
    out.stop_gradient = True
    return out
1471 1472 1473 1474


def assign(x, output=None):
    """
1475

1476
    Copy value of the :attr:`x` to the :attr:`output`.
1477 1478
 
    Parameters:
1479 1480
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1481
            data limitation.
1482
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1483 1484
 
    Returns:
1485
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1486 1487 1488
 
    Examples:
        .. code-block:: python
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1500
    """
1501 1502
    input = x
    helper = LayerHelper('assign', **locals())
1503 1504
    check_type(input, 'input',
               (Variable, np.ndarray, list, tuple, float, int, bool), 'assign')
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
Z
zyfncg 已提交
1517
        if in_dygraph_mode():
1518
            if output is None:
Z
zyfncg 已提交
1519 1520 1521 1522 1523 1524
                output = _C_ops.final_state_assign(input)
            else:
                _C_ops.final_state_assign_out_(input, output)
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1525 1526 1527 1528 1529 1530 1531 1532 1533
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1534 1535 1536
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
1537
    elif isinstance(input, np.ndarray):
1538
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1539
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
            if not all(
                [x.shape == (1, ) for x in input if isinstance(x, Variable)]):
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
                if not isinstance(x, Variable):
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
            """ may be this form [[Var], [Var], [3], [4]], we reject them.
            """
1560
            raise TypeError(
1561
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1562
            )
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1593 1594 1595 1596 1597 1598 1599 1600
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
            _C_ops.final_state_assign_value_(output, list(input.shape), dtype,
                                             values, _current_expected_place())
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1601 1602
            _C_ops.assign_value(output, 'shape', list(input.shape), 'dtype',
                                dtype, value_name, values)
1603
        else:
1604 1605 1606
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1607 1608 1609 1610 1611 1612 1613
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
1614

Z
zyfncg 已提交
1615
    if is_inplace and _in_legacy_dygraph():
1616 1617 1618
        output._bump_inplace_version()

    return output
1619 1620


1621 1622 1623 1624 1625 1626 1627 1628
def clone(x, name=None):
    """
    Returns a copy of input Tensor. It will always have a Tensor copy. 
    
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1629
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

    Returns: A Tensor copied from ``input`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1650
#NOTE(zhiqiu): not public
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1703 1704 1705 1706
    helper.append_op(type='memcpy',
                     inputs={'X': [input]},
                     outputs={'Out': [output]},
                     attrs=attrs)
1707
    return output
F
Feiyu Chan 已提交
1708 1709 1710 1711 1712 1713 1714 1715


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1716
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
1736 1737 1738
    if in_dygraph_mode():
        return _C_ops.final_state_complex(real, imag)

Z
zhiboniu 已提交
1739
    if paddle.in_dynamic_mode():
F
Feiyu Chan 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        return paddle._C_ops.complex(real, imag)

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830


def tril_indices(row, col, offset=0, dtype='int64'):
    """
    Return the indices of the lower triangular part of the 2-D matrix 
    whose row and col is knowed.Indices are ordered based on row and then columns. 
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
    
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and below the main diagonal are retained.  
            - If offset > 0, include just as many diagonals above the main diagonal.  
            - If offset < 0, excludes just as many diagonals below the main diagonal.  
 
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        out = _C_ops.final_state_tril_indices(row, col, offset, dtype,
                                              _current_expected_place())
        return out

    if _in_legacy_dygraph():
        out = _C_ops.tril_indices('rows', row, 'cols', col, 'offset', offset,
                                  "dtype", dtype)
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

1831 1832 1833 1834 1835 1836 1837 1838 1839
        helper.append_op(type='tril_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'rows': row,
                             'cols': col,
                             'offset': offset,
                             'dtype': dtype
                         })
1840
    return out